On ,Higgs' modes and the optical conductivity in O(2) models in condensed matter physics

Lode Pollet

in collaboration with:

Kun Chen, Longxiang Liu, Youjin Deng, Nikolay Prokof'ev UMass Amherst, MA, USA USTC Hefei, China USTC Hefei, China UMass Amherst,MA, USA

Ref: PRL 2012, PRL 2013, PRL 2014

Mexican hat potential

 $\Psi(r,t) = |\Psi(r,t)| e^{i\phi(r,t)}$

O(N)

O(2): superfluids O(3) : antiferromagnets

fluctuations of the modulus of order parameter = scalar

hence amplitude mode is hard to couple to

necessary condition: explicit/ emergent Lorentz invariance

decomposition of fluctuations of order parameter into:

- longitudinal & transverse
- radial & tangential

this help understanding behavior of different correlation functions

global gauge invariance

Consider a relativistic quantum field theory with mass m, and a complex scalar field

$$\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi - m^2\phi^*\phi - \frac{1}{2}\lambda(\phi^*\phi)^2$$

or, for negative mass,

$$\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi + m^2\phi^*\phi - \frac{1}{2}\lambda(\phi^*\phi)^2$$

The Lagrangian has a global U(I) symmetry

$$\phi(x) \to \phi(x) e^{i\theta}$$

In terms of the Mexican hat potential,

$$V(\phi) = -\frac{1}{2}\lambda\nu\phi^*\phi + \frac{1}{2}\lambda(\phi^*\phi)^2 \qquad \qquad \nu = -\frac{-2m^2}{\lambda}$$

the minimum occurs for

$$|\phi|^2 = \frac{\nu^2}{2}$$
 courtesy of I. Bloch

global gauge invariance

We pick one of the minima and expand around it,

$$\phi = \frac{1}{\sqrt{2}}(\nu + \varphi_1 + i\varphi_2)$$

The low-energy Lagrangian is then

$$\mathcal{L} = \frac{1}{2} \left[(\partial_{\mu} \varphi_1)^2 + (\partial_{\mu} \varphi_2)^2 \right] - \frac{1}{2} \lambda \nu^2 \varphi_1^2 + \dots$$

where we see a massless Goldstone mode and a massive Higgs mode.

local gauge invariance

Consider now the case of coupling to a gauge field and local gauge invariance,

$$\theta \to \theta(x)$$

$$A_{\mu} \to A_{\mu} - \frac{1}{e} \partial_{\mu} \theta(x)$$

$$D_{\mu} \phi = \partial_{\mu} \phi + i e A_{\mu} \phi$$

$$\mathcal{L} = D_{\mu} \phi^* D^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - V(\phi)$$

Breaking the symmetry now leads to

$$\mathcal{L} = \frac{1}{2} \underbrace{\left[(\partial_{\mu} \varphi_1)^2 + (\partial_{\mu} \varphi_2 + e\nu A_{\mu})^2 \right] - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \lambda \nu^2 \varphi_1^2 + \dots}_{\text{plasmon}}$$

exactly same terms as for global gauge invariance

O(N) field theories

more on field theory

usually the low effective field theory is of the form

$$Z = \int \mathcal{D}\Psi^*(x,\tau)\mathcal{D}\Psi(x,\tau) \exp\left(-\int d^d x \int d\tau \mathcal{L}\left[\Psi^*,\Psi\right]\right)$$
$$\mathcal{L}\left[\Psi^*,\Psi\right] = -\frac{\partial r}{\partial \mu}\Psi^*\frac{\partial \Psi}{\partial \tau} + |\partial_\tau \Psi|^2 + c^2|\nabla \Psi|^2 + r|\Psi|^2 + \frac{u}{2}|\Psi|^4 + \cdots$$
S. Sachdev, Quantum Phase Transitions, 1999

ph - symmetry needed for it to vanish (superconductors, not metals nor superfluids)

It is hard to couple to the Higgs mode:

Raman spectra of NbSe2

Quantum Magnets under Pressure: Controlling Elementary Excitations in TlCuCl₃

Ch. Rüegg,¹ B. Normand,^{2,3} M. Matsumoto,⁴ A. Furrer,⁵ D. F. McMorrow,¹ K. W. Krämer,⁶ H. -U. Güdel,⁶ S. N. Gvasaliya,⁵ H. Mutka,⁷ and M. Boehm⁷

two dimensions

PHYSICAL REVIEW B

VOLUME 49, NUMBER 17

1 MAY 1994-I

Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state

Andrey V. Chubukov

Departments of Physics and Applied Physics, P.O. Box 208120, Yale University, New Haven, Connecticut 06520-8120, and P.L. Kapitza Institute for Physical Problems, Moscow, Russia

Subir Sachdev and Jinwu Ye

Department of Physics and Applied Physics, P.O. Box 208120, Yale University, New Haven, Connecticut 06520-8120 (Received 21 April 1993; revised manuscript received 6 January 1994)

