Stability and Anomalous Compressibility of Resonant Bose Gases

Shaojian Jiang, Fei Zhou

UBC

2015.04.23 INT-15

Outline

- Introduction
- Stability domain in "T-a" plane.
- Mechanism for stabilization
- Anomalous compressibility
- Density profile

Upper Branch Bose gases

 Upper branch of a Feshbach resonance quantum gas of scattering atoms

Dilute gas theory

- Dilute limit $na^3 \ll 1$
- Energy density

$$E = \frac{2\pi a}{m} n^2 \left[1 + \frac{128}{15\sqrt{\pi}} \sqrt{na^3} + C_1 na^3 \ln(na^3) + (C_2 + B)na^3 + \dots \right]$$

HF LHY Brueckner, Sawada, Wu,... Braaten et al.

• Move towards resonance $na^3 \sim 1 \text{ or } \gg 1$

Go near resonance

• Experiments

Papp et al. (2008), Pollack et al. (2009), Navon et al. (2011), Wild et al. (2012), Ha et al. (2013), Fletcher et al. (2013), Makotyn et al. (2014) ...

• Theories

Cowell et al. (2002), Song et al. (2009), Diederix et al. (2011), Borzov et al. (2012), Zhou et al. (2013), Pilati et al. (2005), Mashayekhi et al. (2013) ...

Fermionization

$$\mu_{(na^{3}\ll 1)} = 4\pi an[1 + O(\sqrt{na^{3}})]$$
$$\mu_{(a\to\infty)} \sim n^{2/3}$$
$$\equiv \xi E_{F}$$

	Cowell et	Song et al.	Diederix et	Borzov et	Navon et
	al. (2002)	(2009)	al. (2011)	al. (2012)	al. (2011)
${\xi}$	2.92	0.8	0.83	0.9	>0.44

Few-body loss

• Three-body loss rate, Fedichev et al. (1996), Nielson et al. (1999), Esry et al. (1999), Bedaque et al. (2000)

$$L_3 \sim a^4$$
, when $a \ll \lambda_T$
 $L_3 \sim T^{-2}$, when $a \gg \lambda_T$

- Experiments Rem et al. (2013), Fletcher et al. (2013)
- Few-body loss is believed to be the reason that leads to short lifetime near unitarity, also the main difficulty of the adiabatic sweep.

Self-consistent approach

 Condensate with density n_0 + non-condensed atoms with chemical potential mu.

$$\mu_c(n_0,\mu) = \frac{\partial E(n_0,\mu)}{\partial n_0}, \quad n = n_0 - \frac{\partial E(n_0,\mu)}{\partial \mu},$$
$$\mu = \mu_c(n_0,\mu),$$
Hugenholtz et al.(1959)

- Effective potential w.r.t. bosonic field. (Coleman & Weinberg)
- Diagrammatic summation $\rightarrow E(n_0, \mu)$

3D resonant Bose gases Bozov et al. (2012)

• irreducible 2-body diagram

• irreducible 3-body diagrams

Results in 3D

Running of coupling constant

Zhou et al. (2013)

• Running of 2-body coupling,

$$g_2(\eta) = \frac{4\pi a}{m} \frac{1}{1 - \sqrt{2m\eta}a}$$

• Green's function of non-condensed atoms,

$$G(\varepsilon, \mathbf{p}) = \frac{1}{\varepsilon - p^2/(2m) - \Sigma + \mu + i0^+} \eta = \Sigma - \mu$$

Few-body losses v.s. many-body instability

Few-body losses	Many-body instability
few-body recombination	running coupling constant
atom loss	thermodynamical instability
smooth	onset of instability

Bose gases at finite temperature

arXiv:1504.03434

- Questions & Motivations
 - Stability domain in "T-a" plane?
 - Mechanism(s) for stabilization?
 - Anomalous behavior near instability?
 - Experimental signature for instability?
- Finite temperature field theory

 $E(n_0,\mu) \to F(n_0,\mu)$

Phase diagram

Stabilize Bose gases

• Thermal pressure

$$F_1 = T \int \frac{d^3 q}{(2\pi)^3} \ln(1 - e^{-\beta(\epsilon_k + \eta)}).$$

$$\eta = \Sigma - \mu_{\rm f}$$

Stabilize Bose gases

Example temperature running of coupling constant

$$F_2 = \frac{1}{2}g_2(\eta)n_0^2$$

5.752

515

$$g_2^{-1}(\eta) = \frac{1}{4\pi a} - \frac{\sqrt{2\eta}}{4\pi} + \int \frac{d^3q}{(2\pi)^3} \frac{2n_B(q^2/2 + \eta)}{q^2 + 2\eta}$$

bosonic enhancement

Three-body loss, lifetime

Estimation of 3-body loss rate near instability

 $L_3 \approx 203.7 a^4 f(a \Lambda_*) \quad \text{Bedaque et al. (2000)}$

• Near instability

 $an^{1/3} \approx 0.174$ $\mu \approx 0.735T_{F_1}$ $L_3n^2 \approx 0.0246T_F$

Anomalous compressibility

Density profile

 Flat top in density profile induced by the rapid drop of compressibility as a precursor of instability.

Conclusions

- Phase diagram in T-a plane
- Finite temperatures stabilize Bose gases via two mechanisms
- Many-body instability sets in before losses become significant.
- Anomalous compressibility along critical line
- Flat top in density profile as a precursor of the onset of many-body instability

Thank you!