Many-body Characterization of Particle-Conserving Topological Superfluids

Gerardo Ortiz Department of Physics - Indiana University

INT-15-1 - March 2015

Collaborators:

Jorge Dukelsky: CSIC - Madrid

Carlos Esebbag: Universidad de Alcala - Madrid

Carlo Beenakker: Lorentz Instituut - Leiden

Mostly: PRL 113, 267002 (2014) arXiv:1407.3793

[Most of the work on Topological Quantum Matter is based on the Mean-Field quasi-particle picture

- Most of the work on Topological Quantum Matter is based on the Mean-Field quasi-particle picture

Reasons:

- Mathematically Simple (Lie algebraic with poly-complexity)
- Intuitive after Landau's work on quasiparticles
- Topological invariants easy to derive and compute ((full or partial) Chern #, Berry phases, Winding #, Bott index, Hopf index, ... a Zoo of Numbers)

How does the experimentalist establish that she has discovered a topological state of matter ? Typically a grand principle is invoked:

 How does the experimentalist establish that she has discovered a topological state of matter ?
 Typically a grand principle is invoked:

Bulk-Boundary Correspondence

One-to-one correspondence between topological vacuum and symmetry-protected boundary (or defect) modes:

Boundary (defect) modes Topo-Insulators: Fermions

Topo-Superfluids: Majorana (or Fermions)

But real materials are interacting systems: [Number conserving (closed QS) [Open QS]

But real materials are interacting systems: Number conserving (closed QS) Open QS

What is a Topo state of matter in a Many-body system ?

- But real materials are interacting systems: [Number conserving (closed QS) Open QS What is a Topo state of matter in a Many-body system ?
- Do we have a Bulk-Boundary Correspondence ?

- But real materials are interacting systems: Number conserving (closed QS) Open QS
- What is a Topo state of matter in a Many-body system ?
 Do we have a Bulk-Boundary Correspondence ?
 What is the experimental signature ?

- But real materials are interacting systems: [Number conserving (closed QS) [Open QS]
- What is a Topo state of matter in a Many-body system ?
 Do we have a Bulk-Boundary Correspondence ?
 What is the experimental signature ?
 What is a localized Many-body mode ?

- But real materials are interacting systems: [Number conserving (closed QS) [Open QS]
- What is a Topo state of matter in a Many-body system ?
 Do we have a Bulk-Boundary Correspondence ?
 What is the experimental signature ?
 What is a localized Many-body mode ?
 What is the meaning/fate of Majorana modes ?

- But real materials are interacting systems: [Number conserving (closed QS) Open QS
- What is a Topo state of matter in a Many-body system ?
 Do we have a Bulk-Boundary Correspondence ?
 What is the experimental signature ?
 What is a localized Many-body mode ?
 What is the meaning/fate of Majorana modes ?
 How much of the Mean-field picture survives ?

Why do we care ?

Why do we care ?

We need to understand what to measure

Majorana fermions are key components of many information processing devices (Topo Comp) because of its supposed protection (against decoherence) and non-Abelian braiding properties

Main Messages

Introduce a number-conserving, interacting fermion superfluid model: The Richardson-Gaudin-Kitaev wire

Characterization of Topological Superfluidity in generic interacting many-body systems: Fermion Parity Switches

Meaning to emergent many-body Majorana zero-energy modes

Majorana Fermions in the Mean-Field Framework

Majorana Fermions in the Mean-Field Framework

Majoranas are part of the hardware

Bogoliubov-de Gennes: No Conservation particle number Conservation of fermion parity

$$\mathbb{Z}_2$$

$$= \sum_{i,j}^{L} A_{ij} c_{i}^{\dagger} c_{j} + \frac{1}{2} \sum_{i,j}^{L} (B_{ij} c_{i}^{\dagger} c_{j}^{\dagger} + B_{ij}^{*} c_{j} c_{i})$$
$$H_{mf} = \frac{1}{2} (\Psi^{\dagger} H_{BdG} \Psi + TrA)$$

with: $H_{\mathsf{BdG}} = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix}$

 $H_{mf} =$

 $A = A_R + iA_I, \ B = B_R + iB_I$, $A = A^{\dagger}, \ B^T = -B$ $A_R = A_R^T, \ A_I = -A_I^T, \ B_R = -B_R^T, \ B_I = -B_I^T$

