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Content of the talk

Main question: Can we build a Bose-Hubbard quantum simulator
for the Abelian Higgs model or its limit the classical O(2) model
with a chemical potential µ ?
The classical lattice Abelian Higgs and O(2) models
Tensor RG (TRG) gauge-invariant formulation
The time continuum limit (connection with the rotor Hamiltonian)
Finite dimensional projections (quantum link inspired)
Bose-Hubbard model with 2 species (corresponding to a "spin-1"
projection above)
Optical lattice implementation
Draft available on request (PRA 90 06303, INT-PUB-15-008, arxiv
1503-xxxx)
The slides are intended to provide support to the blackboard talk
as needed
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Can lattice gauge theorists learn about Quantum
Chromodynamics (QCD) at finite density and real time
from optical lattice experiments?

Figure: The Fermilab Lattice Gauge Theory cluster (left); An optical lattice
experiment in Cheng Chin’s lab (right)
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The Fermi-Hubbard model

Fermi-Hubbard model Hamiltonian:

H = −t
∑
〈i,j〉,α

(c†i,αcj,α + h.c.) + U
N∑

i=1

ni↑ni↓

where t characterizes the tunneling between nearest neighboor sites
and U controls the onsite Coulomb repulsion. These interactions can
be approximately recreated with the atoms trapped in an optical lattice.

-t

U
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In the strong coupling limit (U � t) and at half-filling,
Fermi-Hubbard ∼ spin-1/2 quantum Heisenberg

H = J
∑
<ij>

Si · Sj with J = 4t2/U

Using Si = 1
2 f †iασαβfiβ, the Heisenberg Hamiltonian becomes

H =
∑
<ij>

−1
2

Jf †iαfjαf †jβfiβ +
∑
<ij>

J(
1
2

ni −
1
4

ninj)

A constraint must be imposed in order to recover the original
Heisenberg model: f †iαfiα = 1.

The model has a local SU(2) symmetry (Anderson et al.)
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Baryons and Mesons (Fradkin et al.)

After a particle-hole transformation in the spin down operator

fi,↑, f
†
i,↑ → Ψx ,1,Ψ

†
x ,1; fi,↓, f

†
i,↓ → Ψ†x ,2,Ψx ,2

The Heisenberg Hamiltonian can be written as follows

H =
J
8

∑
x ,̂i

[MxMx+̂i + 2(B†xBx+̂i + B†
x+̂i

Bx )]− Jd
4

∑
x

(Mx −
1
2

)

The “meson” and “baryon” operators are as in lattice gauge theory:

Mx =
∑

a=1,2

Ψ†x ,aΨx ,a

and
Bx =

∑
a=1,2

εab

2
Ψx ,aΨx ,a = Ψx ,1Ψx ,2
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The abelian Higgs model: a feasible first step

Inexpensive MC simulations at zero density and Euclidean time.
New Tensor Renormalization Group (TRG) methods (PRD 87
064422 and PRD 89 0160008) allow us to deal with finite density
(real chemical potential, complex action) and real continuous time
(diagonalization of the transfer matrix).
Using TRG, we derived a gauge-invariant hopping expansion. We
would like to find an optical lattice implementation of this effective
action where the gauge fields have been integrated over.
In a special limit, the model reduces to the O(2) nonlinear sigma
model. We have checked the phase diagram (MI-SF) with the
worm algorithm.
A Bose-Hubbard models with 2 species corresponding to a
"spin-1" projection of the O(2) and Abelian Higgs model with an
optical lattice implementation has been proposed (PRA 90 06303
and INT-15-008 arxiv-1503xxxx).
In the large U (onsite repulsion) limit, we just obtained a spectrum
matching at finite volume (between BH and O(2) or AbH).
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The Abelian Higgs model on a 1+1 space-time lattice

Fields: a complex (charged) scalar field φx attached to the sites x of a
space-time lattice and an abelian gauge field
U<xy> = Ux ,µ = exp iAµ(x) attached to the links < xy > with y = x + µ̂.
The part of the action S which corresponds to FµνFµν is obtained by
taking products of U ’s around a plaquette µν (elementary square in the
µν plane) denoted Ux ,µν . We use the notation βpl. = 1/e2 and κ for the
hopping coefficient. a.k.a. lattice scalar electrodynamics.

