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Outline

• Introduction 

• Stability domain in “T-a” plane. 

• Mechanism for stabilization 

• Anomalous compressibility 

• Density profile



Upper Branch Bose gases

• Upper branch of a Feshbach resonance — 
quantum gas of scattering atoms
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Dilute gas theory

• Dilute limit 

• Energy density 

• Move towards resonance
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Go near resonance

• Experiments 

• Theories

Papp et al. (2008), Pollack et al. (2009), Navon et al. (2011), 

Wild et al. (2012), Ha et al. (2013), Fletcher et al. (2013), 
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Cowell et al. (2002), Song et al. (2009), Diederix et al. (2011), 
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Few-body loss

• Three-body loss rate, 

• Experiments 

• Few-body loss is believed to be the reason that 
leads to short lifetime near unitarity, also the main 
difficulty of the adiabatic sweep.

L3 ⇠ a4, when a ⌧ �T

L3 ⇠ T�2, when a � �T

Fedichev et al. (1996), Nielson et al. (1999), 
Esry et al. (1999), Bedaque et al. (2000)

Rem et al. (2013), Fletcher et al. (2013)



Self-consistent approach

• Condensate with density n_0  +  non-condensed 
atoms with chemical potential mu. 

• Effective potential w.r.t. bosonic field. (Coleman & 
Weinberg) 

• Diagrammatic summation

JIANG, LIU, SEMENOFF, AND ZHOU PHYSICAL REVIEW A 89, 033614 (2014)

4D in this paper provides an answer to this question of
universality.

Recall that in 3D Bose gases, the Lee-Huang-Yang
(LHY) correction is purely a collective effect [14] and gets
contributions from all N-body effects with N = 3,4,5, . . .;
this is one of the main reasons why higher-order effects are
very difficult to thoroughly examine. ϵ expansion provides
an effective way to systematically study N-body contributions
near resonance. This can be understood by considering the
Born-Oppenheimer potential of two noninteracting heavy
bosons resonantly scattered by a light one [36,37]. Near 4D, the
ground-state energy of the three bosons with two heavy ones
fixed at distance |R| apart can be easily estimated. One can
then show that the Born-Oppenheimer potential between two
heavy bosons mediated by a light one scales as ϵ|R|−2 and is
suppressed by an extra ϵ factor in d = 4 − ϵ. For the quantum
gas under consideration, this implies the contribution from N -
body forces with N > 2 should be systematically expandable
in terms of ϵ. This insight is particularly useful for our
analysis.

We shall apply the ϵ expansion near 4D to the upper branch
bosons. We will implement it with two important elements.
First, since we are dealing with an upper branch, in principle,
the energy density has an imaginary part, indicating a coupling
to the lower branch. This shows up as a higher-order effect in
the dilute gas theories while, in the ϵ expansion, it appears as a
leading-order correction to the energy density near resonance
and it therefore must be included in our discussion. Second,
the noninteracting Bose gases are infinitely compressible and
therefore, even in the dilute limit, the energy density as a
function of scattering length contains terms with fractional
powers of the scattering length. This issue can be effectively
dealt with by further combining the method of ϵ expansion
with self-consistent equations.

II. MODEL AND METHOD

A condensate with a contact interaction can be described
by
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where ϵk = !2k2/(2m); ! is the reduced Plank constant and m
is the mass of a single atom. We will set ! and m to be unity
from here on. The sum is over nonzero momentum states.
U0 is the strength of the contact interaction related to the
renormalized two-body coupling constant g2 via U−1
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in 4 − ϵ dimensions, where % is the gamma function. n0 is the
number density of condensed atoms and µ is the chemical po-
tential of noncondensed particles, both of which are functions
of λB and ϵ and are to be determined self-consistently.