Bogoliubov-de Gennes: No Conservation particle number U(1)1/2 **Conservation of fermion parity** $H_{\rm mf} = \sum_{i=1}^{L} A_{ij} c_i^{\dagger} c_j + \frac{1}{2} \sum_{i=1}^{L} (B_{ij} c_i^{\dagger} c_j^{\dagger} + B_{ij}^* c_j c_i) \ , \ [H_{\rm mf}, \sum_{i=1}^{L} c_i^{\dagger} c_i] \neq 0$ $H_{\rm mf} = \frac{1}{2} (\Psi^{\dagger} H_{\rm BdG} \Psi + {\rm Tr} A)$ with: $H_{BdG} = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix}$

 $A = A_R + iA_I, \ B = B_R + iB_I$, $A = A^{\dagger}, \ B^T = -B$ $A_R = A_R^T, \ A_I = -A_I^T, \ B_R = -B_R^T, \ B_I = -B_I^T$

Bogoliubov-de Gennes: No Conservation particle number
$$U(1)$$

Conservation of fermion parity \mathbb{Z}_2
 $H_{mf} = \sum_{i,j}^{L} A_{ij} c_i^{\dagger} c_j + \frac{1}{2} \sum_{i,j}^{L} (B_{ij} c_i^{\dagger} c_j^{\dagger} + B_{ij}^* c_j c_i) , [H_{mf}, \sum_{i}^{L} c_i^{\dagger} c_i] \neq 0$
 $H_{mf} = \frac{1}{2} (\Psi) H_{BdG} \Psi + TrA)$
with: $H_{BdG} = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix}, \Psi^{\dagger} = (c_1^{\dagger}, c_2^{\dagger}, \cdots, c_L^{\dagger}, c_1, c_2, \cdots, c_L)$
 $A = A_R + iA_I, B = B_R + iB_I , A = A^{\dagger}, B^T = -B$

 $A_R = A_R^T, \ A_I = -A_I^T, \ B_R = -B_R^T, \ B_I = -B_I^T$

Bogoliubov-de Gennes: No Conservation particle number
$$U(1)$$

Conservation of fermion parity \mathbb{Z}_2
 $H_{mf} = \sum_{i,j}^{L} A_{ij} c_i^{\dagger} c_j + \frac{1}{2} \sum_{i,j}^{L} (B_{ij} c_i^{\dagger} c_j^{\dagger} + B_{ij}^* c_j c_i) , [H_{mf}, \sum_{i}^{L} c_i^{\dagger} c_i] \neq 0$
 $H_{mf} = \frac{1}{2} (\Psi) H_{BdG} \Psi + \text{Tr}A)$
with: $H_{BdG} = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix}, \Psi^{\dagger} = (c_1^{\dagger}, c_2^{\dagger}, \cdots, c_L^{\dagger}, c_1, c_2, \cdots, c_L)$
 $A = A_R + iA_I, B = B_R + iB_I$, $A = A^{\dagger}, B^T = -B$
or:
 $A_R = A_R^T, A_I = -A_I^T, B_R = -B_R^T, B_I = -B_I^T$

Single-particle spectrum: The anti-unitary operator

 $\mathcal{C} = K\sigma^x \otimes \mathbb{1}_L$

anti-commutes with the BdG Hamiltonian: $\{H_{BdG}, C\} = 0$

This, in turn, implies that the single-particle spectrum is of the form:

$$H_{BdG} \phi_n = \epsilon_n \phi_n , \quad \phi_n = \begin{pmatrix} X^n \\ Y^n \end{pmatrix}$$

with quasi-particle bogoliubons:
$$b_n^{\dagger} = \sum_i^L (X_i^n c_i^{\dagger} + Y_i^n c_i) , \text{ in terms of which:}$$

$$H_{\mathsf{BdG}} = \sum_{n>0} \epsilon_n b_n^{\dagger} b_n + \frac{1}{2} (\operatorname{Tr} A - \sum_{n>0} \epsilon_n)$$

(TTm)

Single-particle spectrum: The anti-unitary operator

 $\mathcal{C} = K\sigma^x \otimes \mathbb{1}_L$

anti-commutes with the BdG Hamiltonian: $\{H_{BdG}, C\} = 0$

This, in turn, implies that the single-particle spectrum is of the form:

$\epsilon_1 = 0$ (doubly degenerate)

$$H_{\mathsf{BdG}}\phi_1 = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^1 \\ Y^1 \end{pmatrix} = 0$$

has two solutions:

