Frontiers in Quantum Simulations with Cold Atoms April-09-2015, INT, Seattle

Loop currents and experimental signatures in optical lattices

Xiaopeng Li

[Figure credit: S. Kelley/JQI]

Acknowledgement

-collaboration with

Bo Liu (Pittsburgh) Stefan Natu (Maryland) W. Vincent Liu (Pittsburgh) S. Das Sarma (Maryland) Jed Pixley (Maryland) Zhi-Fang Xu (Pittsburgh) A. Paramekanti (Toronto) Peter Zoller (Innsbruck)

Thanks for support by

Outline

- Experimental observations of loop currents in optical lattices and cuprates
- Chiral spin condensate and spin loop currents in a hexagonal lattice [XL, S. Natu, A. Paramekanti, S. Das Sarma, Nature Communications (2014)]
- Spontaneous Quantum Hall effect with spinor Bose-Fermi mixture in a triangular lattice [Z.-F. Xu, XL, P. Zoller, W. Vincent Liu, PRL (2015)]
- Loop current order and spontaneous topological superfluids [Bo Liu, XL, Biao Wu, W. Vincent Liu, Nature Communications (2014)]
- Topological density waves with Rydberg dressed fermions [XL, S. Das Sarma, arXiv (2015), accepted to Nature Communications (2015)]

Loop currents in cuprates

Time-reversal symmetry is spontaneously broken. Electron loop current order is a promising candidate.

What is the loop current pattern?

consistent with Kerr rotation

V. Yakovenko, arXiv (2014); Y. Li, PhD thesis (2010)

Loop currents in optical lattices?

[Figure from NIST]

-current in a lattice model

$$J_{\mathbf{r}'\to\mathbf{r}} = -it_{\mathbf{r}\mathbf{r}'}\psi_{\mathbf{r}}^{\dagger}\psi_{\mathbf{r}'} + h.c.$$

For Bose-Einstein condensates, current means phase modulations in condensate wavefunctions.

*assumed that there is no pair hopping

Pi-flux triangular lattice

J. Struck, K. Sengstock et al., Science (2010)

Measurement is simple when the band minima are not time-reversal invariant points.

M. P. Zaletel, et al., PRB (2013)

2nd band of Checkerboard lattice

G. Wirth, A. Hemmerich et al., Nat Phys (2011)

Band minima at time-reversal invariant points!

[Theory work: A. Isacsson and S. Girvin, PRA (2005) W. V. Liu, C. Wu, PRA (2006); A. B. Kuklov, PRL (2006) *XL*, *Z.-X. Zhang*, *W.V. Liu*, *PRL* (2012) ...]

(1) two TR-pair copies

(2) two identical copies

T. Kock, A. Hemmerich et al., PRL (2015)

Spinor BEC in a Hexagonal lattice

P. Soltan-Panahi K. Sengstock et al., NPHYS 8, 71-75 (2012)

Theory: S. Choudhury, E. Mueller, PRA (2013); L. Cao, K. Sengstock et al., arXiv (2014); O. Jurgensen, K. Sengstock, D.S. Luhmann, arXiv (2015)

-current flow: not a loop current?

If we have spin Sz conservation, this current pattern cannot be dynamically stable. Its life time would be too short (1ms), in contrast to experimental observations (100ms).

Bandstructure of the hexagonal lattice

Question: What if some particles are left in the massive Dirac valleys of the 2nd band.

Spinor Bosons in a double-valley band

XL, S. Natu, A. Paramekanti, S. Das Sarma, Nat Comms 5:5174 (2014)

Second order perturbation theory

an anti-unitary transformation

Universal quantum "order-by-disorder"

Chiral spin superfluid with the two spin components condensing at opposite valleys always has lower fluctuation energy. This universal quantum "order by disorder" selection rule only relies on the "Time-reversal" symmetry.

This momentum space antiferromagnetism can be generalized to multi-valley case with crystalline symmetries.

