# Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

#### Leonardo Mazza

Scuola Normale Superiore, Pisa

Seattle - March 24, 2015





#### Acknowledgements

- Scuola Normale Superiore, Pisa
  - Simone Barbarino
  - Luca Taddia
  - Davide Rossini
  - Rosario Fazio





Italian Government - Regione Toscana - Scuola Normale Superiore, Pisa



Leonardo Mazza (SNS)

Exotic Phases in Alkaline-Earth Fermi Gases

March 24, 2015

- 一司

2 / 23



- 2 Exotic Gapped Phases
- 3 Helical Liquids
- 4 Discussion and Conclusions





- 2 Exotic Gapped Phases
- 3 Helical Liquids
- 4 Discussion and Conclusions



### Synthetic Gauge Potentials with Cold Atoms

#### Coupling neutral atoms to a magnetic field

#### **Rotating gases**

Chevy, Dalibard, Ketterle, Foot, Cornell (2001-2003)



#### Optical lattices: Light-induced potential & Shaking

Jaksch, Zoller, Gerbier, Dalibard, Juzeliunas, Öhberg, Lewenstein, Ruostekoski, Dunne, Javainen Bloch, Ketterle, Spielman



#### Goals

- quantum Hall effect
- ovel strongly-correlated phases of matter

# Experimental and theoretical challenge:

to identify models and setups where the **interplay** of gauge potentials and interactions is crucial



#### Artificial spin-orbit coupling for atomic gases

**Rashba** potential for effective spin-1/2 bosons and fermions

Spielman, Zwierlein, Zhang, Lewenstein, Zoller



### Fractional Helical Liquids

PHYSICAL REVIEW B 89, 115402 (2014)

#### Fractional helical liquids in quantum wires

Yuval Oreg,<sup>1</sup> Eran Sela,<sup>2</sup> and Ady Stern<sup>1</sup> <sup>1</sup>Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel <sup>2</sup>Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 69978, Israel (Received 13 January 2014; published 4 March 2014)

#### Quantum wire: Spin- $\frac{1}{2}$ 1D Fermi system (electrons)

#### Example: A non-interacting (integer) helical liquid

- Free fermions
- Pree fermions + Rashba coupling (2)
- Free fermions + Rashba coupling (2) + magnetic field (x̂)



#### **Result:**

In presence of interactions the system develops **helical phases** at **fractional fillings**  $\frac{k_F}{k_{SO}} = \frac{1}{2n+1} \quad \leftarrow \quad \text{interplay of gauge potential and interactions}$ 

Leonardo Mazza (SNS)

Exotic Phases in Alkaline-Earth Fermi Gases

March 24, 2015 6 / 23

### Earth-Alkaline-Like Gases

I FTTFRS

PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NPHYS287/

physics

# A one-dimensional liquid of fermions with tunable spin

Guido Pagano<sup>1,2</sup>, Marco Mancini<sup>1,3</sup>, Giacomo Cappellini<sup>1</sup>, Pietro Lombardi<sup>1,3</sup>, Florian Schäfer<sup>1</sup>, Hui Hu<sup>4</sup>, Xia-Ji Liu<sup>4</sup>, Jacopo Catani<sup>1,5</sup>, Carlo Sias<sup>1,5</sup>, Massimo Inguscio<sup>1,3,5</sup> and Leonardo Fallani<sup>1,3,5 \*</sup>





Other works on SU(N) gases  $\rightarrow$  Yb: Takahashi, Bloch — <sup>87</sup>Sr: J.Ye

**1D gas of Yb**<sup>173</sup> Nuclear spin: I = 5/2

- (2*I* + 1)-component Fermi gas
- SU(2*I* + 1)-invariant contact interaction

Experimental probe of 1D SU(2) – SU(6) models New physics beyond *SU*(2) model of electron liquids accessible



### Earth-Alkaline-Like Gases

I FTTFRS

PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NPHYS287/

nature physics

# A one-dimensional liquid of fermions with tunable spin

Guido Pagano<sup>1,2</sup>, Marco Mancini<sup>1,3</sup>, Giacomo Cappellini<sup>1</sup>, Pietro Lombardi<sup>1,3</sup>, Florian Schäfer<sup>1</sup>, Hui Hu<sup>4</sup>, Xia-Ji Liu<sup>4</sup>, Jacopo Catani<sup>1,5</sup>, Carlo Sias<sup>1,5</sup>, Massimo Inguscio<sup>1,3,5</sup> and Leonardo Fallani<sup>1,3,5 \*</sup>



| ь | • | ۰ | ÷ | • | • | 8 | +5/2 9<br>+3/2 9<br>+1/2 9<br>-1/2 9 |
|---|---|---|---|---|---|---|--------------------------------------|
|   |   | ٠ | • |   |   | - | -3/2 0<br>-5/2 0                     |