$\epsilon_1 = 0$ (doubly degenerate)

$$H_{\mathsf{BdG}}\phi_1 = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^1 \\ Y^1 \end{pmatrix} = 0$$

has two solutions:

1)
$$X^1 = Y^1 \in \mathbb{R}$$

 $b_{1(1)}^{\dagger} = \sum_{i}^{L} X_i^1(c_i^{\dagger} + c_i) = b_{1(1)}$

$\epsilon_1 = 0$ (doubly degenerate)

$$H_{\mathsf{BdG}}\phi_1 = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^1 \\ Y^1 \end{pmatrix} = 0$$

has two solutions:

1)
$$X^1 = Y^1 \in \mathbb{R}$$

 $b_{1(1)}^{\dagger} = \sum_{i}^{L} X_i^1(c_i^{\dagger} + c_i) = b_{1(1)}$

2)
$$iX^1 = -iY^1 \in \mathbb{R}$$

 $b_{1(2)}^{\dagger} = \sum_{i}^{L} X_i^1(c_i^{\dagger} - c_i) = b_{1(2)}$

$\epsilon_1 = 0$ (doubly degenerate)

$$H_{\mathsf{BdG}}\phi_1 = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X^1 \\ Y^1 \end{pmatrix} = 0$$

has two solutions:

1)
$$X^{1} = Y^{1} \in \mathbb{R}$$

 $b_{1(1)}^{\dagger} = \sum_{i}^{L} X_{i}^{1}(c_{i}^{\dagger} + c_{i}) = b_{1(1)}$
2) $iX^{1} = -iY^{1} \in \mathbb{R}$
 $b_{1(2)}^{\dagger} = \sum_{i}^{L} X_{i}^{1}(c_{i}^{\dagger} - c_{i}) = b_{1(2)}$

Zero modes are Majorana fermions by default

Example: Beyond Kitaev's paradigm - Power-law Majoranas

$$H_{mf} = -t_1 \sum_{i=1}^{L} (c_i^{\dagger} c_{i+1} + h.c) - t_2 \sum_{i=1}^{L} (c_i^{\dagger} c_{i+2} + h.c) - \mu \sum_{i=1}^{L} n_i -\Delta \sum_{i>j}^{L} \eta(i-j) c_j^{\dagger} c_i^{\dagger} - \Delta^* \sum_{i>j}^{L} \eta(i-j) c_i c_j$$
with: $\eta(i-j) = \frac{4}{L} \sum_k \sin(k(i-j)) \eta_k$
 $\eta_k = \sin\left(\frac{k}{2}\right) \sqrt{t_1 + 4t_2 \cos^2\left(\frac{k}{2}\right)}$
I) $t_1 = 0, \ t_2 \neq 0: \ \eta(m) = \sqrt{t_2} \,\delta_{m,1}$

2) $t_1 \neq 0, t_2 = 0$:

Example: Beyond Kitaev's paradigm =>> Power-law Majoranas

$$H_{mf} = -t_{1} \sum_{i=1}^{L} (c_{i}^{\dagger}c_{i+1} + h.c) - t_{2} \sum_{i=1}^{L} (c_{i}^{\dagger}c_{i+2} + h.c) - \mu \sum_{i=1}^{L} n_{i}$$
$$-\Delta \sum_{i>j}^{L} \eta(i-j)c_{j}^{\dagger}c_{i}^{\dagger} - \Delta^{*} \sum_{i>j}^{L} \eta(i-j)c_{i}c_{j}$$
with: $\eta(i-j) = \frac{4}{L} \sum_{k} \sin(k(i-j)) \eta_{k}$
$$\eta_{k} = \sin\left(\frac{k}{2}\right) \sqrt{t_{1} + 4t_{2}\cos^{2}\left(\frac{k}{2}\right)}$$
$$\eta_{k} = 0, \ t_{2} \neq 0: \ \eta(m) = \sqrt{t_{2}} \delta_{m,1}$$

It is trivial to show that :

There exists a Topologically non-trivial quantum phase

There exists Power-law Majorana fermions (there is no symmetry-sweet-spot with deconfined Majoranas)

 \square There exists 4π -periodic Josephson effect

The Richardson-Gaudin-Kitaev wire (A Number conserving Topological Superfluid)

The Richardson-Gaudin-Kitaev wire (A Number conserving Topological Superfluid)

What is a topological superfluid ?