S = −βpl.
∑

x

∑
ν<µ

ReTr [Ux ,µν ] + λ
∑

x

(
φ†xφx − 1

)2
+
∑

x

φ†xφx

− κ
∑

x

d∑
ν=1

[
eµch.δ(ν,t)φ†xUx ,νφx+ν̂ + e−µch.δ(ν,t)φ†x+ν̂U†x ,νφx

]
.

Z =

∫
Dφ†DφDUe−S
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Gauge-invariant effective action

At the lowest order of the strong-coupling expansion we set βpl. = 0
(we neglect the plaquette interaction) and carry out the DU (gauge)
integration. The effect of the plaquette can be restored order by order.
We obtain an effective theory

Z =

∫
Dφ†DφDUe−S =

∫
DMe−Seff .(M)

for the composite (gauge invariant) field Mx = φ†xφx with an effective
action

Seff =
∑
<xy>

(−κ2MxMy + (1/4)κ4(MxMy )2)

−2κ4(I1(βpl.)/I0(βpl.))
∑

pl(xyzw)

MxMyMzMw + O(κ6)

Unlike most other approaches we will not try to implement the gauge
field on the optical lattice.
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Monte Carlo checks of the hopping expansion and
plaquette corrections for Lφ = 〈Re{φ†xUx ,ν̂φx+ν̂}〉
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Figure: Lφ at βpl = 20 for λ = 0.05 and λ = 0.1 as function of κ compared
with the hopping expansion at βpl =∞ at O(κ3) and O(κ5).
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Monte Carlo checks of the hopping expansion
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Figure: Lφ at βpl = 20, 2, 0.2 and 0.02 for λ = 0.1 as function of κ compared
with the hopping expansion with included dependence on βpl up to O(κ5)
(left), Lφ at fixed κ = 0.15 as function of βpl (right).
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The large λ limit

We now turn to the limit where λ becomes arbitrarily large. In this limit,
Mx is frozen to 1, or in other words, the Brout-Englert-Higgs mode
becomes infinitely massive.
We are then left with compact variables of integration in the original
formulation (θx and Ax ,ν̂) and the Fourier expansions described before
leads to expressions of the partition function in terms of discrete sums.
We use the following definitions:

tn(z) ≡ In(z)/I0(z)

tn(0) = δn,0.

For z non zero and finite, we have 1 > t0(z) > t1(z) > t2(z) > · · · > 0
In addition for sufficiently large z,

tn(z) ' 1− n2/(2z)
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Tensor Renormalization Group formulation

As in PRD.88.056005, we attach a B(�) tensor to every plaquette

B(�)
m1m2m3m4

=

{
tm�(βpl), if m1 = m2 = m3 = m4 = m�

0, otherwise.

a A(s) tensor to the horizontal links

A(s)
mupmdown

= t|mdown−mup|(2κs),

and a A(τ) tensor to the vertical links

A(τ)
mleft mright

= t|mleft−mright |(2κτ ) eµ.
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Z = Tr [
∏

T ]

Z = (I0(βpl)I0(2κs)I0(2κτ ))V × (1)

Tr

∏
h,v ,�

A(s)
mupmdown

A(τ)
mright mleft

B(�)
m1m2m3m4

 .
The traces are performed by contracting the indices as shown

B

B

A(τ)

A(τ)

A(s) A(s)

B

B

Figure: The basic B and A tensors (in brown and green, respectively, colors
online). The A(s) are associated with the vertical tensors, and the horizontal
(spatial) links of the lattice. The A(τ) are associated with the horizontal
tensors, and the vertical (temporal) links of the lattice.
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The traces can also be expressed in terms of a transfer matrix T which
can be constructed in the following way.

B(m1,m2,...mNs )(m
′
1,m

′
2...m

′
Ns

) = tm1(2κτ )δm1,m′
1
tm1(βpl)×

t|m1−m2|(2κτ )δm2,m′
2
tm2(βpl)t|m2−m3|(2κτ ) . . .

tmNs
(βpl)tmNs

(2κτ ) (2)

Note that with this choice of open boundary conditions, the chemical
potential has completely disappeared. If we had chosen different m’s
at the end allowing a total charge Q inside the interval, we would have
an additional factor exp(µQ). We next define a matrix A as the product.