Other works on SU(N) gases  $\rightarrow$  Yb: Takahashi, Bloch —  $^{87}$ Sr: J.Ye

**1D gas of Yb**<sup>173</sup> Nuclear spin: I = 5/2

- (2I + 1)-component Fermi gas
- SU(2*I* + 1)-invariant contact interaction

Experimental probe of 1D SU(2) – SU(6) models New physics beyond *SU*(2) model of electron liquids accessible

| This t   | alk: $SU(2I + 1)$ Fermi gas  |
|----------|------------------------------|
| 0 F      | Rashba coupling              |
| 2 (      | Orthogonal magnetic field    |
| <b>3</b> | nteractions                  |
| Helica   | I phases? New exotic phases? |



- 2 Exotic Gapped Phases
- 3 Helical Liquids
- 4 Discussion and Conclusions



#### The Model

• Fermi gas with nuclear spin-/ in 1D optical lattice

$$\hat{\mathcal{H}}_{0} = -t \sum_{i,m} \left[ \hat{c}_{j+1,m}^{\dagger} \hat{c}_{j,m} + \text{H.c.} \right] + \hat{\mathcal{H}}_{int} \longrightarrow \text{SU}(2l+1) \text{ invariant model}$$

$$m = 5/2$$

$$m = 3/2$$

$$m = 1/2$$

$$m = -1/2$$

$$m = -3/2$$

$$m = -5/2$$



#### The Model

• Fermi gas with nuclear spin-/ in 1D optical lattice

$$\hat{\mathcal{H}}_{0} = -t \sum_{i.m} \left[ \hat{c}_{j+1,m}^{\dagger} \hat{c}_{j,m} + \text{H.c.} \right] + \hat{\mathcal{H}}_{int} \longrightarrow \text{SU}(2I+1) \text{ invariant model}$$

$$\stackrel{\text{m} = 5/2}{\underset{m = -1/2}{\text{m} = -1/2}} \stackrel{\text{m} = -3/2}{\underset{m = -5/2}{\text{m} = -5/2}} \stackrel{\text{l} \cap 1}{\underset{m = -5/2}{\text{m} = -5/2}} \left[ \Omega_{m} e^{-i\gamma j} \hat{c}_{j,m+1}^{\dagger} \hat{c}_{j,m} + \text{H.c.} \right]$$

$$\stackrel{\text{h} \cap 1}{\underset{m = -5/2}{\text{m} = -5/2}} \stackrel{\text{h} \cap 1}{\underset{m = -5/2}{\text{m} = -5/2}} \stackrel{\text{h} \cap 1}{\underset{m = -5/2}{\text{m} = -5/2}} \left[ \Omega_{m} e^{-i\gamma j} \hat{c}_{j,m+1}^{\dagger} \hat{c}_{j,m} + \text{H.c.} \right]$$

 Unitarily equivalent to a SU(2*I* + 1) Fermi gas with Rashba spin-orbit coupling (*î*) and magnetic field (*î*)

$$\hat{\mathcal{H}} = -t \sum_{j,m} \left[ e^{-i\gamma m} \hat{c}^{\dagger}_{j+1,m} \hat{c}_{j,m} + \mathsf{H.c.} \right] + \hat{\mathcal{H}}_{\mathrm{int}} + \sum_{j} \sum_{m=-l}^{l-1} \left[ \Omega_m \hat{c}^{\dagger}_{j,m+1} \hat{c}_{j,m} + \mathsf{H.c.} \right]$$



### The Model

• Fermi gas with nuclear spin-/ in 1D optical lattice

$$\hat{\mathcal{H}}_{0} = -t \sum_{i.m} \left[ \hat{c}_{j+1,m}^{\dagger} \hat{c}_{j,m} + \text{H.c.} \right] + \hat{\mathcal{H}}_{\text{int}} \longrightarrow \text{SU}(2I+1) \text{ invariant model}$$

$$\stackrel{\text{m} = 5/2}{\text{m} = 3/2} \qquad \bullet \text{Raman coupling which locally flips the spin}$$

$$\hat{\mathcal{H}}_{raman} = \sum_{j} \sum_{m=-I}^{I-1} \left[ \Omega_{m} e^{-i\gamma j} \hat{c}_{j,m+1}^{\dagger} \hat{c}_{j,m} + \text{H.c.} \right]$$

$$+ \left[ \Omega_{MP} e^{-i\gamma j} \hat{c}_{j,-I}^{\dagger} \hat{c}_{j,I} + \text{H.c.} \right]$$
This term breaks SU(2I+1) invariance