Logarithmic divergence and renormalized theory

In two dimensions, the bare perturbative result has a logarithmic divergence

$$\int d^2 \mathbf{k} \frac{1}{\mathbf{k}^2}$$
 \longrightarrow infrared log divergence

-renormalized theory

$$\begin{split} &\Delta E^{(2)}/N_{s} = -\frac{1}{2}\rho_{\uparrow}\rho_{\downarrow}\int_{\mathbf{k}}g^{2}(\mathbf{k}) \longrightarrow \text{effective scattering among quasi-particles} \\ &\times \left\{ \underbrace{\frac{2}{\varepsilon_{\uparrow}(\mathbf{k},\mathbf{Q}-\mathbf{k})+\varepsilon_{\downarrow}(\mathbf{k},\mathbf{Q}-\mathbf{k})}}_{\varepsilon_{\uparrow}(\mathbf{k},\mathbf{Q}-\mathbf{k})+\varepsilon_{\downarrow}(-\mathbf{Q}+\mathbf{k},-\mathbf{k})+\Delta\epsilon(\mathbf{k},\mathbf{Q}-\mathbf{k})-\Delta\epsilon(-\mathbf{Q}+\mathbf{k},-\mathbf{k})} \right. \\ & \left. - \frac{1}{\varepsilon_{\downarrow}(-\mathbf{Q}+\mathbf{k},-\mathbf{k})+\varepsilon_{\uparrow}(\mathbf{k},\mathbf{Q}-\mathbf{k})+\Delta\epsilon(-\mathbf{Q}+\mathbf{k},-\mathbf{k})-\Delta\epsilon(\mathbf{k},\mathbf{Q}-\mathbf{k})} \right\} \end{split}$$

Universal Chiral spin superfluid

Chiral spin superfluid

With two component bosons loaded into a double-valley band, quantum fluctuations universally select the chiral spin superfluid through a quantum order by disorder mechanism.

XL, S. Natu, A. Paramekanti, S. Das Sarma, Nat Comms 5:5174 (2014)

Spin-loop current

[Figure credit: S. Kelley/JQI]

Experimental signatures

-experimental data

-our theory prediction

P. Soltan-Panahi K. Sengstock et al., NPHYS 8, 71-75 (2012)

XL, S. Natu, A. Paramekanti, S. Das Sarma, Nat Comms (2014)

Relevance to other double-valley bands

[Related theory work: XL, E. Zhao, W.Vincent Liu, Nat Comms (2013)]

T. Esslinger group (ETH)

[L. Tarruell et al., Nature (2012)]

I. Spielman group (JQI/NIST) [Y.J. Lin et al., Nature (2011)]

Finite temperature perspective

XL, *A. Paramekanti*, *A. Hemmerich*, *W. V. Liu*, *Nat Comm* 5:3205 (2014) Zero temperature phase diagram by QMC: F. Hebert, Z. Cai, et al., PRB (2013)

Quantum simulations---Where are we with ultracold atoms?

BEC with spontaneous loop current order

- A generic state for bosons with valley degrees of freedom
- Time reversal symmetry is broken
- Easy to measure if the valley is not at time-reversal invariant point; harder otherwise, but has been measured
- No conclusive evidence for spin loop current yet
- Thermal phase transition, sharing features in cuprate phase diagram

Topological states with loop current order (fermions)

If we have a Cooper pair condensatation of this pattern, the fermionic state then has all ingredients required by topological superfluids.

G. Wirth, A. Hemmerich et al., Nat Phys (2011)

Cooper pairs with p-orbital symmetries

 $V_{\uparrow}(\mathbf{r}) = -V_s[\cos^2(kx) + \cos^2(ky)]$

 $V_1(\mathbf{r}) = -V_p[\cos^2(k(x+y)) + \cos^2(k(x-y))]$

S-orbital Fermi (spin-up)

> P-orbital Fermi (spin-down)

Tight binding model

Fermi surface matched $(t_2/t_0 = 0, t_3/t_0 = 0)$

Bo Liu, XL, Biao Wu, W. Vincent Liu, Nat Comms (2014)

A cooper pair composed of s and p orbital fermions respects p-orbital symmetries.

Topological p+ip topological superfluids

-spin dependent checkerboard lattice

This lattice may have already been realized in JQI by Trey Porto's group.

