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Reasons:
Mathematically Simple (Lie algebraic with poly-complexity)

Intuitive after Landau’s work on quasiparticles

Topological invariants easy to derive and compute
((full or partial) Chern #, Berry phases, Winding #,  
Bott index, Hopf index, …           a Zoo of Numbers)
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How does the experimentalist establish that she has discovered 
a topological state of matter ?                                                       

Typically a grand principle is invoked:

Bulk-Boundary Correspondence

One-to-one correspondence between topological vacuum  
and symmetry-protected boundary (or defect) modes:

Topo-Insulators: Fermions
Topo-Superfluids: Majorana (or Fermions){Boundary 

 (defect) 
  modes
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Motivation for this work
But real materials are interacting systems:

What is a Topo state of matter in a Many-body system ?

Number conserving (closed QS)
Open QS{

Do we have a Bulk-Boundary Correspondence ?

What is a localized Many-body mode ?
What is the meaning/fate of Majorana modes ?

What is the experimental signature ?

How much of the Mean-field picture survives ?
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Motivation for this work
Why do we care ?

We need to understand what to measure

Majorana fermions are key components of many information 
processing devices (Topo Comp) because of its supposed  
protection (against decoherence) and non-Abelian braiding  
properties



Main Messages

Introduce a number-conserving, interacting fermion superfluid 
model: The Richardson-Gaudin-Kitaev wire 

Characterization of Topological Superfluidity in generic 
interacting many-body systems:  Fermion Parity Switches  

Meaning to emergent many-body Majorana zero-energy modes
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Majorana Fermions  
in the Mean-Field Framework

Majoranas are part of the hardware
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Single-particle spectrum: The anti-unitary operator
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Many-body 
ground-state energy
E0
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Single-particle zero modes: If

has two solutions:

✏1 = 0

HBdG �1 =

✓
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◆✓
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(doubly degenerate)

X1 = Y 1 2 R1)

b†1(1) =
LX
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X1
i (c

†
i + ci) = b1(1)

2) iX1 = �iY 1 2 R

b†1(2) =
LX

i

X1
i (c

†
i � ci) = b1(2)

Zero modes are Majorana fermions by default
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It is trivial to show that :

There exists a Topologically non-trivial quantum phase

There exists Power-law Majorana fermions  
(there is no symmetry-sweet-spot with deconfined Majoranas)

There exists        -periodic Josephson effect4⇡
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The Richardson-Gaudin-Kitaev wire  
(A Number conserving Topological Superfluid)

What is a topological superfluid ?



Boundary conditions:
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The Richardson-Gaudin-Kitaev wire is integrable (Bethe ansatz)
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Topological Invariant
It turns out that for the RGK wire there is a topological invariant 
related to a Winding number: Occupation number
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Fermion Parity Switches

How does one distinguish Topo from Trivial?



Fermion parity Switches: 

A quantitative criterion to establish Topological Superfluidity 
that exploits the behavior of the ground state energy of a 
system with      ,              , and               particles, for both  
periodic               and anti-periodic                          BC
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Fermion parity Switches = Fractional Josephson effect       

Despite number-conservation the Fractional Josephson effect remains 
a physical experimental signature of Topological Superfluidity
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What is the meaning/fate of Majorana Modes?
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Violation of charge-superselection rule?
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Conclusions

Can one prepare/manipulate coherent superpositions 
of states with a different number of particles?

What is the meaning of Many-body Majorana localization ?