 Unitarily equivalent to a SU(2l + 1) Fermi gas with Rashba spin-orbit coupling (2) and magnetic field (x)

$$\hat{\mathcal{H}} = -t \sum_{j,m} \left[ e^{-i\gamma m} \hat{c}_{j+1,m}^{\dagger} \hat{c}_{j,m} + \mathsf{H.c.} \right] + \hat{\mathcal{H}}_{\mathsf{int}} + \sum_{j} \sum_{m=-I}^{I-1} \left[ \Omega_m \hat{c}_{j,m+1}^{\dagger} \hat{c}_{j,m} + \mathsf{H.c.} \right]$$

• Multiphoton couplings possible expecially for small I

See discussion on feasibility: Celi et al. PRL (2014)

### Fully Gapped Phases

#### **Fractional Insulators:**

$$\nu \equiv \frac{n}{\frac{\gamma}{2\pi}(2l+1)} = \frac{p}{q}$$



Leonardo Mazza (SNS)

Exotic Phases in Alkaline-Earth Fermi Gases

ም.

2

### **Fully Gapped Phases**

#### **Fractional Insulators:**

ractional Insulators:  

$$\nu \equiv \frac{n}{\frac{\gamma}{2\pi}(2l+1)} = \frac{p}{q}$$

$$\hat{\mathcal{H}}_{0} = -2t \sum_{k,m} \cos[k] \hat{c}^{\dagger}_{k,m} \hat{c}_{k,m}$$

$$\hat{\mathcal{H}}_{raman} = \Omega \sum_{k,m} \hat{c}^{\dagger}_{k,m} \hat{c}_{k+\gamma,m+1}$$
•  $q = 1$  can be ob  
interactions

 q = 1 can be observed without interactions

$$\frac{2k_{F} = \gamma}{n = (2l+1)\frac{k_{F}}{\pi}} \Rightarrow \nu = 1$$

 $\pi k$ 

¦Ω

 $-\pi$ 

### Fully Gapped Phases

#### **Fractional Insulators:**

$$\hat{\mathcal{H}}_0 = -2t \sum_{k,m} \cos[k] \hat{c}^{\dagger}_{k,m} \hat{c}_{k,m}$$
  
 $\hat{\mathcal{H}}_{\mathsf{raman}} = \Omega \sum_{k,m} \hat{c}^{\dagger}_{k,m} \hat{c}_{k+\gamma,m+1}$ 

$$\frac{2k_F = \gamma}{n = (2l+1)\frac{k_F}{\pi}} \Rightarrow \nu = 1$$

$$\nu \equiv \frac{n}{\frac{\gamma}{2\pi}(2l+1)} = \frac{p}{q}$$

- *q* = 1 can be observed without interactions
- q > 1 can be studied with:
  - bosonization (for q odd)
  - numerical methods: DMRG & MPS

**Bosonization hint:** For high values of *q* longer-range interactions are necessary Methods borrowed from Kane, Teo, Lubensky, Mukhopadhyay, Stern, Oreg, Sela

No numerical characterization so far (to the best of my knowledge!)

$$\hat{\mathcal{H}}_{ ext{int}} = U \sum_j \sum_{m < m'} \hat{n}_{j,m} \hat{n}_{j,m'} + V \sum_j \hat{n}_j \hat{n}_{j+1}$$



 $\pi k$ 

IΩ

 $-\pi$ 

The case of I = 1 ( $\gamma = 2\pi/3$ )

DMRG simulations, 96 sites — (central region plot) —  $\Omega_m = \Omega_{MP} = t$  $\nu = \frac{1}{2}$   $\nu = \frac{1}{2}$   $\nu = \frac{2}{3}$ 





Exotic Phases in Alkaline-Earth Fermi Gases

11 / 23

#### Choosing the Proper Spin States

**Trick:** Let's work in the basis which diagonalizes  $\hat{\mathcal{H}}_{raman}$ 

$$\hat{\mathcal{H}}_{\mathsf{raman}} = \Omega \sum_{j} \sum_{m=-l}^{l-1} \left[ e^{-i\gamma j} \hat{c}_{j,m+1}^{\dagger} \hat{c}_{j,m} + \mathsf{H.c.} \right] + \left[ e^{-i\gamma j} \hat{c}_{j,-l}^{\dagger} \hat{c}_{j,l} + \mathsf{H.c.} \right]$$



Leonardo Mazza (SNS)