The energy density for a fixed n0 and µ can be obtained
as E(n0,µ); then the following set of self-consistent equations
can be applied to study the chemical potential for a gas with
total number density n,

µc(n0,µ) = ∂E(n0,µ)
∂n0

, n = n0 − ∂E(n0,µ)
∂µ

,

µ = µc(n0,µ), (3)

where µc is the chemical potential for the condensed atoms. In
equilibrium, µc has to be equal to µ, the chemical potential of
noncondensed atoms, as indicated in Eq. (3). Calculations of
E(n0,µ) are carried out diagrammatically using the standard
effective field theory method [15,38]. This quantity in 2D
and 3D was studied in Refs. [31,33]. The general structure
of E(n0,µ) is given below. Its ϵ dependence is shown
explicitly,

E(n0,µ) =
g2n

2
0

2

∑

N!2

(
2g2n0λ

2
B

)N−2
A(N)(kµλB,ϵ), (4)

where A(N)(kµλB,ϵ) represent the contributions from the
renormalized N -body forces, and kµ =

√
2µ.

From the point of view of running coupling constants [32],
the healing length ξ = 1/kµ is a crucial length scale which
separates the short-distance few-body physics controlled by
the renormalization flow of coupling constants from the
long-wavelength hydrodynamic regime of cold gases where
collective effects dominate. At the healing length, the usual
renormalization flow generated under scale transformation
is subject to a boundary condition due to a thermodynamic
constraint. Alternatively, one states that the chemical potential
is dictated by the running coupling constants at the scale of
healing length, which leads to a self-consistent equation. This
is also fully reflected in Eqs. (3) and (4), where the running
coupling constants A(N)(kµλB,ϵ), N = 2,3, . . ., defined at a
preassumed healing length ξ = 1/kµ, are further applied to
evaluate the chemical potential.

III. RESULTS

We have carried out a thorough study on these renormalized
forces and shall report our results here. Detailed derivations
will be published in a followup technical article. The en-
ergy density (in units of the Hartree-Fock energy g2n

2
0/2 ≈

4π2ϵλ2−ϵ
B n2

0) turns out to be a function of two dimensionless
parameters, ϵ and n0λ

4−ϵ
B . The contribution to A(N) is further

specified by coefficients a
(N)
L , b

(N)
L , and c

(N)
L (see Ref. [39]

and below), with L standing for the number of loops in the
diagrams involved, as illustrated in Fig. 1. The asymptotic
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3D resonant Bose gases  Bozov et al. (2012)

• irreducible 2-body diagram 

• irreducible 3-body diagrams

THREE-DIMENSIONAL BOSE GAS NEAR A FESHBACH . . . PHYSICAL REVIEW A 85, 023620 (2012)

FIG. 1. (Color online) Diagrams showing contributions to the
total energy E(n0,µ). The dashed lines are for k = 0 condensed
atoms, thick solid internal lines in (a) and (b) are for interacting
Green’s functions G−1(ϵ,k) = ϵ − ϵk − "11 + µ + iδ, and thin solid
lines in (c) and (d) are for noninteracting Green’s function G−1

0 (ϵ,k) =
ϵ − ϵk + µ + iδ. (a) The blue circle is for g2(n0,µ); vertices here
represent the bare interaction U0 in Eq. (1). (b) (N = 1,2, . . .)-loop
diagrams that lead to the integral equation for G3(−3η,p) in Eq. (7).
Note that the usual tree-level diagram violates the momentum
conservation and does not exist; the one-loop diagram has already
been included in g2(n0,µ) and therefore needs to be subtracted
when calculating g3(n0,µ). Arrowed dashed lines here as well as in
(c) and (d) stand for outgoing condensed atoms, and the remaining
dashed lines stand for incoming ones. (c) and (d) The tree level and
examples of one-loop diagrams that yield the usual Lee-Huang-Yang
corrections in the limit of small na3. The self-consistent approach
contains contributions from (c)-type diagrams but not (d)-type ones
(see further discussion in the text). Patterned green circles also
represent the sum of diagrams in (a), but with thin internal lines,
or the noninteracting Green’s function G0 lines. All vertices are time
ordered from left to right.

loops share one internal line instead of a single vertex [see Fig.
1(b)] and are irreducible, i.e., cannot be expressed as a simple
product of individual loops. Effectively, we take into account
all the virtual processes involving either two or three dressed
excited atoms in the calculation of the chemical potential
µ by including the effective g2,3 (defined in Fig. 1) in Eq.
(2). The processes involving four or more excited atoms only
appear in g4,5,... and are not included here; at the one-loop
level, following the above calculations, the corresponding
contributions from the processes involving multiple pairs of
virtual atoms are indeed negligible.

