Few- and many-body physics of fermions in two dimensions

Sergej Moroz CU Boulder

Chiral p+ip fermionic superfluids

together with Carlos Hoyos and Dam Thanh Son

- T=0 state of a neutral many-body system
- No dissipation, quantum vortices, ...
- Old: ⁴He and ³He
- New: Bose and Fermi ultracold atoms

Chiral 2d superfluid

- Chiral condensate $\Delta_{\mathbf{p}} = (p_x \pm i p_y) \hat{\Delta}$ preferred
- Topological phase transition at $\mu = 0$
- Chiral Majorana mode on boundaries
- Toy model for a film of 3He
- Moore-Read $\nu = 5/2$ QH state $\nu = 5/2$

Volovik, Read, Green,...

Mirror Plane

- Chiral condensate $\Delta_{\mathbf{p}} = (p_x \pm i p_y) \hat{\Delta}$ $\hat{\bm{\Lambda}}$
- SSB pattern: $U(1)_N \times SO(2)_L \rightarrow U(1)_V$
- Single gapless Goldstone mode
- Breaks parity and time reversal!

- Chiral ground state rotates edge particle current
- Angular momentum of p+ip superfluid

$$
L_{\text{GS}} = \int d^2x \epsilon_{kl} x^k J^l = 1/2 \underbrace{\int d^2x \rho}_{N}
$$

Hall viscosity

• Specific to 2d with broken P and T

Avron, Seiler, Zograf

• Non-dissipative effect

$$
f^i_{\text{Hall}} = \eta_{\text{H}} \epsilon^{ij} \Delta v_j
$$
 ^{Rotating disk}

• Counts internal angular momentum density $\eta_{\rm H} \sim \hbar/l^2$

Read

Galilean-invariant examples: IQHE, FQHE, p+ip SF

s-wave superfluid

BCS

$$
S[\theta] = \int dt dx \sqrt{g} P(X) \leftarrow \boxed{x = D_t \theta - \frac{g^{ij}}{2} D_i \theta D_j \theta}
$$

pressure

$$
D_{\nu} \theta \equiv \partial_{\nu} \theta - A_{\nu}
$$

• Ideal superfluid hydrodynamics with

$$
\rho \equiv dP/dX \qquad v_j \equiv -D_j \theta
$$

•Leading order in power-counting

 $\partial_{\nu}\theta \sim A_{\nu} \sim g_{ij} \sim O(1)$ $[\partial_{\nu}O]=1+[O]$

•Nonlinear in Goldstones $[(\partial \theta)^n] = n[\partial \theta] = 0$

Put superfluid into curved space and turn on electromagnetic source

• Generalizes Galilean transformation

Chiral superfluid

- New gauge field needed $U(1)_N \times SO(2)_L \rightarrow U(1)_V$
- Orthogonal spatial vielbein:

 $\overline{}$

1

 $\overline{1}$

2

• Spin connection:

 $\epsilon^{ab}e^{aj}\partial_{t}e_{j}^{b}+B$

 $\epsilon^{ab}e^{aj}\nabla_ie^b_j =$

 $\omega_t \equiv$

 $\omega_i \equiv$

1

 $\overline{1}$

2

1

2

- $\epsilon^{ab}e^{aj}\partial_ie^b_j \epsilon^{jk}\partial_jg_{ik}$ *SO(2)L: gauge field diffeo: one-form*
- Just introduce new covariant derivative

$$
\bigg[D_{\nu}\theta\equiv\partial_{\nu}\theta-A_{\nu}-s\omega_{\nu}\bigg]
$$

Chiral superfluid

• U(1) current:

$$
J^{i} = -\frac{1}{\sqrt{g}} \frac{\delta S}{\delta A_{i}} = \underbrace{\rho g^{ij} v_{j}}_{\text{convective}} + \underbrace{\frac{s}{2} \varepsilon^{ij} \partial_{j} \rho}_{\text{edge}}
$$

Stress tensor:

$$
\Delta T_{\rm ch}^{ij} \equiv \frac{2}{\sqrt{g}} \frac{\delta S_{\rm ch}}{\delta g_{ij}}
$$
\n
$$
= (v^i J_{\rm edge}^j + v^j J_{\rm edge}^i) + T_{\rm Hall}^{ij} - \frac{s^2}{4} \rho R g^{ij}
$$

LO superfluid parity-violating hydrodynamics

$$
\omega = \frac{1}{2} \epsilon^{ij} \partial_i v_j = \frac{\sqrt{g}}{2} \left(B + \frac{s}{2} R \right)
$$

- Vorticity is sourced by magnetic field and curvature
- p-wave superfluid on a sphere without B

$$
\int_{S^2} \omega = \pi
$$

two quantum vortices

Linear response

• Electromagnetic $\sigma_H(\omega, {\bf p}) = \frac{s \rho^{\textsf{GS}}}{2}$ 2 $-p^2$ $\omega^2-c_s^2{\bf p}^2$ $J^i = \sigma_H(\omega, \mathbf{p}) \epsilon^{ij} E_j + \ldots$