Exotic Phases in Alkaline-Earth Fermi Gases

#### Choosing the Proper Spin States

**Trick:** Let's work in the basis which diagonalizes  $\hat{\mathcal{H}}_{raman}$ 

$$\hat{\mathcal{H}}_{\mathsf{raman}} = \Omega \sum_{j} \sum_{m=-I}^{I-1} \left[ e^{-i\gamma j} \hat{c}_{j,m+1}^{\dagger} \hat{c}_{j,m} + \mathsf{H.c.} \right] + \left[ e^{-i\gamma j} \hat{c}_{j,-I}^{\dagger} \hat{c}_{j,I} + \mathsf{H.c.} \right]$$

$$\hat{d}_{j,A} = \frac{1}{\sqrt{3}} \left( \hat{c}_{j,m=0} + \hat{c}_{j,m=1} + \hat{c}_{j,m=-1} \right)$$
New Basis:  

$$\hat{d}_{j,B} = \frac{1}{\sqrt{3}} \left( \hat{c}_{j,0} + \omega \hat{c}_{j,1} + \omega^2 \hat{c}_{j,-1} \right) \qquad \omega = e^{i2\pi/3}$$

$$\hat{d}_{j,C} = \frac{1}{\sqrt{3}} \left( \hat{c}_{j,0} + \omega^2 \hat{c}_{j,1} + \omega \hat{c}_{j,-1} \right)$$



### Choosing the Proper Spin States

Trick: Let's work in the basis which diagonalizes  $\hat{\mathcal{H}}_{raman}$ 

$$\hat{\mathcal{H}}_{\mathsf{raman}} = \Omega \sum_{j} \sum_{m=-l}^{l-1} \left[ e^{-i\gamma j} \hat{c}_{j,m+1}^{\dagger} \hat{c}_{j,m} + \mathsf{H.c.} \right] + \left[ e^{-i\gamma j} \hat{c}_{j,-l}^{\dagger} \hat{c}_{j,l} + \mathsf{H.c.} \right]$$

$$\hat{d}_{j,A} = \frac{1}{\sqrt{3}} \left( \hat{c}_{j,m=0} + \hat{c}_{j,m=1} + \hat{c}_{j,m=-1} \right)$$
New Basis:  $\hat{d}_{j,B} = \frac{1}{\sqrt{3}} \left( \hat{c}_{j,0} + \omega \hat{c}_{j,1} + \omega^2 \hat{c}_{j,-1} \right) \qquad \omega = e^{i2\pi/3}$ 
 $\hat{d}_{j,C} = \frac{1}{\sqrt{3}} \left( \hat{c}_{j,0} + \omega^2 \hat{c}_{j,1} + \omega \hat{c}_{j,-1} \right)$ 



### SU(3): Numerical Results for $\gamma = \frac{2\pi}{3}$



DMRG simulations, L=96,  $\gamma = \frac{2\pi}{3}$ 

$$u = rac{N/L}{rac{\gamma}{2\pi}(2I+1)} = rac{1}{2}, \quad rac{1}{3}, \quad rac{2}{3}$$

- Charge ordering not given by the interaction only
- Magnetic ordering imprinted by  $\hat{\mathcal{H}}_{\text{raman}}$
- Magnetic ordering typical of  $\Omega/t \gg 1$  even at  $\Omega/t = 1$



March 24, 2015 13 / 23

### The case of SU(2)

Is it possible to have gapped phases for SU(2)? SU(6)



• No additional Raman coupling available



Leonardo Mazza (SNS)

Exotic Phases in Alkaline-Earth Fermi Gases

### The case of SU(2)

Is it possible to have gapped phases for SU(2)? SU(6)



- No additional Raman coupling available
- Gapped phases possible via lattice effects

$$\gamma = 2k_F$$

$$k_F + \gamma = 2\pi - k_F$$

$$\gamma = \pi \qquad k_F = \frac{\pi}{2}$$



New Basis:

$$\hat{d}_{j,A} = \frac{1}{\sqrt{2}} \left( \hat{c}_{j,m=1/2} + \hat{c}_{j,m=-1/2} \right)$$
$$\hat{d}_{j,B} = \frac{1}{\sqrt{2}} \left( \hat{c}_{j,1/2} - \hat{c}_{j,-1/2} \right)$$

Exotic Phases in Alkaline-Earth Fermi Gases

### SU(2): Numerical Results for $\gamma = \pi$



DMRG simulations, L=96,  $\gamma = \frac{\pi}{3}$ 

$$\nu = \frac{N/L}{\frac{\gamma}{2\pi}(2l+1)} = \frac{1}{2}, \quad \frac{1}{3}, \quad \frac{2}{3}$$