A number-conserving fermionic superfluid: (G > 0) $H_{\mathsf{RGK}} = \sum \varepsilon_k \, \hat{c}_k^{\dagger} \hat{c}_k - 8G \sum \eta_k \eta_{k'} \hat{c}_k^{\dagger} \hat{c}_{-k'}^{\dagger} \hat{c}_{-k'} \hat{c}_{k'}$ $k \in \mathcal{S}_{k}^{\phi}$ $k,k' \in \mathcal{S}_{k+}^{\phi}$ Free-fermion band: $\varepsilon_k = -2t_1 \cos k - 2t_2 \cos 2k$ $\eta_k = \sin\left(\frac{k}{2}\right) \sqrt{t_1 + 4t_2 \cos^2\left(\frac{k}{2}\right)}$ Interaction potential: $(\eta_k = -\eta_{-k})$ Flux= $\Phi = \frac{\phi}{2\pi} \Phi_0$ $\Phi_0 = h/2e$ **Boundary conditions:** $\mathcal{S}_k^0 = \mathcal{S}_{k+}^0 \oplus \mathcal{S}_{k-}^0 \oplus \{0, -\pi\}$ **Periodic:** $(\phi = 0)$ Anti-Periodic: $(\phi = 2\pi)$ $\mathcal{S}_k^{2\pi} = \mathcal{S}_{k+}^{2\pi} \oplus \mathcal{S}_{k-}^{2\pi}$

Eigenspectrum:

$$|\Psi_N\rangle = \prod_{\alpha=1}^M \left(\sum_{k \in \mathcal{S}_{k+}^{\phi}} \frac{\eta_k}{\eta_k^2 - E_\alpha} \hat{c}_k^{\dagger} \hat{c}_{-k}^{\dagger} \right) |\nu\rangle \otimes |n_0 n_{-\pi}\rangle \quad \mathcal{E}^{\phi}(N) = 8 \sum_{\alpha=1}^M E_\alpha + \cdots$$

with Gaudin (Bethe) equations:

$$\sum_{k \in \mathcal{S}_{k+}^{\phi}} \frac{s_k}{\eta_k^2 - E_\alpha} - \sum_{\beta(\neq \alpha)} \frac{1}{E_\beta - E_\alpha} = \frac{Q_\phi}{E_\alpha}$$

$$Q_{\phi} = 1/2G - \sum_{k \in \mathcal{S}_{k+}^{\phi}} s_k + M - 1 \quad , \ s_k = \frac{1}{2}(1 - |\nu_k|) = \left\{ \right\}$$

 $\frac{1}{2}$

0

Eigenspectrum:

$$\begin{split} |\Psi_{N}\rangle &= \prod_{\alpha=1}^{M} \left(\sum_{k \in S_{k+}^{\phi}} \frac{\eta_{k}}{\eta_{k}^{2} - E_{\alpha}} \hat{e}_{k}^{\dagger} \hat{e}_{-k}^{\dagger} \right) |\nu\rangle \otimes |n_{0}n_{-\pi}\rangle \quad , \quad \mathcal{E}^{\phi}(N) = 8 \sum_{\alpha=1}^{M} E_{\alpha} + \cdots \\ \text{with Gaudin (Bethe) equations:} \\ \\ \underbrace{\sum_{k \in S_{k+}^{\phi}} \frac{s_{k}}{\eta_{k}^{2} - E_{\alpha}} - \sum_{\beta(\neq \alpha)} \frac{1}{E_{\beta} - E_{\alpha}} = \frac{Q_{\phi}}{E_{\alpha}}}_{k \neq 0} \text{Pairon} \\ Q_{\phi} &= 1/2G - \sum_{k \in S_{k+}^{\phi}} s_{k} + M - 1 \quad , \quad s_{k} = \frac{1}{2}(1 - |\nu_{k}|) = \begin{cases} \frac{1}{2} \\ 0 \\ 0 \end{cases} \end{split}$$

The phase diagram can be parametrized in terms of the density $\rho = N/L$ and the rescaled coupling g = GL/2

The phase diagram can be parametrized in terms of the density $\rho = N/L$ and the rescaled coupling g = GL/2

The phase diagram can be pardensity $\rho = N/L$ and the resca

2

third-order quantur

 $\mu = 0$

Topolo

0.6

0.4

0.2

0

Ω

Behavior of the Pairons: The Movie

Behavior of the Pairons: The Movie

Topological Invariant

It turns out that for the RGK wire there is a topological invariant related to a Winding number: Occupation number

$$\mathcal{N}_k = \frac{1}{2} - s_k - 4s_k \gamma^2 \sum_{\alpha=1}^M \frac{\eta_k^2}{(\eta_k^2 - E_\alpha)^2} \frac{\partial E_\alpha}{\partial \gamma}$$

Topological Invariant

It turns out that for the RGK wire there is a topological invariant related to a Winding number: Occupation number

Many-Body Characterization of Topological Superfluids

How does one distinguish Topo from Trivial?