A(m1,m2,...mNs )(m
′
1,n

′
2...m

′
Ns

) = (3)

t|m1−m′
1|(2κs)t|m2−m′

2|(2κs) . . . t|mNs−mN′
s
|(2κs)

With these notations we can construct a symmetric transfer matrix T.
Since B is diagonal, real and positive, we can define its square root in
an obvious way and write the transfer matrix as

T =
√
BA
√
B
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With this definition, the partition function can be written as

Z = (I0(βpl)I0(2κs)I0(2κτ ))V Tr
[
TNτ

]
Alternatively, we could diagonalize the symmetric matrix A and define
the (dual) transfer matrix

T̃ =
√
AB
√
A

The A and B matrices can be constructed by a recursive blocking
method similar to those discussed in PhysRevD.88.056005.

B′m3m6M(m1,m2)M′(m′
1,m

′
2)

= (4)∑
m4,m′

1

Bm3m4m1m′
1
A(τ)

m4m5Bm5m6m2m′
2

(5)

A
′(s)
M(m1,m2)M′(m′

1,m
′
2)

= A(s)
m1m′

1
A(s)

m2m′
2

(6)
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graphical representation of blocking

m3

m′
1

m1

m4 m5

m′
2

m2

m6

Figure: Part of the construction of the blocked B′ tensor. This shows the
contraction of the B and A(τ) tensors. The dashed lines are the links of the
original lattice.

m′
1 m′

2

m1 m2

Figure: Graphical representation of the blocking of the A tensors. The vertical
tensors are the A(s) and the dashed lines are the links of the original lattice.

One can continue taking the product of A(s) matrices until the desired
spatial size has been reached resulting in the matrix A.

Yannick Meurice (U. of Iowa) Abelian Higgs model on Optical Lattices INT, March 26, 2015 17 / 38



The limit βpl . →∞, λ→∞: the O(2) model

The O(2) model with one space and one Euclidean time direction. The
Nx × Nt sites of the lattice are labelled (x , t). We assume periodic
boundary conditions in space and time.

Z =

∫ ∏
(x ,t)

dθ(x ,t)
2π

e−S (7)

S = − βt
∑
(x ,t)

cos(θ(x ,t+1) − θ(x ,t) + iµch.)

− βs
∑
(x ,t)

cos(θ(x+1,t) − θ(x ,t)). (8)

In the isotropic case, we have βs = βt = 2κ. In the limit βt >> βs we
reach the time continuum limit.
µch. 6= 0: complex action (no Monte Carlo, but the worm algorithm
works well)
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TRG formulation of O(2) with a chemical potential

Using the fact that the Fourier coefficients of eβ cos θ are In(β), the
modified Bessel functions of the first kind, we can write (PRD 89
0160008 and PRA 90 06303)

Z = Tr
∏
(x ,t)

T (x ,t)
nx n′

x nt ,n′
t
,

with

T (x ,t)
nx ,nx′ ,nt ,nt′

=
√

Int (βt )Int′ (βt ) exp(µch.(nt + n′t )√
Inx (βs)Inx′ (βs)δnx+nt ,nx′+nt′ . (9)

Th indices nx , n′x , nt and n′t label with some abuse of notation the four
links coming out of (x , t) in the x and t direction and the trace Tr refers
to the sum over all these link indices.
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Graphical representation of the blocking process

Figure: A transfer matrix can be constructed by blocking in the space
direction and projecting according the eigenvalues of the tensor norm or the
transfer matrix itself.
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Spin-1 projection (|n| ≤ 1, PRA 90 06303)

If we try to identify the eigenstates of L with those of the
occupation number in the Bose-Hubbard model, we see that the
eigenstates are both labeled by integer values. However, in the
quantum O(2) rotor case, the integers are allowed to run from
positive to negative values.
In absence of chemical potential, the negative values can be
interpreted as antiparticles
For a large chemical potential, antiparticles excitations appear as
the change in the boson number about some mean background
number (MPA Fisher, Sachdev)
In the following, we consider the quantum link inspired truncation
where the original operator algebra is replaced by a finite spin-s
representation with
L→ L3, e±i θ̂ → L± and |n| ≤ s. Numerically, we used s = 1.
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Phase diagram: Mott insulator and Superfluid phases
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Figure: Phase diagram for 2D O(2) isotropic model in β-µch. plane (left) and
in the β-βeµch./2 plane (right) which resembles the anisotropic case. The
lines labeled by “3s" stand for the phase separation lines of a 3-states system
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Remark: N distribution with the TRG and the worm
algorithm
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Figure: Distribution of N =
∑

x nx (conserved charge) calculated with the
TRG at 3 truncations and with the worm algorithm (where N is a winding
number). In the large Lt limit, < N > is quantized. Graph by Li-Ping Yang and
Yuzhi Liu.
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Remark: N distribution with the TRG and the worm
algorithm: µ dependence
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Figure: Distribution of N =
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TRG for increasing µ. Graph by Li-Ping Yang.
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Entanglement Entropy as an order parameter
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Figure: Graph by Li-Ping Yang
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Time continuum limit