- Charge ordering not given by the interaction only
- Magnetic ordering imprinted by  $\hat{\mathcal{H}}_{\text{rashba}}$
- Magnetic ordering typical of  $\Omega/t \gg 1$  even at  $\Omega/t = 1$



















### Helical Liquids

#### **Problem:**

Multi-Raman couplings might be difficult to implement, especially for large *I* 

$$\hat{\mathcal{H}}_{\mathsf{raman}} = \sum_{j} \sum_{m=-l}^{l-1} \left[ \Omega_m e^{-i\gamma j} \hat{c}^{\dagger}_{j,m+1} \hat{c}_{j,m} + \mathsf{H.c.} \right]$$



Helical Liquids: 
$$\nu \equiv \frac{n}{\frac{\gamma}{2\pi}(2l+1)} = \frac{p}{q}$$

• q = 1 can be understood without interactions

• gapless modes with spin-momentum relation



### Helical Liquids

#### **Problem:**

Multi-Raman couplings might be difficult to implement, especially for large *I* 

$$\hat{\mathcal{H}}_{\mathsf{raman}} = \sum_{j} \sum_{m=-I}^{I-1} \left[ \Omega_m e^{-i\gamma j} \hat{c}^{\dagger}_{j,m+1} \hat{c}_{j,m} + \mathsf{H.c.} \right]$$



Helical Liquids: 
$$\nu \equiv \frac{n}{\frac{\gamma}{2\pi}(2l+1)} = \frac{p}{q}$$

- q = 1 can be understood without interactions
  - gapless modes with spin-momentum relation
- q > 1: interactions are needed, bosonization useful for q odd
- SU(2):  $\gamma \neq \pi$  is necessary

How to diagnose an helical liquid?

Intanglement entropy: c = 1 (via Calabrese-Cardy formula)

Q Current pattern (experimentally observable!)

### SU(3): Some Results

• L=192 and N=64 • 
$$\gamma = \frac{2\pi}{3}$$
 •  $\Omega/t = 1$  and  $U/t \to \infty$ 

#### **Entanglement Entropy Currents Profile** 0.11.15 1.1 0.05 1.05 Current S(l)-0.05 0.95 -0.172 24 48 96 120 144 168 192 0.9 24 48 72 96 144 168 site (j) $S(\ell)$ fitted via $S(\ell) = A + \frac{c}{6} \ln \left[\frac{2L}{\pi} \sin \left(\frac{\pi \ell}{L}\right)\right]$ Clear helical-current patterns A = 0.32... and c = 1.0055...Bulk oscillations $\rightarrow$ zero for $L \rightarrow \infty$

Full phase diagram depending on interaction strength to be fully explored!





- 2 Exotic Gapped Phases
- 3 Helical Liquids





### Relation to the Quantum Hall Effect



is equivalent to the periodic boundary conditions for the stripe

Are the crystals and liquids we found related to the quantum Hall effect?

**3** Fillings:  $\nu = \frac{N}{\frac{\gamma}{2\pi}L(2I+1)} = \frac{N}{N_{\Phi}} \rightarrow \text{ relation with Laughlin's states?}$ 

QHE in the Thin Torus Limit:  $L_y \lesssim \ell_B$ Laughlin's states adiabatically connected to Charge Density Waves

Earth-alkaline(-like) gases accessing the Thin Torus Limit of the QHE

20 / 23

#### Are the crystals and liquids we found related to the quantum Hall effect?

**1** Helical states: relation with the edge modes of the Laughlin's states?

- What is the conductance associated to these states? First hints by Stern for SU(2) say that it is fractional
- Is it possible to relate the bulk properties of the helical liquids with those of the crystals?

Is this mathematically equivalent to the "true" quantum Hall effect?

• NO! Extremely anisotropic interaction!

$$\hat{\mathcal{H}}_{\text{int}} = U \sum_{j} \sum_{m < m'} \hat{n}_{j,m} \hat{n}_{j,m'}$$

- infinite-range in the synthetic direction
- zero-range in the real direction

No relation with the Coulomb interaction typical of quantum Hall



### Conclusions

#### SU(N) Fermi gas in 1D

- Rashba spin-orbit coupling
- Perpendicular magnetic field
- Interactions
- Insulating states
  - Crucial multi-photon coupling
  - Crystal phases
  - Simple understanding in terms of new spin basis
- Helical liquids
  - c=1 entanglement entropy
  - Current pattern
- Relations to the quantum Hall effect
  - Thin-torus limit of a non-standard quantum Hall effect

Barbarino, Taddia, Rossini, LM , Fazio, soon in the arXiv



22 / 23