PHYSICAL REVIEW B

VOLUME 59, NUMBER 21

1 JUNE 1999-I

Universal relaxational dynamics near two-dimensional quantum critical points

Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120 (Received 4 November 1998)

 $\chi_{\perp}(k,\omega) = \frac{N_0^2}{\rho_s(0)[k^2 - (\omega/c)^2]},$

 $\chi_{\parallel}(k,\omega) = \frac{N_0^2}{\rho_s(0)} \frac{1}{\sqrt{k^2 - (\omega/c)^2} [\sqrt{k^2 - (\omega/c)^2} + 16\rho_s(0)/cn]}$

longitudinal susceptibility has branch cut no pole-like structure at a frequency of order $\rho_s(0)$

two dimensions

VOLUME 92, NUMBER 2

PHYSICAL REVIEW LETTERS

week ending 16 JANUARY 2004

Anomalous Fluctuations in Phases with a Broken Continuous Symmetry

W. Zwerger

Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria (Received 7 April 2003; published 16 January 2004)

derived same formula's, and used them in the dynamic structure factor:

$$S(q, \omega) = 2m_s^2 \xi_J \frac{N-1}{N} \left[\frac{\pi}{2q} \delta(\omega - cq) + \frac{\xi_J}{16} \frac{\theta(\omega - cq)}{\sqrt{\omega^2 - c^2 q^2}} \right]$$

"The longitudinal fluctuations of the Neel order thus lead to a critical continuum above the spin wave pole at w~ cq, which decays only algebraically. The continuum results from the decay of a normally massive amplitude mode with momentum p into a pair of spin waves with momenta q and p-q, which is possible for any w > cq, with a singular cross section because of the large phase space. The amplitude mode is thus completely overdamped in two dimensions."

Scalar and longitudinal susceptibility

Chubukov, Sachdev, Ye '93 Podolsky, Auerbach, Arovas '11 S. Huber, G. Blatter, E. Altman

Universal scaling predictions

Two has more than three

", The model I came up with in 1964 is just the invention of a rather strange sort of medium that looks the same in all directions and produces a kind of refraction that is a little bit more complicated than that of light in glass or water" — P. Higgs

d = 3 + 1

Longitudinal response: finite width peak

Higgs peak is critically well defined

 $\frac{\Gamma}{\omega_H} \sim \frac{1}{\ln|g - g_c|}$

Energy ratio:

$$rac{\omega_H}{\Delta} = \sqrt{2}$$
 Affleck & Wellman, PRB 92

d=2+1

Longitudinal response IR divergent

universal scaling function

Strongly coupled fixed point

Higgs peak is marginally defined

 $\frac{\Gamma}{\omega_H} \to {\rm const}$

Energy ratio:

$$\frac{\omega_H}{\Delta} \neq \sqrt{2}$$

D. Podolsky

Physics of Bose-Hubbard in a nutshell

$$\begin{split} H &= -t \sum_{\langle ij \rangle} b_i^{\dagger} b_j + \frac{U}{2} \sum_i n_i (n_i - 1) - \sum_i \mu_i n_i \\ \text{M. P.A. Fisher et al, PRB 1989} \\ \\ \begin{array}{c} \mathsf{U}(1) \text{ symmetry global } b_i \rightarrow b_i e^{i\phi} \\ \text{decoupling approximation} \\ (\text{mean-field}) \\ b_i^{\dagger} b_j &= \psi(b_i^{\dagger} + b_j) - \psi^2 \\ \psi &= \langle b_i \rangle &= \langle b_i^{\dagger} \rangle \\ \text{Mott phase: } \bullet \text{Integer density} \\ \bullet \text{ zero compressibility} \\ \bullet \text{ spap} \\ \bullet \text{ insulating} \\ \end{array} \\ \begin{array}{c} \mathsf{SF} \\ \text{Mott} n=1 \\ 0 \\ 0 \\ \mathsf{S} \\ \mathsf{T} \\ \mathsf$$

sketch

Long Monte Carlo simulations (LMC)

Technique pioneered in Zurich (Stoeferle et al); see also Kollath et al, etc

The experimental results

The experimental results

softening of onset of spectral weight on approach to the critical point

Attempt to compare signals (amplitude adjusted)

Take a realistic temperature and trapping parameters into account

universal scaling function

results by Podolsky et al

conclusion and future work

- conditions under which amplitude/Higgs mode can be seen as a sharp and universal peak in correlation functions
- strongly interacting fixed point in 2d; also conductivity accurately computed (cf AdS/CFT correspondence)
- further experiments would be welcome though challenging
- universal scaling function determined; explicit demonstration of Lorentz symmetry under way
- what about (artificial) graphene (Gross-Neveu criticality)? what about 1d?

Special thanks:

Kun Chen, Longxiang Liu, Youjin Deng, Nikolay Prokof'ev W. Witczak-Krempa. E. Sorensen, S. Sachdev, D. Pekker, M. Endres, I. Bloch W. Zwerger, D. Manske, M. Dressel