Many-Body Characterization of Topological Superfluids

How does one distinguish Topo from Trivial?

Many-Body Characterization of Topological Superfluids

Fermion Parity Switches

Fermion parity Switches:

A quantitative criterion to establish Topological Superfluidity that exploits the behavior of the ground state energy of a system with N, N + 1, and N - 1 particles, for both periodic $(\Phi = 0)$ and anti-periodic $(\Phi = \Phi_0 = \frac{h}{2e})$ BC

To identify the parity Switches: $N \in even$ Even sectorOdd sector $\mathcal{E}_0^{even}(\Phi) = \mathcal{E}_0^{\Phi}(N)$ $\mathcal{E}_0^{odd}(\Phi) = \frac{1}{2}(\mathcal{E}_0^{\Phi}(N+1) + \mathcal{E}_0^{\Phi}(N-1))$ Define: $\chi(\Phi) = \mathcal{E}_0^{odd}(\Phi) - \mathcal{E}_0^{even}(\Phi)$ = Inverse compressibility

Parity Switch:

$$\mathcal{P}_N(\Phi) = \operatorname{sign}[\chi(\Phi)]$$

In our Richardson-Gaudin-Kitaev wire:

Another way of understanding the meaning of parity switches:

Another way of understanding the meaning of parity switches:

Fermion parity Switches = Fractional Josephson effect

$$\Phi = \theta_1 - \theta_2$$

Despite number-conservation the Fractional Josephson effect remains a physical experimental signature of Topological Superfluidity

What is the meaning/fate of Majorana Modes?

For a given flux ϕ : $N \in \text{even}$ $|\Psi_0^{\text{odd}}\rangle = \frac{|\Psi_0^{N+1}\rangle + e^{i\varphi}|\Psi_0^{N-1}\rangle}{\sqrt{2}},$ $|\Psi_0^{\text{even}}\rangle = |\Psi_0^N\rangle$

horo.

$$H_{\mathsf{RGK}}|\Psi_0^{\mathsf{odd}}\rangle = \mathcal{E}_0^{\mathsf{odd}}(\phi)|\Psi_0^{\mathsf{odd}}\rangle + \delta \mathcal{E}_0^{\mathsf{odd}}(\phi)|\widetilde{\Psi}_0^{\mathsf{odd}}\rangle, \qquad H_{\mathsf{RGK}}|\Psi_0^{\mathsf{even}}\rangle = \mathcal{E}_0^{\mathsf{even}}(\phi)|\Psi_0^{\mathsf{even}}\rangle$$

$$\langle \Psi_0^{\mathsf{odd}} | H_{\mathsf{RGK}} | \Psi_0^{\mathsf{odd}} \rangle = \mathcal{E}_0^{\mathsf{odd}}(\phi) \qquad \qquad \langle \Psi_0^{\mathsf{even}} | H_{\mathsf{RGK}} | \Psi_0^{\mathsf{even}} \rangle = \mathcal{E}_0^{\mathsf{even}}(\phi)$$

$$\mathcal{E}_{0}^{\mathsf{odd}}(\phi) = \frac{1}{2} (\mathcal{E}_{0}^{\phi}(N+1) + \mathcal{E}_{0}^{\phi}(N-1)), \quad \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi) = \frac{1}{2} (\mathcal{E}_{0}^{\phi}(N+1) - \mathcal{E}_{0}^{\phi}(N-1)),$$
$$|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle = \frac{|\Psi_{0}^{N+1}\rangle - e^{i\varphi}|\Psi_{0}^{N-1}\rangle}{\sqrt{2}}, \qquad \langle \Psi_{0}^{\mathsf{odd}}|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle = 0 \quad \text{(Orthonormality)}$$
At the particular flux ϕ^{*}

