Phases of strongly-interacting bosons on a two-leg ladder

Marie Piraud

Arnold Sommerfeld Center for Theoretical Physics, LMU, Munich

April 20, 2015

My collaborators

LMU, Munich

F. Heidrich-Meisner

I. P. McCulloch (Brisbane)

Leibniz U., Hannover

S. Greschner

T. Vekua

Electron in a magnetic field

Cyclotron orbit

Electron in a magnetic field

Cyclotron orbit

Landau levels (highly degenerate)

 $E_n = \hbar \omega_{\rm c} (n + 1/2)$

Quantum Hall Effect : quantization of conductance

K. von Klitzing, RMP (1986)

Electron in a magnetic field

Quantum Hall Effect : quantization of conductance


```
E_n = \hbar \omega_{\rm c} (n+1/2)
```

K. von Klitzing, RMP (1986)

Modifies transport properties & creates Topological transitions With interactions : Fractional QHE \Rightarrow Unusual excitations, fractional charge and statistics

Landau levels (highly degenerate)

Type-II Superconductor in a magnetic field

Source : Quantumlevitation.com

Ultra-cold atoms in synthetic gauge fields

Engineer effective \vec{B} field or SO coupling on lattices :

In 'Synthetic dimensions'

A. Celi et al., PRL (2014)

Realizations :

M. Mancini *et al.*, arXiv1502 :02495
 B. Stuhl *et al.*, arXiv1502 :02496

C. Chin & E.J. Mueller, PRL Viewpoint (2013)

- Interplay interactions/ gauge fields/ dimensionality
 - \Rightarrow Promising candidate to search for new phases of matter.

J. Dalibard & F. Gerbier, RMP (2011)

- UCA permit to study bosons in magnetic fields
- Ladders = simplest "2D" system

Weakly-interacting bosons on ladders

Vortex/ Meissner Phase Transition (ladders with uniform $\pi/2$ magnetic flux)

Theo : E. Orignac & T. Giamarchi, PRB (2001) , D. Hügel & B. Paredes, PRA (2014) Exp : M. Atala *et al.*, Nat. Phys. (2014)

Weakly-interacting bosons on ladders

Vortex/ Meissner Phase Transition

(ladders with uniform $\pi/2$ magnetic flux)

Theo : E. Orignac & T. Giamarchi, PRB (2001) , D. Hügel & B. Paredes, PRA (2014) Exp : M. Atala *et al.*, Nat. Phys. (2014)

Interacting bosons on ladders in uniform flux

A few theoretical results

- Field-theoretical studies
- Mean-field approach
- Chiral Mott Insulator
- Mott Insulator with Meissner Currents

A. Petrescu & K. Le Hur, PRL (2013)

R. Wei & E. J. Mueller, PRA (2014)

E. Orignac & T. Giamarchi, PRB (2001)A. Tokuno & A. Georges, NJP (2014)

A. Dhar et al., PRA (2012); PRB (2013)

Study of the momentum distribution

M.-C. Cha & J.-G. Shin, PRA (2011)

Laughlin-1/2 states

A. Petrescu & K. Le Hur, PRB (2015)

Interacting bosons on ladders in uniform flux

A few theoretical results

- Field-theoretical studies
- Mean-field approach
- Chiral Mott Insulator
- Mott Insulator with Meissner Currents

A. Petrescu & K. Le Hur, PRL (2013)

R. Wei & E. J. Mueller, PRA (2014)

E. Orignac & T. Giamarchi, PRB (2001)A. Tokuno & A. Georges, NJP (2014)

A. Dhar et al., PRA (2012); PRB (2013)

Study of the momentum distribution

M.-C. Cha & J.-G. Shin, PRA (2011)

Laughlin-1/2 states

A. Petrescu & K. Le Hur, PRB (2015)

\Rightarrow Explore the phase diagram numerically

Interacting bosons on a two-leg ladder in a uniform flux : Model

$$\mathcal{H}_{\mathsf{K}} = -J \sum_{\ell=1,2;r=1}^{L} \left(a_{\ell,r+1}^{\dagger} a_{\ell,r} + \mathrm{H.c.} \right) - J_{\perp} \sum_{r=1}^{L} \left(e^{-ir\phi} a_{1,r}^{\dagger} a_{2,r} + \mathrm{H.c.} \right)$$

$$\mathcal{H}_{U} = \frac{U}{2} \sum_{\ell=1,2;r=1}^{L} n_{\ell,r} (n_{\ell,r} - 1)$$

Density Matrix Renormalization Group

Ground state and first excited states of 1D many-body systems S. R. White, Phys. Rev. Lett. **69**, 2863 (1992) U. Schollwöck, Rev. Mod. Phys. **77**, 259 (2005)

Successfully applied to (quasi-)2D systems

- S. Yan et al., Science (2011)
- S. Depenbrock et al., PRL (2012)

E. M. Stoudenmire et al., Annu. Rev. Cond. Mat. Phys. (2012)

Outline

- Hard-Core Bosons
 - M. P., F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua and
 - U. Schollwöck, PRB 91 140406(R) (2015)
 - Phase Diagram : MI and SF, Meissner and vortex phases
 - A few observables : chiral current and vortex density

Finite interactions

- S. Greschner, M. P., F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck and
- T. Vekua, submitted (2015)
 - Phase Diagram : vortex lattice phases
 - Ohiral current : spontaneous reversal !