A solution to Eq. (5) is shown in Fig. 2. An interesting
feature of Eq. (5) is that it no longer has a real solution once
n1/3a exceeds the critical value of 0.18, implying an onset
instability; this is not anticipated in the dilute-gas theory [5].
This can also be illustrated by considering the two-body
effective coupling constant G2(%0) as a function of %0 [18], a
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FIG. 2. (Color online) (a) Chemical potential µ in units of the
Fermi energy ϵF and (b) condensation fraction as a function of n1/3a.
Beyond a critical value of 0.18 (shown as circles), the solutions
become complex, and only the real part of µ is plotted; the imaginary
part of µ scales like ϵF (a/acr − 1)1/2 near acr . (However, the sharp
transition would be smeared out if the small imaginary part of G3 is
included.) Dashed lines are the result of the Lee-Huang-Yang theory,
thin solid blue lines are the solution without three-body effects (i.e.,
g3 = 0). Thick solid red lines are the solution with g3 included; the
momentum cutoff is % = 100n1/3. The inset is the relative weight of
three-body effects in the chemical potential as a function of %n−1/3

at the critical point.

characteristic momentum that defines a low-energy subspace:

G2(%0) = 4π

m

1
1
a

− 2
π
%0

. (6)

For Bose gases, it is appropriate to identify the relevant
%0 as

√
2mµ = %µ. For positive scattering lengths, a not

only defines the strength of interaction in the small %µ or
dilute limit but also sets a scale for %µ, above which the
effective interaction becomes negative, i.e., G2(%µ) < 0 if
%µ > π/(2a). So as a approaches infinity, condensed atoms
with a chemical potential µ typically see each other as
attractive rather than repulsive, resulting in molecules [19].
Thus, beyond the critical point the upper branch atomic
gases become strongly coupled to the molecules with a
strength proportional to the imaginary part of µ. Consequently,
we anticipate that µ decreases quickly beyond the critical
scattering length due to the formation of molecules, leading to
a maximum in µ in the vicinity of the critical point [20].

A renormalization group approach based on atom-molecule
fields was also applied in a previous study to understand Bose
gases near resonance [21,22]. Our results differ from theirs in
two aspects. First, in our approach, an onset instability sets in
near resonance even when the scattering length is positive, a
key feature that is absent in that previous study. Second, when
extrapolated to the limit of small na3, the results in Ref. [21]
imply a correction of the order of

√
na3 to the usual Hartree-

Fock chemical potential but with a negative sign, opposite to
the sign of LHY corrections. In a recent study [13], a self-
consistent mean-field equation was employed, leading to a
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FIG. 1. (Color online) Diagrams showing contributions to the
total energy E(n0,µ). The dashed lines are for k = 0 condensed
atoms, thick solid internal lines in (a) and (b) are for interacting
Green’s functions G−1(ϵ,k) = ϵ − ϵk − "11 + µ + iδ, and thin solid
lines in (c) and (d) are for noninteracting Green’s function G−1

0 (ϵ,k) =
ϵ − ϵk + µ + iδ. (a) The blue circle is for g2(n0,µ); vertices here
represent the bare interaction U0 in Eq. (1). (b) (N = 1,2, . . .)-loop
diagrams that lead to the integral equation for G3(−3η,p) in Eq. (7).
Note that the usual tree-level diagram violates the momentum
conservation and does not exist; the one-loop diagram has already
been included in g2(n0,µ) and therefore needs to be subtracted
when calculating g3(n0,µ). Arrowed dashed lines here as well as in
(c) and (d) stand for outgoing condensed atoms, and the remaining
dashed lines stand for incoming ones. (c) and (d) The tree level and
examples of one-loop diagrams that yield the usual Lee-Huang-Yang
corrections in the limit of small na3. The self-consistent approach
contains contributions from (c)-type diagrams but not (d)-type ones
(see further discussion in the text). Patterned green circles also
represent the sum of diagrams in (a), but with thin internal lines,
or the noninteracting Green’s function G0 lines. All vertices are time
ordered from left to right.