Fermions in the current order backgroup form a topological superfluid, featuring protected chiral spin currents on the edges

Cooper pairing fields:

 $\Delta_x(\mathbf{x}) \longrightarrow (-1)^{R_x + R_y} U \Psi^A_{P_x}(\mathbf{R}) \Psi^A_S(\mathbf{R})$ $\Delta_y(\mathbf{x}) \longrightarrow (-1)^{R_x + R_y} U \Psi^A_{P_y}(\mathbf{R}) \Psi^A_S(\mathbf{R})$

Bo Liu, XL, Biao Wu, W.V. Liu, Nat Comms 5:5064(2014)

Chiral spin currents on the domain wall

Essential ingredients:

Fermi surface nesting->Spontaneous Loop currents->effective gauge fields-> Topological states

Atomic spinor Bose-Fermi mixture

• Local moments:

Spin-1 Rb-87 BEC: ferromagnetic interaction

• Kondo coupling:

Spin-changing collision between spin-1 Rb-87 and spin-1/2 Li-6 atoms

$$\hat{V}_{bf}(\mathbf{r}_1 - \mathbf{r}_2) = (g_{1/2}\mathbf{P}_{1/2} + g_{3/2}\mathbf{P}_{3/2}) \,\delta(\mathbf{r}_1 - \mathbf{r}_2)$$
$$= (g_d + g_s \mathbf{S} \times \mathbf{F}) \,\delta(\mathbf{r}_1 - \mathbf{r}_2)$$

Spinor Bose-Fermi mixture is a natural platform to simulate Kondo lattice model (either quantum or classical).

Z. F. Xu, XL, P. Zoller, and W. V. Liu, PRL (2015)

Triangular lattice

Z. F. Xu, XL, P. Zoller, and W. V. Liu, PRL (2015)

Fermi surface nesting and chiral magnetic ordering

Fermi surface at ³/₄ filling

$$H = -t \sum_{\langle ij \rangle} c^{\dagger}_{i\alpha} c_{j\alpha} - J \sum_{i} \vec{S}_{i} \cdot c^{\dagger}_{i\alpha} \vec{\sigma}_{\alpha\beta} c_{i\beta}$$
$$\langle \vec{S}_{i} \rangle = \vec{S}_{\mathbf{Q}_{1}} e^{i\mathbf{Q}_{1} \cdot \mathbf{r}_{i}} + \vec{S}_{\mathbf{Q}_{2}} e^{i\mathbf{Q}_{2} \cdot \mathbf{r}_{i}} + \vec{S}_{\mathbf{Q}_{3}} e^{i\mathbf{Q}_{3} \cdot \mathbf{r}_{i}}$$

Ivar Martin and C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008)

Rb-87: topological spin-textures in the ground state

Li-6: Quantum Hall state

Rb-87: Chiral superfluid

Z. F. Xu, XL, P. Zoller, and W. V. Liu, PRL (2015)

Systems to look for topological loop currents

- Multi-band Fermion systems (parity mixing)
- Bose-Fermi mixture
- Fermions with non-local interactions, say by Rydberg dressing

Common feature: *Fermi surface nesting->Spontaneous Loop currents->effective gauge fields-> Topological states*

Rydberg dressing and non-local interactions

 $V_{\text{eff}}(\mathbf{r}) = \frac{V_6}{1 + (|\mathbf{r}|/r_c)^6}$

Topological density waves

$$H_{\rm BdG}(\mathbf{k}) = \begin{bmatrix} \epsilon_{\mathbf{k}} & \Delta_{\mathbf{k}} \\ \Delta_{\mathbf{k}}^* & -\epsilon_{\mathbf{k}} \end{bmatrix} \qquad \qquad \rho_{\mathbf{k}} = \langle \psi'(\mathbf{k} + \mathbf{Q})\psi(\mathbf{k}) \rangle \\ \Delta_{\mathbf{k}} = \int \frac{d^3\mathbf{q}}{(2\pi)^3} \left[\tilde{V}(\mathbf{Q}) - \tilde{V}(\mathbf{k}) \right]$$

1 1 + 13

.

1.71.33

 $-\mathbf{q}$) $\rho_{\mathbf{q}}$

XL, S. Das Sarma, arXiv (2015), accepted to Nature Communications

Summary

- Experimental observations of loop currents in optical lattices and cuprates
- Chiral spin condensate and spin loop currents in a hexagonal lattice [XL, S. Natu, A. Paramekanti, S. Das Sarma, Nature Communications (2014)]
- Spontaneous Quantum Hall effect with spinor Bose-Fermi mixture in a triangular lattice [Z.-F. Xu, XL, P. Zoller, W. Vincent Liu, PRL (2015)]
- Loop current order and spontaneous topological superfluids [Bo Liu, XL, Biao Wu, W. Vincent Liu, Nature Communications (2014)]
- Topological density waves with Rydberg dressed fermions [XL, S. Das Sarma, arXiv (2015), accepted to Nature Communications]