- Gravitational $\delta T^{xy} = -i\omega$ $\eta_H(\omega) = -\frac{s}{2}$ 2 ρ^{GS} $\eta_H(\omega)$ $\frac{2}{2}$ $(h_{xx} - h_{yy}) + \ldots$
- Universal relation:

^p=0 *Hoyos, Son; Bradlyn et al*

$$
\boxed{\eta_H(\omega) = \frac{\omega^2}{2} \frac{\partial^2}{\partial p_x^2} \sigma_H(\omega, \mathbf{p})\Big|_{\mathbf{p} = 0}}
$$

Vortex solution

• Quantum vortex

$$
v_r = 0 \qquad v_\phi = \frac{n}{2r} \qquad n \in \mathbb{Z}
$$

• Euler equation and its solution

$$
\rho \frac{n^2}{4r^3} = \left[c_s^2 + \frac{sn}{2r^2}\right] \partial_r \rho \to \frac{\rho_\infty - \rho}{\rho_\infty} = \frac{n^2}{8c_{s\infty}^2 r^2} + O(r^{-4})
$$

• Vortex and anti-vortex are different

$$
\frac{\Delta \rho}{\rho_{\infty}} = \frac{s}{16c_{s\infty}^4 r^4} + O(r^{-6})
$$

Gapless fermi modes

- Topological SF gapless edge mode in BCS
- No explicit fermi modes in our EFT
- Non-analyticity of EoS at critical point
- This can appear only from integration of gapless modes

Edge modes are integrated out!

Conclusion

- Effective hydro theory for Galilean parityviolating superfluid
- Hall viscosity and edge current
- Extension to higher partial waves Tada et al, Volovik 2014
- Better understanding of edge modes?

Super Efimov effect

together with Yusuke Nishida and Dam Thanh Son

They are challenging but useful:

- Newton gravity \longrightarrow perturbation theory, chaos
- Quantum atoms \rightarrow variational Hartree-Fock
- Quantum molecules \rightarrow Born-Oppenheimer

Efimov effect is "new" entry

Basic intuition

• Efimov problem for heavy-heavy-light system

Efimov 1972 Amado&Noble 1972

• Born-Oppenheimer approximation: first freeze heavy particles

Multiple Efimov states observed in Li-Cs mixture *Chicago and Heidelberg 2014*

Three-body quantum mechanics of resonantly interacting fermions in 2d

At resonance near threshold:

Infinite tower of $l = \pm 1$ trimer bound states

$$
\boxed{E_3^{(n)} \propto \exp\left(-2e^{3\pi n/4+\theta}\right)}
$$

Super exponential scaling!

$$
\mathcal{L} = \psi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2} \right) \psi + \phi_a^{\dagger} \left(i \partial_t + \frac{\nabla^2}{4} - \varepsilon_0 \right) \phi_a
$$

+ $g \phi_a^{\dagger} \psi (-i \nabla_a) \psi + g \psi^{\dagger} (-i \nabla_{-a}) \psi^{\dagger} \phi_a$
+ $v_3 \psi^{\dagger} \phi_a^{\dagger} \phi_a \psi + v_4 \phi_a^{\dagger} \phi_{-a}^{\dagger} \phi_{-a} + v_4' \phi_a^{\dagger} \phi_a^{\dagger} \phi_a \phi_a$
\n \uparrow
\nspinless composite
\nfermion
\n $l = \pm 1$ boson

- •P-wave resonance \leftrightarrow zero energy bound state
- •All dimensionless couplings are included

Two-body: $g^2(s) = \frac{1}{s}$ $\frac{s}{\pi}$ + $\frac{1}{g^2(0)}$ irrelevant in IR Three-body: $v_3(s) \rightarrow$ 2π *s* $\left[1-\cot\left(\frac{4}{3}\right)\right]$ 3 $(\ln s - \theta)$ \setminus Double log periodic solution: $s = \ln \Lambda / k$ Perturbative counting is reliable!

Divergences= trimer bound states

T-matrix solution

Near binding energy $T_{ab}(E; \vec{p}, \vec{q}) \rightarrow Z_a(\vec{p})Z_b^*(\vec{q})/(E+\kappa^2)$

T-matrix solution

Near binding energy $T_{ab}(E; \vec{p}, \vec{q}) \rightarrow Z_a(\vec{p})Z_b^*(\vec{q})/(E+\kappa^2)$

- Efimov physics in cold atom experiments *since 2006*
- Quasi 2d fermions near p-wave resonance *ETH 2005*

Radius of observable Universe 10^{26} m

*Super Efimov ground state |*0

Ground state van der Waals universality

Identical particles are fermions or bosons

Non-resonant s-wave interactions allowed

$$
E_n \propto \exp(-2e^{\pi n/\gamma + \theta})
$$

Much more interesting Li-Cs mixture $\gamma \approx 10.7$ for experiments

Born-Oppenheimer approximation

BO spectrum **differs** from super Efimov spectrum!

