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Motivation for this work

—1 Most of the work on Topological Quantum Matter is based on
the Mean-Field quasi-particle picture

Reasons:
Mathematically Simple (Lie algebraic with poly-complexity)

Intuitive after Landau’s work on quasiparticles

Topological invariants easy fo derive and compute
((full or partial) Chern #, Berry phases, Winding #,
Bott index, Hopf index, ...=>> a Zoo of Numbers) I ﬂli
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How does the experimentalist establish that she has discovered

o topological state of matter ?
Typically a grand principle is invoked:

Bulk-Boundary Correspondence

One-to-one correspondence between topological vacuum
and symmetry-protected boundary (or defect) modes:

Boundary { Topo-Insulators: Fermions

(defect)

modes

Topo-Superfluids: Majorana (or Fermions).’d'?.
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Motivation for this work

—| But real materials are interacting systems:

{ Number conserving (closed QS)
Open QS

What is a Topo state of matter in a Many-body system ?

Do we have a Bulk-Boundary Correspondence ?
What is the experimental signature ?

What is a localized Many-body mode ?

What is the meaning/fate of Majorana modes ?
P il -
How much of the Mean-field picture survives A
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Motivation for this work

—— Why do we care ?

We need to understand what to measure

Majorana fermions are key components of many information
processing devices (Topo Comp) because of its supposed
protection (against decoherence) and non-Abelian braiding

properties I’ET“.




— Introduce o number-conserving, interacting fermion superfluid
model: The Richardson-Gaudin-Kitaev wire

—— Characterization of Topological Superfluidity in generic
interacting many-body systems: Fermion Parity Switches

—— Meaning fo emergent many-body Majorana zero-energy modes

1l




Majorana Fermions

in the Mean-Field Framework




Majorana Fermions
in the Mean-Field Framework




Bogoliubov-de Gennes: No Conservation particle number
Conservation of fermion parity ~ Zs
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Bogoliubov-de Gennes: No Conservation particle number /(1)
Conservu’rion of fermion parity  Zo
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Single-particle spectrum: The anti-unitary operator
i Ko* X ]lL
anti-commutes with the BdG Hamiltonian: {Hsgac,C} =0

This, in turn, implies that the single-particle spectrum is of the form:
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Single-particle zero modes: If
e; =0  (doubly degenerate)

A B X1
Hpdg ¢1 = (—B* —A*) <Y1> = 10)

has two solutions:




Example: Beyond Kitaev's paradigm =>> Power-law Majoranas
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Example: Beyond Kitaev's paradigm =>> Power-law Majoranas
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It is trivial to show that :

There exists a Topologically non-trivial quantum phase

There exists Power-law Majorana fermions
(there is no symmetry-sweet-spot with deconfined Majoranas)

There exists 47r-periodic Josephson effect
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(A Number conserving Topological Superfluid)




The Richardson-Gaudin-Kitaev wire
(A Number conserving Topological Superfluid)

What is a topological superfluid ?




A number-conserving fermionic superfluid: (G > 0)

HRGK :Z EL éliék — 8G Z nknk/él—r{é—‘-—ké—k/ék’

keS) k,k'€S],
Free-fermion band: ek = —2t; cos k — 2t5 cos 2k
. . [k (K
Interaction potential: Mk = sin | o) [t + 4tz cos? { 3
(e = —N—k&)
itions: i (@ = h/2e)
Boundary conditions:  Flux= @ = 5—®o 0 = h/2e
Periodic; (¢ = 0) Sp = Spy © Si- © {0, —7}
: indice i 27 2T 27 e
Anti-Periodic; (¢ = 2n) S2m = ST g §2 I,TT.
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The Richardson-Gaudin-Kitaev wire is integrable (Bethe ansatz)
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The Richardson-Gaudin-Kitaev wire is integrable (Bethe ansatz)
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Eigenspectrum:

M M

Uy) = H( Z QikEaé};éTk)V)@\non_W) , 5¢(N):82Ea+...

a=1 keSy,

with Gaudin (Bethe) equations:
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Eigenspectrum:




Quantum Phase Diagram

The phase diagram can be parametrized in terms of the
density p = N/ L and the rescaled coupling ¢ = GL/2
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Quantum Phase Diagram
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Behavior of the Pairons: The Movie

weak coupling
g=0.250000, M/L=0.250, [f(y)|=0.00000000457727
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Topological Invariant

It turns out that for the RGK wire there is a topological invariant

related to a Winding number: Occupation number
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Topological Invariant

It turns out that for the RGK wire there is a topological invariant

related to a Winding number: Occupation number
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How does one distinguish Topo from Trivial?

Many-Body Characterization

of Topological Superfluids

Fermion Parity Switches

B — T ————




Fermion parity Switches:

A quantitative criterion to establish Topological Superfluidity
that exploits the behavior of the ground state energy of
system with NV, N + 1, and N — 1purhc|es for both
periodic (® = 0)and anfi-periodic (® = @ = )BC

To identify the parity Switches: N € even

Even sector Odd sector
£5°" (D) = &5 (N) gl <50 (N +1) + EF(N - 1))

Define:  x(®) = £%(®) — £5""(®) = Inverse compressibility
Parity Switch: Pn(®) = sign[x(®)] o~
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Topological
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Another way of understanding
the meaning of parity switches:

Topological

ird-order quantum phase transition

third-
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Another way of understanding

‘Topological Trivial
i i : EgE" boIos £§9 -1581.5
the meaning of parity switches: |
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Fermion parity Switches = Fractional Josephson effect

=0, —0-

Despite number-conservation the Fractional Josephson eftect remains
a physical experimental signature of Topological Superfluidity
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What is the meaning/fate of Majorana Modes?

Majoranas ?
Many-Body Zero Modes




For a given flux ¢ : N € even

Y e u

7 ,
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where:
E394(8) = S(ESIN +1) +EJ(N 1)), SEGH(9) = S(EFN +1) — E(N ~ 1)),

B s
i |
At the parficular flux @

wgdd) (wodd|weddy — 0 (Orthonormality)
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At this parficular flux @ one can define Emergent zero modes
In terms of transition operators:
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In terms of transition operators:
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define:

that satisty Majorana’s algebra:
2 =Py=T2%2, and {I'1,T2} =0
and Parity relation:

Dol = [ (g — [WE™)(wg™

Are these Majorana Zero-Energy Modes?
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Consider the commutators:
[Hrek,T1] = 6659 (¢*) (| W) (Weven| — |weveny (wedd|),
[Heak Ta] =11 085 () (eI (WeYe |+ g STIEESH )

At the particular flux ¢

Wit G sty

'y and I" are Emergent Majorana zero-Energy Modes

Moreover, they connect even and odd parity sectors:
[y W) = [U5™) , To|UF™") = i|¥g™)

Violation of charge-superselection rule?
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We have given meaning to Many-body Zero-Energy Modes

= (oherent superpositions of states with different # of particles
m I'; 5 modes anfi-commute with fermionic parity
= Non-number conserving in number conserving systems .
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= I'; » modes anti-commute with fermionic parity
= Non-number conserving in number conserving systems .
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