When βt � βx we obtain the time continuum limit (Fradkin, Susskind,
Kogut, Polyakov, ..) and a quantum rotor Hamiltonian on a lattice with
βx acting as the coupling between the spatial sites.

Ĥ =
Ũ
2

∑
x

L̂2
x − µ̃

∑
x

L̂x − J̃
∑
<xy>

cos(θ̂x − θ̂y ) , (10)

with Ũ = 1/(βta), µ̃ = µch./a and J̃ = βx/a, the sum extending over
sites x and nearest neighbors 〈xy〉 in space and a the time lattice
spacing.

With the TRG formulation, this limit can be obtained numerically as we
keep blocking the transfer matrix in the space direction (coarse
graining involving truncations). The spectra in blocks of size 2, 4 and 8
in the spin-1 approximation (we keep only the modes n=0 and ±1 at
the microscopic level) are shown on the next slide.
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O(2) spectra for L=2, 4, and 8
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Figure: O(2) spectra for L=2, 4, and 8, J̃=0.1, µ̃ = 0 (Judah Unmuth Yockey).
Some higher energy states not shown.
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Two species Bose-Hubbard (PRA 90 06303)

The two-species Bose-Hubbard Hamiltonian (α = a,b indicates two
different species, respectively) on square optical lattice reads

H = −
∑
〈ij〉

(taa†i aj + tbb†i bj + h.c.)−
∑
i,α

(µ+ ∆α)nαi

+
∑
i,α

Uα

2
nαi (nαi − 1) + W

∑
i

na
i nb

i +
∑
〈ij〉α

Vαnαi nαj

with na
i = a†i ai and nb

i = b†i bi . We impose na
i + nb

i = 2.
The hopping amplitude is tunable and chosen to be tα =

√
VαU/2.

The final result is that the effective Hamiltonian at second order in
degenerate perturbation theory (Kuklov and Svistunov in 2003)
corresponds to the rotor Hamiltonian with
J̃ =
√

VaVb, Ũ = 2(U −W ), and µ̃ = −(∆a − Va) + (∆b − Vb).
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A two species Bose-Hubbard model implementation

In this expression, the chemical potential µa+b is associated with the
conservation of na + nb and should not be confused with the chemical
potential introduced in the previous section which couples to na − nb

and breaks the charge conjugation symmetry. In the limit where
Ua = Ub = U and W and µa+b = (3/2)U much larger than any other
energy scale, we have the condition na

i + nb
i = 2 for the low energy

sector. The three states |2,0〉, |1,1〉 and |0,2〉 satisfy this condition
and correspond to the three states of the spin-1 projection considered
above.
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Using degenerate perturbation theory

Heff = (
Va

2
− t2

a
U0

+
Vb

2
−

t2
b

U0
)
∑
〈ij〉

Lz
i Lz

j

+
−tatb
U0

∑
〈ij〉

(L+
i L−j + L−i L+

j ) + (U0 −W )
∑

i

(Lz
i )2

+ [(
pn
2

Va + ∆a −
p(n + 1)t2

a
U0

)− (
pn
2

Vb

+ ∆b −
p(n + 1)t2

b
U0

)]
∑

i

Lz
i , (11)

where p is the number of neighbors and n is the occupation (p = 2,
n = 2 in the case under consideration). L̂ is the angular momentum
operator in representation n/2. Matching: with the O(2) model, we
need to tune the hopping amplitude as tα =

√
VαU/2 and have

J̃ = 4
√

VaVb, Ũ = 2(U −W ), and µ̃ = −(∆a − Va) + (∆b − Vb).
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Matching the O(2) and BH spectra for large U
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Figure: O(2) and Bose-Hubbard spectra for L=2 (left) and L=4 (right) (Jin
Zhang and Judah Unmuth Yockey).
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Optical lattice implementation (PRA 90 06303)