loops share one internal line instead of a single vertex [see Fig.
1(b)] and are irreducible, i.e., cannot be expressed as a simple
product of individual loops. Effectively, we take into account
all the virtual processes involving either two or three dressed
excited atoms in the calculation of the chemical potential
µ by including the effective g2,3 (defined in Fig. 1) in Eq.
(2). The processes involving four or more excited atoms only
appear in g4,5,... and are not included here; at the one-loop
level, following the above calculations, the corresponding
contributions from the processes involving multiple pairs of
virtual atoms are indeed negligible.

A solution to Eq. (5) is shown in Fig. 2. An interesting
feature of Eq. (5) is that it no longer has a real solution once
n1/3a exceeds the critical value of 0.18, implying an onset
instability; this is not anticipated in the dilute-gas theory [5].
This can also be illustrated by considering the two-body
effective coupling constant G2(%0) as a function of %0 [18], a
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FIG. 2. (Color online) (a) Chemical potential µ in units of the
Fermi energy ϵF and (b) condensation fraction as a function of n1/3a.
Beyond a critical value of 0.18 (shown as circles), the solutions
become complex, and only the real part of µ is plotted; the imaginary
part of µ scales like ϵF (a/acr − 1)1/2 near acr . (However, the sharp
transition would be smeared out if the small imaginary part of G3 is
included.) Dashed lines are the result of the Lee-Huang-Yang theory,
thin solid blue lines are the solution without three-body effects (i.e.,
g3 = 0). Thick solid red lines are the solution with g3 included; the
momentum cutoff is % = 100n1/3. The inset is the relative weight of
three-body effects in the chemical potential as a function of %n−1/3

at the critical point.
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m

1
1
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− 2
π
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For Bose gases, it is appropriate to identify the relevant
%0 as

√
2mµ = %µ. For positive scattering lengths, a not

only defines the strength of interaction in the small %µ or
dilute limit but also sets a scale for %µ, above which the
effective interaction becomes negative, i.e., G2(%µ) < 0 if
%µ > π/(2a). So as a approaches infinity, condensed atoms
with a chemical potential µ typically see each other as
attractive rather than repulsive, resulting in molecules [19].
Thus, beyond the critical point the upper branch atomic
gases become strongly coupled to the molecules with a
strength proportional to the imaginary part of µ. Consequently,
we anticipate that µ decreases quickly beyond the critical
scattering length due to the formation of molecules, leading to
a maximum in µ in the vicinity of the critical point [20].

A renormalization group approach based on atom-molecule
fields was also applied in a previous study to understand Bose
gases near resonance [21,22]. Our results differ from theirs in
two aspects. First, in our approach, an onset instability sets in
near resonance even when the scattering length is positive, a
key feature that is absent in that previous study. Second, when
extrapolated to the limit of small na3, the results in Ref. [21]
imply a correction of the order of

√
na3 to the usual Hartree-

Fock chemical potential but with a negative sign, opposite to
the sign of LHY corrections. In a recent study [13], a self-
consistent mean-field equation was employed, leading to a
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Results in 3D

• Fermionization 

• Many-body 
instability 

• Efimov physics 

• Smallness of 
3-body effects
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FIG. 1. (Color online) Diagrams showing contributions to the
total energy E(n0,µ). The dashed lines are for k = 0 condensed
atoms, thick solid internal lines in (a) and (b) are for interacting
Green’s functions G−1(ϵ,k) = ϵ − ϵk − "11 + µ + iδ, and thin solid
lines in (c) and (d) are for noninteracting Green’s function G−1