Outline

Hard-Core Bosons

M. P., F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua and

U. Schollwöck, PRB 91 140406(R) (2015)

Phase Diagram

A few observables

Finite interactions

- S. Greschner, M. P., F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck and
- T. Vekua, submitted (2015)
 - Phase Diagram
 - Chiral current

Equation of state

Filling n = N/2L vs. chemical potential μ 0.5 $\phi/\pi = 0.4 - \phi/\pi = 0.6 - \phi/\pi = 0.8 - \phi = \pi - \phi$ **⊂**0.25 increasing ϕ/π μ [arb. units]

Fractionally filled Mott insulator

Hard-core bosons, no flux • Strong rungs $(J_{\perp} \gg J)$: $\mathcal{H}_{\kappa} \sim -J_{\perp} \sum_{r} \left(a_{1,r}^{\dagger} a_{2,r} + \text{H.c.} \right)$

$s_z = 0$ triplet	$(1,0 angle_r+ 0,1 angle_r)/\sqrt{2}$	$E=-J_{\perp}$
$s_z=\pm 1$ triplets	$ 1,1 angle_r$ and $ 0,0 angle_r$	E = 0
singlet	$(1,0 angle_r- 0,1 angle_r)/\sqrt{2}$	$E = J_{\perp}$

Fractionally filled Mott insulator

Hard-core bosons, no flux • Strong rungs $(J_{\perp} \gg J)$: $\mathcal{H}_{K} \sim -J_{\perp} \sum_{r} \left(a_{1,r}^{\dagger} a_{2,r} + \text{H.c.} \right)$

$s_z = 0$ triplet	$(1,0 angle_r+ 0,1 angle_r)/\sqrt{2}$	$E=-J_{\perp}$
$s_z=\pm 1$ triplets	$ 1,1 angle_{r}$ and $ 0,0 angle_{r}$	E = 0
singlet	$(1,0 angle_r- 0,1 angle_r)/\sqrt{2}$	$E = J_{\perp}$

1 boson per rung \Rightarrow 'rung-triplet' phase \Rightarrow Mott insulator extends down to $J_{\perp}/J = 0$ for HCBs T. Vekua *et al.*, PRB (2003); F. Crépin *et al.*, PRB (2011).

Phase diagram for Hard-Core Bosons

Parameter space : rung-tunneling J_{\perp}/J , flux ϕ , filling n = N/2L.

Upper half 0.5 < n < 1 related by particle-hole symmetry. Phase diagram consistent with field-theory.

Current patterns

cf E. Orignac & T. Giamarchi, PRB (2001) , A. Tokuno & A. Georges, NJP (2014) , M. Atala *et al.*, Nat. Phys. (2014)

Current patterns

cf A. Petrescu & K. Le Hur, PRL (2013)

For strong rung-tunneling $J_{\perp} \gg J$ and n < 0.5: effective spin \mathcal{H} Pseudo-spin-1/2 on each rung r: $(|1,0\rangle_r + e^{ir\phi} |0,1\rangle_r)/\sqrt{2} \rightarrow |\downarrow\rangle_r$ and $|0,0\rangle_r \rightarrow |\uparrow\rangle_r$.

$$\mathcal{H}_{\text{eff}}(\phi = \pi) = \frac{J^2}{2|J_{\perp}|} \sum_{r} \left(2S_r^z S_{r+1}^z - \left[S_r^+ (\frac{1}{2} - S_{r+1}^z) S_{r+2}^- + \text{H.c.} \right] \right)$$

For strong rung-tunneling $J_\perp \gg J$ and n < 0.5 : effective spin ${\cal H}$

$$\mathcal{H}_{\text{eff}}(\phi = \pi) = \frac{J^2}{2|J_{\perp}|} \sum_{r} \left(2S_r^z S_{r+1}^z - \left[S_r^+ (\frac{1}{2} - S_{r+1}^z) S_{r+2}^- + \text{H.c.} \right] \right)$$

• $(n = 0.25, \phi = \pi)$ becomes gapped \Rightarrow V-SF splitted in 2 lobes (for $J_{\perp} \gtrsim 1.3J$)

For strong rung-tunneling $J_\perp \gg J$ and n < 0.5 : effective spin ${\cal H}$

$$\mathcal{H}_{\text{eff}}(\phi = \pi) = \frac{J^2}{2|J_{\perp}|} \sum_{r} \left(2S_r^z S_{r+1}^z - \left[S_r^+ (\frac{1}{2} - S_{r+1}^z) S_{r+2}^- + \text{H.c.} \right] \right)$$

•
$$(n = 0.25, \phi = \pi)$$
 becomes gapped
 \Rightarrow V-SF splitted in 2 lobes (for $J_{\perp} \gtrsim 1.3J$)