For a given flux ϕ : $N \in$ even $|\Psi_0^{\mathsf{odd}}\rangle = \frac{|\Psi_0^{N+1}\rangle + e^{\mathbf{i}\varphi}|\Psi_0^{N-1}\rangle}{\sqrt{2}},$ $|\Psi_0^{\rm even}\rangle=|\Psi_0^N\rangle$ $H_{\rm RGK}|\Psi_0^{\rm even}\rangle = \mathcal{E}_0^{\rm even}(\phi)|\Psi_0^{\rm even}\rangle$ $H_{\mathsf{RGK}}|\Psi_0^{\mathsf{odd}}\rangle = \mathcal{E}_0^{\mathsf{odd}}(\phi)|\Psi_0^{\mathsf{odd}}\rangle + \delta \mathcal{E}_0^{\mathsf{odd}}(\phi)|\widetilde{\Psi}_0^{\mathsf{odd}}\rangle,$ $\langle \Psi_0^{\rm even} | H_{\rm RGK} | \Psi_0^{\rm even} \rangle = \mathcal{E}_0^{\rm even}(\phi)$ $\langle \Psi_0^{\text{odd}} | H_{\text{RGK}} | \Psi_0^{\text{odd}} \rangle = \mathcal{E}_0^{\text{odd}}(\phi)$ where: $\mathcal{E}_{0}^{\mathsf{odd}}(\phi) = \frac{1}{2} (\mathcal{E}_{0}^{\phi}(N+1) + \mathcal{E}_{0}^{\phi}(N-1)), \quad \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi) = \frac{1}{2} (\mathcal{E}_{0}^{\phi}(N+1) - \mathcal{E}_{0}^{\phi}(N-1)),$ $|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle = \frac{|\Psi_{0}^{N+1}\rangle - e^{\varphi}|\Psi_{0}^{N-1}\rangle}{\sqrt{2}}, \qquad \langle \Psi_{0}^{\mathsf{odd}}|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle = 0 \quad \text{(Orthonormality)}$ At the particular flux ϕ^* $\langle \Psi_0^{\text{even}} | H_{\text{RGK}} | \Psi_0^{\text{even}} \rangle = \frac{\mathcal{E}_0^{\text{even}}(\phi^*) - \mathcal{E}_0^{\text{odd}}(\phi^*)}{\mathcal{E}_0^{\text{odd}}} = \langle \Psi_0^{\text{odd}} | H_{\text{RGK}} | \Psi_0^{\text{odd}} \rangle$

At this particular flux ϕ^* one can define Emergent zero modes In terms of transition operators:

 $\hat{T} = |\Psi_0^{\text{even}}\rangle\langle\Psi_0^{\text{odd}}|, \quad \hat{T}^2 = 0, \quad \{\hat{T}, \hat{T}^{\dagger}\} = \hat{P}_0, \quad \text{and} \quad \hat{P}_0 = |\Psi_0^{\text{even}}\rangle\langle\Psi_0^{\text{even}}| + |\Psi_0^{\text{odd}}\rangle\langle\Psi_0^{\text{odd}}|$ define: $\Gamma_1 = \hat{T} + \hat{T}^{\dagger}, \quad \text{and} \quad i\Gamma_2 = \hat{T} - \hat{T}^{\dagger}$

that satisfy Majorana's algebra:

an

$$\Gamma_1^2 = \hat{P}_0 = \Gamma_2^2$$
, and $\{\Gamma_1, \Gamma_2\} = 0$
I Parity relation:

$$\mathrm{i}\Gamma_{2}\Gamma_{1} = |\Psi_{0}^{\mathrm{even}}\rangle\langle\Psi_{0}^{\mathrm{even}}| - |\Psi_{0}^{\mathrm{odd}}\rangle\langle\Psi_{0}^{\mathrm{odd}}|$$

At this particular flux ϕ^* one can define Emergent zero modes In terms of transition operators:

 $\hat{T} = |\Psi_0^{\text{even}}\rangle\langle\Psi_0^{\text{odd}}|, \quad \hat{T}^2 = 0, \quad \{\hat{T}, \hat{T}^{\dagger}\} = \hat{P}_0, \quad \text{and} \quad \hat{P}_0 = |\Psi_0^{\text{even}}\rangle\langle\Psi_0^{\text{even}}| + |\Psi_0^{\text{odd}}\rangle\langle\Psi_0^{\text{odd}}|$ define: $\Gamma_1 = \hat{T} + \hat{T}^{\dagger}, \quad \text{and} \quad i\Gamma_2 = \hat{T} - \hat{T}^{\dagger}$

that satisfy Majorana's algebra:

an

$$\Gamma_1^2 = \hat{P}_0 = \Gamma_2^2$$
, and $\{\Gamma_1, \Gamma_2\} = 0$
d Parity relation:

$$\mathrm{i}\Gamma_{2}\Gamma_{1} = |\Psi_{0}^{\mathrm{even}}\rangle\langle\Psi_{0}^{\mathrm{even}}| - |\Psi_{0}^{\mathrm{odd}}\rangle\langle\Psi_{0}^{\mathrm{odd}}|$$