0 (ϵ,k) =
ϵ − ϵk + µ + iδ. (a) The blue circle is for g2(n0,µ); vertices here
represent the bare interaction U0 in Eq. (1). (b) (N = 1,2, . . .)-loop
diagrams that lead to the integral equation for G3(−3η,p) in Eq. (7).
Note that the usual tree-level diagram violates the momentum
conservation and does not exist; the one-loop diagram has already
been included in g2(n0,µ) and therefore needs to be subtracted
when calculating g3(n0,µ). Arrowed dashed lines here as well as in
(c) and (d) stand for outgoing condensed atoms, and the remaining
dashed lines stand for incoming ones. (c) and (d) The tree level and
examples of one-loop diagrams that yield the usual Lee-Huang-Yang
corrections in the limit of small na3. The self-consistent approach
contains contributions from (c)-type diagrams but not (d)-type ones
(see further discussion in the text). Patterned green circles also
represent the sum of diagrams in (a), but with thin internal lines,
or the noninteracting Green’s function G0 lines. All vertices are time
ordered from left to right.

loops share one internal line instead of a single vertex [see Fig.
1(b)] and are irreducible, i.e., cannot be expressed as a simple
product of individual loops. Effectively, we take into account
all the virtual processes involving either two or three dressed
excited atoms in the calculation of the chemical potential
µ by including the effective g2,3 (defined in Fig. 1) in Eq.
(2). The processes involving four or more excited atoms only
appear in g4,5,... and are not included here; at the one-loop
level, following the above calculations, the corresponding
contributions from the processes involving multiple pairs of
virtual atoms are indeed negligible.

A solution to Eq. (5) is shown in Fig. 2. An interesting
feature of Eq. (5) is that it no longer has a real solution once
n1/3a exceeds the critical value of 0.18, implying an onset
instability; this is not anticipated in the dilute-gas theory [5].
This can also be illustrated by considering the two-body
effective coupling constant G2(%0) as a function of %0 [18], a
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FIG. 2. (Color online) (a) Chemical potential µ in units of the
Fermi energy ϵF and (b) condensation fraction as a function of n1/3a.
Beyond a critical value of 0.18 (shown as circles), the solutions
become complex, and only the real part of µ is plotted; the imaginary
part of µ scales like ϵF (a/acr − 1)1/2 near acr . (However, the sharp
transition would be smeared out if the small imaginary part of G3 is
included.) Dashed lines are the result of the Lee-Huang-Yang theory,
thin solid blue lines are the solution without three-body effects (i.e.,
g3 = 0). Thick solid red lines are the solution with g3 included; the
momentum cutoff is % = 100n1/3. The inset is the relative weight of
three-body effects in the chemical potential as a function of %n−1/3

at the critical point.

characteristic momentum that defines a low-energy subspace:

G2(%0) = 4π
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− 2
π
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For Bose gases, it is appropriate to identify the relevant
%0 as

√
2mµ = %µ. For positive scattering lengths, a not

only defines the strength of interaction in the small %µ or
dilute limit but also sets a scale for %µ, above which the
effective interaction becomes negative, i.e., G2(%µ) < 0 if
%µ > π/(2a). So as a approaches infinity, condensed atoms
with a chemical potential µ typically see each other as
attractive rather than repulsive, resulting in molecules [19].
Thus, beyond the critical point the upper branch atomic
gases become strongly coupled to the molecules with a
strength proportional to the imaginary part of µ. Consequently,
we anticipate that µ decreases quickly beyond the critical
scattering length due to the formation of molecules, leading to
a maximum in µ in the vicinity of the critical point [20].

A renormalization group approach based on atom-molecule
fields was also applied in a previous study to understand Bose
gases near resonance [21,22]. Our results differ from theirs in
two aspects. First, in our approach, an onset instability sets in
near resonance even when the scattering length is positive, a
key feature that is absent in that previous study. Second, when
extrapolated to the limit of small na3, the results in Ref. [21]
imply a correction of the order of

√
na3 to the usual Hartree-

Fock chemical potential but with a negative sign, opposite to
the sign of LHY corrections. In a recent study [13], a self-
consistent mean-field equation was employed, leading to a
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Running of coupling constant

• Running of 2-body coupling, 

• Green’s function of non-condensed atoms,

Zhou et al. (2013)

g2(⌘) =
4⇡a

m

1

1�
p
2m⌘a

= + + +…
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Few-body losses  
v.s.  

many-body instability

Few-body losses Many-body instability

few-body recombination running coupling constant

atom loss thermodynamical instability

smooth onset of instability



Bose gases at finite temperature

• Questions & Motivations 

• Stability domain in “T-a” plane? 