$$
E_n \propto \exp\left(-2e^{2\frac{m_2}{m_1}\pi n + \theta}\right)
$$

Failure of BO approximation

Petrov

Heavy particles time scale:

$$
T_{\sf heavy}\sim m_1R^2
$$

Light particles time scale: $T_{\text{light}} \sim m_2 R^2 \ln(R\Lambda)$

Can not use adiabatic approximation if

 $T_{\text{light}} \gtrsim T_{\text{heavy}}$

BO approximation breaks down for large distances

$$
\boxed{R\Lambda \gtrsim e^{m_1/m_2}}
$$

- Efimov physics is new few-body paradigm with experimental verification
- Super Efimov -- double exponential scaling
- Mixtures with high mass imbalance are favorable for experimental verification

- Dual description of chiral superfluid $\mathcal{L}_{WZ} = -s \varepsilon^{\mu \nu \rho} \omega_{\mu} \partial_{\nu} a_{\rho}$
- Encodes Hall viscosity and edge current
- Up to surface term: $\mathcal{L}_{WZ} = -s \left(a_t B_\omega \varepsilon^{ij} a_i E_{\omega j} \right)$

$$
B_{\omega} = \frac{1}{2}R, \quad E_{\omega i} = \frac{1}{2} \left[-\partial_t (\Gamma_{ij}^k) \varepsilon^{jl} g_{kl} - \partial_i B \right]
$$

Vielbein eliminated in dual electrodynamics

Gauge description

- Duality relation $J^{\mu} \equiv \varepsilon^{\mu\nu\rho} \partial_{\nu} a_{\rho}$
- Conservation of current: Bianchi identity
- Nonlinear dual electromagnetism in 2+1

$$
\mathcal{L}_{sf} = \frac{g^{ij} e_i e_j}{2b} - \epsilon(b) - \varepsilon^{\mu\nu\rho} A_\mu \partial_\nu a_\rho
$$

$$
b \equiv \varepsilon^{ij} \partial_i a_j \qquad e_j \equiv \partial_t a_j - \partial_j a_t
$$

Gauge description of s-wave superfluid

$$
\omega_t \equiv \frac{1}{2} \Big(\epsilon^{ab} e^{aj} \partial_t e^b_j + B \Big)
$$

$$
\omega_i \equiv \frac{1}{2} \epsilon^{ab} e^{aj} \nabla_i e^b_j = \frac{1}{2} \Big(\epsilon^{ab} e^{aj} \partial_i e^b_j - \epsilon^{jk} \partial_j g_{ik} \Big)
$$

We construct EFT of **bosons**, there are no fermions!

Can we write everything of terms of spatial metric?

 $g_{ij} = e^a_i e^a_j$

- Great success in three dimensions
- Quasi 2d fermions near resonance
- Trimers sizes:

- No tuning possible in this theory!
- Problems with 3bd losses

Levinsen, Cooper, Gurarie

Many-body thoughts

- Broad res with $r_0 \rightarrow 0$: ideal mixture
- At least two parameters needed at $T=0$
- Trimer phase near resonance

Linear response

• Electromagnetic $J^i = \sigma_H(\omega, \mathbf{p}) \epsilon^{ij} E_j$ $\sigma_H(\omega, {\bf p}) = \frac{s \rho^{\textsf{GS}}}{2}$ 2 $-p^2$ $\omega^2-c_s^2{\bf p}^2$

• Gravitational $\delta T^{xy} = -i\omega$ • Universal relation: $\int_{\eta_H} (\omega) = \frac{\omega^2}{2}$ $\eta_H(\omega)$ $\frac{2}{2}$ $(h_{xx} - h_{yy})$ $\eta_H(\omega) = -\frac{s}{2}$ 2 ρ^{GS} ∂^2 $\overline{\mathbf{r}}$

2 ∂p_x^2 $\sigma_H(\omega,{\bf p})$ $\begin{array}{c} \end{array}$ p=0 *Hoyos, Son; Bradlyn et al*

Few-body universality

• Low energies, short-range interactions

in 3d: scattering length a, ...

- Universal regime: a >> other length scales
- Two-body bound state near resonance

$$
E_{\mathsf{D}} = \frac{\hbar^2}{ma^2} \quad \text{for} \quad a > 0
$$

Efimov effect from RG

Flow of atom-dimer vertex: RG=one-loop diagrams

No threshold Cooper-like form $\kappa \sim e$ $-\frac{2}{V_0}$ $\overline{V_0r_0^2}$ Finite threshold!

$$
\psi(r) = \frac{\kappa}{\sqrt{2\pi}} \frac{K_1(\kappa r)}{\sqrt{\ln(\kappa r_0)}}
$$

local dimers for $r_0 \rightarrow 0$

Basics intuition

- How can short-range forces create infinite number of bounds states?
- Born-Oppenheimer approximation:

- Higher-body clusters: $RG \longrightarrow$ there are no
- Beyond mean-field phase diagram