The two-species: 87Rb and 41K Bose-Bose mixture where an
interspecies Feshbach resonance is accessible
Due to the physical nature of the different atoms, the hopping
amplitudes are different
Species-dependent optical lattice are used in boson systems,
which allows hopping amplitude of individual species to be tuned
to desired values.
The interspecies interaction (W ) can be controlled by an external
magnetic field
The extended repulsion, Vα, is present and small when we
consider Wannier gaussian wave functions sitting on nearby lattice
sites (Mazzarella et al. 2006)
When µch.=0, it would be desirable to keep the symmetry a↔ b
(hyperfine states for the a single type of atoms?). This is a
different proposal that we have started investigating
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tatb

Ub UaW

Vb Va

Figure: Two-species (green and red) bosons in optical lattice with
species-dependent optical lattice (with the same green and red). The nearest
neighbor interaction is coming from overlap of Wannier gaussian wave
functions. We assume the difference between intra-species interactions are
small U � U −W .
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The time continuum limit and the energy spectrum of
the Abelian Higgs Model

In the limit κs = 0, and if both κτ and βpl become large, at leading
order in the inverse of these large parameters, the eigenvalues of T are

λ(m1,m2,...mNs )
=

1− 1
2

[(
1
βpl

(m2
1 + m2

2 + · · ·+ m2
Ns

) +

1
2κτ

(m2
1 + (m2 −m1)2 + . . .

· · ·+ (mNs −mNs−1)2 + m2
Ns

)]

There are two limiting situations: 1 << βpl << κτ and 1 << κτ << βpl .
The second lead to IR problem and we will only consider the case
1 << βpl << κτ and set the scale with the (large) gap energy
Ũg ≡ 1/aβpl . In addition, we define the (small) energy scales
Ỹ ≡ (βpl/(2κτ ))Ũg and X̃ ≡ (βplκs

√
2)Ũg
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∂T/∂κs|κs=0 = (
√

2)(L̄x
(1) + L̄x

(2))

We use the notation L̄x
(1) to denote the first generator of the spin-1

rotation algebra at the site (1). The notation L̄ is used to emphasize
that the spin is related to the m quantum numbers attached to the
plaquettes in contrast to the spin-1 generators L̂ in the O(2) case
having a spin related to the charges n attached to the time links. The
final form of the Hamiltonian H̄ for 1 << βpl << κτ is

H̄ =
Ũg

2

∑
i

(
L̄z
(i)

)2
+ (12)

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))
2 − X̃

∑
i

L̄x
(i) .
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A two species Bose-Hubbard model implement ion

For the Hamiltonian H̄ in Eq. (13) corresponding to 1 << βpl << κτ ,
we need to introduce a new interaction to represent the L̄x effects that
interchange the m = 0 states with the m = ±1 states. This can be
achieved by adding the piece

∆H = −(tab/2)
∑

i

(a†i bi + b†i ai) .

The matching between the two models can be achieved by imposing
t = 0, Va = Vb = −Ỹ/2 and tab = X̃ .
This is a very different realization than for the O(2) limit. This could be
realized with a ladder structure with a and b corresponding to the two
sides of the ladder. The atoms don’t tunnel along the latter but along
the rungs to exchange a and b at the same rung. The intraspecies
interaction V is attractive, favoring having two atoms in two
neighboring sides on the same side of the ladder. This is a
ferromagnetic interaction
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O(2) BH model
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Figure: Abelian-Higgs model with X̃/Ũ = 0.1, Ỹ/Ũ = 0.1 and the
corresponding Bose-Hubbard spectra for L = 2 (top) and L = 4 (bottom).

Yannick Meurice (U. of Iowa) Abelian Higgs model on Optical Lattices INT, March 26, 2015 37 / 38



Conclusions

We proposed a gauge-invariant approach for the quantum
simulation of the abelian Higgs model.
Plaquette corrections can be controlled at small hopping.
The tensor renormalization group formulation allows reliable
calculations of the phase diagram and spectrum in the limit
λ→∞. The effects of the finite spin projections are small.
We proposed a Bose-Hubbard model that corresponds to the
spin-1 version and proposed an implementation on optical lattices.
We were able to match the spectra in the large U limit.
Different implementations with a manifest symmetry between the
two species would be desirable.
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