• Mechanism(s) for stabilization? 

• Anomalous behavior near instability? 

• Experimental signature for instability? 

• Finite temperature field theory

 arXiv:1504.03434

E(n0, µ) ! F (n0, µ)



Phase diagram

• Compressibility
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FIG. 1. (color online). The phase diagram of a scattering
atomic Bose gas near the T = 0 quantum critical point.
Temperature is shown in unit of the “Fermi temperature”
TF defined for a Bose gas with density n, which is equal to
(6⇡2)2/3/2n2/3 ⇡ 7.6n2/3. The blue solid line is where the
compressibility  changes its sign. It separates the stable and
unstable regions where the compressibility is positive and neg-
ative respectively. The red dot on the horizontal axis repre-
sents the quantum critical point. The inset shows the overall
phase diagram in the same parameter space with both pos-
itive and negative scattering lengths, where the red crosses
represent the data from our calculation. The red dashed line
connecting the data is drawn as a guide for the eyes in the
vicinity of resonance. The dot-dashed box marks the corre-
sponding region in the main plot. For reference, we plot in
blue and black dotted lines the BEC transition temperature
for an ideal Bose gas TBEC and TF respectively. The yellow
dotted line shows the position of resonance.

the compressibility  is calculated via,

1



=
@µ

@n

(1)

from the equation of state µ(n). µ is obtained from
µ = @F (n0, µ)/@n0, where n0 is the number density of
condensed atoms and F (n0, µ) is the free-energy den-
sity [26, 29]. F (n0, µ) itself is calculated at a prefixed
chemical potential, thus µ is determined self-consistently
(refer to Eq. (5) and the context there). In the low-
temperature limit, we have examined the free-energy di-
agrams in the Matsubara-frequency representation [31–
33]. We have identified two dominant processes that yield
the leading order contributions to F . We denote them as
F ⇡ F1 + F2.
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ln(1� e

��(✏k+⌘)), (2)

where ✏

k

= k

2
/2 is the energy of a free particle,

⌘ = ⌃ � µ, ⌃ is the self energy, and � = 1/T . For

clarity, we set the reduced Planck constant ~, the

Boltzmann constant k

B

, and the atomic mass m

to be unity throughout the paper. F1 counts the

contributions of scattering thermal atoms whose

energy receives a modification of ⌘ = ⌃�µ due to

many-body interactions. As expected, the ther-

mal pressure provided by F1 enhances the ther-

modynamical stability of the Bose gas. F2 on the

other hand can be attributed to the interaction

energy of the condensed atoms and can be writ-

ten as

F2 =
1

2
g2(⌘)n

2
0, (3)

where g2(⌘) corresponds to the renormalized two-

body running coupling constant at the energy

scale defined by ⌘ [21]. At finite temperature,

g2(⌘) has the form

g
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, (4)

where n

B

(x) = (e�x � 1)�1
is the bosonic distribu-

tion function. The last term of Eq. (4) represents
the bosonic-enhancement e↵ect due to thermally

excited atoms, which makes the two-body inter-

action more repulsive and in turn stabilizes the

gas. In the limit of low temperature, we also perform
an analytical expansion of Eqs. (2) and (4). Our analysis
shows that while the quantum critical point is dictated by
the scale dependence of the coupling constant, the ther-
mal pressure is the main driving force that stabilizes the
gas when T is small. At T ⇡ 0.17T