Are these Majorana Zero-Energy Modes?

At the

$$\begin{split} [H_{\mathsf{RGK}},\Gamma_{1}] &= \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| - |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|), \\ [H_{\mathsf{RGK}},\Gamma_{2}] &= \mathsf{i} \ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| + |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|) \\ \\ \mathsf{particular flux} \ \phi^{*} \\ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*}) \xrightarrow{L \to \infty} 0 \end{split}$$

At th

$$\begin{split} [H_{\mathsf{RGK}},\Gamma_{1}] &= \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| - |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|), \\ [H_{\mathsf{RGK}},\Gamma_{2}] &= \mathsf{i} \ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| + |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|) \\ \\ \mathsf{e} \ \mathsf{particular flux} \ \phi^{*} \\ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*}) \xrightarrow{L \to \infty} 0 \end{split}$$

Γ_1 and Γ_2 are Emergent Majorana zero-Energy Modes

At the

$$\begin{split} [H_{\mathsf{RGK}},\Gamma_{1}] &= \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| - |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|), \\ [H_{\mathsf{RGK}},\Gamma_{2}] &= \mathsf{i} \ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| + |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|) \\ \bullet \mathbf{particular flux} \ \phi^{*} \\ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*}) \xrightarrow{L \to \infty} 0 \end{split}$$

 Γ_1 and Γ_2 are Emergent Majorana zero-Energy Modes

Moreover, they connect even and odd parity sectors:

 $\Gamma_1 |\Psi_0^{\rm even}\rangle = |\Psi_0^{\rm odd}\rangle \ , \ \ \Gamma_2 |\Psi_0^{\rm even}\rangle = {\rm i} |\Psi_0^{\rm odd}\rangle$

At the

$$\begin{split} [H_{\mathsf{RGK}},\Gamma_{1}] &= \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| - |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|), \\ [H_{\mathsf{RGK}},\Gamma_{2}] &= \mathsf{i} \ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*})(|\widetilde{\Psi}_{0}^{\mathsf{odd}}\rangle\langle\Psi_{0}^{\mathsf{even}}| + |\Psi_{0}^{\mathsf{even}}\rangle\langle\widetilde{\Psi}_{0}^{\mathsf{odd}}|) \\ \bullet \mathbf{particular flux} \ \phi^{*} \\ \delta \mathcal{E}_{0}^{\mathsf{odd}}(\phi^{*}) \xrightarrow{L \to \infty} 0 \end{split}$$

 Γ_1 and Γ_2 are Emergent Majorana zero-Energy Modes

Moreover, they connect even and odd parity sectors:

$$\Gamma_1 |\Psi_0^{\mathsf{even}}\rangle = |\Psi_0^{\mathsf{odd}}\rangle \ , \ \ \Gamma_2 |\Psi_0^{\mathsf{even}}\rangle = \mathsf{i}|\Psi_0^{\mathsf{odd}}\rangle$$

Violation of charge-superselection rule?

Conclusions

Habemus Number-conserving (interacting) Topological Superfluids
Fermion Parity Switches allow characterization
Fractional Josephson effect is the experimental signature

Habemus Number-conserving (interacting) Topological Superfluids Fermion Parity Switches allow characterization Fractional Josephson effect is the experimental signature We have given meaning to Many-body Zero-Energy Modes Coherent superpositions of states with different # of particles $\Gamma_{1,2}$ modes anti-commute with fermionic parity Non-number conserving in number conserving systems

- We have given meaning to Many-body Zero-Energy Modes
 - Coherent superpositions of states with different # of particles
 - $\Gamma_{1,2}$ modes anti-commute with fermionic parity
 - Non-number conserving in number conserving systems

Can one prepare/manipulate coherent superpositions of states with a different number of particles?

Can one prepare/manipulate coherent superpositions of states with a different number of particles?