• V-MI and upper lobe of V-SF disappears (for $J_{\perp} \gtrsim 1.7J$)

For strong rung-tunneling $J_\perp \gg J$ and n < 0.5 : effective spin ${\cal H}$

$$\mathcal{H}_{\text{eff}}(\phi = \pi) = \frac{J^2}{2|J_{\perp}|} \sum_{r} \left(2S_r^z S_{r+1}^z - \left[S_r^+ (\frac{1}{2} - S_{r+1}^z) S_{r+2}^- + \text{H.c.} \right] \right)$$

 Meta-magnetic transition at φ = π : jump in density from n > 0.25 to n = 0.5 (for J_⊥ ≥ 1.5J)

Outline

Hard-Core Bosons

M. P., F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua and

U. Schollwöck, PRB 91 140406(R) (2015)

- Phase Diagram
- A few observables

Finite interactions

- S. Greschner, M. P., F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck and
- T. Vekua, submitted (2015)
 - Phase Diagram
 - Chiral current

Chiral current, HCB at n = 0.5

$$j_{\rm c} = \frac{1}{2L} \Big| \sum_{r} \langle j_{1,r}^{\parallel} - j_{2,r}^{\parallel} \rangle \Big|$$

Vortex phase is disfavored

M. Atala et al., Nat. Phys. (2014)

Chiral current, HCB at n = 0.5

At
$$J_{\perp} \ll J$$
 and small ϕ :
 $j_c \sim (J_{\perp}/\phi)^2$
At $J_{\perp} \gg J$:
 $j_c = \frac{J^2}{J_{\perp}} \sin(\phi)$

no saturation for HCB in gapped phases

Vortex density, HCB at n = 0.5

Inverse spatial extension of the vortices : $\rho_V = l_V^{-1}$ (obtained from the Fourier transform of the rung current $\langle j_r^{\perp} \rangle$).

Outline

Hard-Core Bosons

M. P., F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua and

U. Schollwöck, PRB 91 140406(R) (2015)

- Phase Diagram
- A few observables

Finite interactions

- S. Greschner, M. P., F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck and
- T. Vekua, submitted (2015)
 - Phase Diagram
 - Chiral current

Phase Diagram, at U = 2J and n = 0.8

Vortex Lattices

Commensurate/ incommensurate transitions

E. Orignac & T. Giamarchi, PRB (2001)

The size of the plateaux reduces with interactions

Phase Diagram, at U = 2J and n = 0.8

Phase Diagram : Mott Insulating phases

Outline

Hard-Core Bosons

M. P., F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua and

U. Schollwöck, PRB 91 140406(R) (2015)

- Phase Diagram
- A few observables

Finite interactions

- S. Greschner, M. P., F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck and
- T. Vekua, submitted (2015)
 - Phase Diagram
 - Chiral current

Chiral current : Swimming against the tide !

Chiral current : Swimming against the tide !

 If we have ⊙ B on □ with φ ∈ [π/2, π]; the effective flux on □□ (2φ) corresponds to ⊗ B.
 ⇒ spontaneous current reversal

Chiral current : Swimming against the tide !

 If we have ⊙ B on □ with φ ∈ [π/2, π]; the effective flux on □□ (2φ) corresponds to ⊗ B.
 ⇒ spontaneous current reversal

\Rightarrow Genuine many-body effect

Current reversal : Remarks

- The amplitude of the reversal is $\sim 3j_c^0$
- The VL_{1/3} does not lead to a current reversal (because $\phi > 2\pi/3$)
- The current reversal is robust against the presence of a mass gap
- Study at n ≫ 1 : the current reversal occurs at arbitrary small U/J
- It is stable against a finite number of defects, and at finite T

Conclusion

Strongly-interacting bosons on a ladder with uniform flux : Phase diagram and observables (DMRG and field theory)

Plethora of phases :

- Mott insulating and superfluid, Meissner and Vortex phases
- Vortex lattices ($ho_{
 m V}=1/2$ and 1/3)
- Biased Leg Phase

Vortex lattice phases, Spontaneous current reversal

M. P., F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua and

- U. Schollwöck, PRB 91 140406(R) (2015)
- S. Greschner, M. P., F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck and
- T. Vekua, submitted (2015)

Conclusion

Strongly-interacting bosons on a ladder with uniform flux : Phase diagram and observables (DMRG and field theory)

Plethora of phases :

- Mott insulating and superfluid, Meissner and Vortex phases
- Vortex lattices ($ho_{
 m V}=1/2$ and 1/3)
- Biased Leg Phase

Vortex lattice phases, Spontaneous current reversal

M. P., F. Heidrich-Meisner, I. P. McCulloch, S. Greschner, T. Vekua and

- U. Schollwöck, PRB 91 140406(R) (2015)
- S. Greschner, M. P., F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck and
- T. Vekua, submitted (2015)

Thank you for your attention !

M. Piraud Phases of strongly-interacting bosons on a two-leg ladder