F

, the contribution
of the running coupling constant becomes comparable to
that of thermal pressure.
With a Feshbach resonance, the scattering length can

also be tuned to negative values, where there are no shal-
low dimers and the interaction between atoms is e↵ec-
tively attractive. At low temperatures, the gas is ther-
modynamically unstable due to the negative compress-
ibility generated by the attractive interaction, and a rel-
atively high temperature is necessary for the Bose gas
to be stable. It has been shown that for a small neg-
ative scattering length, Bose gases become stable at a
temperature slightly above the transition temperature of
Bose-Einstein condensate (BEC) for an ideal gas, T

BEC

[34–36]. This result can also be obtained using our ap-
proach outlined here. When T > T

BEC

, n is related to F

by n = �@F/@µ. By further supplementing an equation
for the self energy ⌃ = 8⇡an, we can identify the phase
boundary for small negative scattering lengths. Now we
present a more thorough phase diagram for Bose gases,
shown in the inset of Fig. 1. The red crosses mark the
instability points where  changes its sign for both small
negative scattering lengths and also around the critical
positive scattering lengths. Near resonance, we extrap-
olate between these two cases by smoothly connecting
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FIG. 1. (color online). The phase diagram of a scattering
atomic Bose gas near the T = 0 quantum critical point.
Temperature is shown in unit of the “Fermi temperature”
TF defined for a Bose gas with density n, which is equal to
(6⇡2)2/3/2n2/3 ⇡ 7.6n2/3. The blue solid line is where the
compressibility  changes its sign. It separates the stable and
unstable regions where the compressibility is positive and neg-
ative respectively. The red dot on the horizontal axis repre-
sents the quantum critical point. The inset shows the overall
phase diagram in the same parameter space with both pos-
itive and negative scattering lengths, where the red crosses
represent the data from our calculation. The red dashed line
connecting the data is drawn as a guide for the eyes in the
vicinity of resonance. The dot-dashed box marks the corre-
sponding region in the main plot. For reference, we plot in
blue and black dotted lines the BEC transition temperature
for an ideal Bose gas TBEC and TF respectively. The yellow
dotted line shows the position of resonance.

the compressibility  is calculated via,

1



=
@µ

@n

(1)

from the equation of state µ(n). µ is obtained from
µ = @F (n0, µ)/@n0, where n0 is the number density of
condensed atoms and F (n0, µ) is the free-energy den-
sity [26, 29]. F (n0, µ) itself is calculated at a prefixed
chemical potential, thus µ is determined self-consistently
(refer to Eq. (5) and the context there). In the low-
temperature limit, we have examined the free-energy di-
agrams in the Matsubara-frequency representation [31–
33]. We have identified two dominant processes that yield
the leading order contributions to F . We denote them as
F ⇡ F1 + F2.

F1 = T

Z
d

3
q

(2⇡)3
ln(1� e

��(✏k+⌘)), (2)

where ✏

k

= k

2
/2 is the energy of a free particle,

⌘ = ⌃ � µ, ⌃ is the self energy, and � = 1/T . For

clarity, we set the reduced Planck constant ~, the

Boltzmann constant k

B

, and the atomic mass m

to be unity throughout the paper. F1 counts the

contributions of scattering thermal atoms whose

energy receives a modification of ⌘ = ⌃�µ due to

many-body interactions. As expected, the ther-

mal pressure provided by F1 enhances the ther-

modynamical stability of the Bose gas. F2 on the

other hand can be attributed to the interaction

energy of the condensed atoms and can be writ-

ten as

F2 =
1

2
g2(⌘)n

2
0, (3)

where g2(⌘) corresponds to the renormalized two-

body running coupling constant at the energy

scale defined by ⌘ [21]. At finite temperature,

g2(⌘) has the form

g
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2 (⌘) =
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, (4)

where n

B

(x) = (e�x � 1)�1
is the bosonic distribu-

tion function. The last term of Eq. (4) represents
the bosonic-enhancement e↵ect due to thermally

excited atoms, which makes the two-body inter-

action more repulsive and in turn stabilizes the

gas. In the limit of low temperature, we also perform
an analytical expansion of Eqs. (2) and (4). Our analysis
shows that while the quantum critical point is dictated by
the scale dependence of the coupling constant, the ther-
mal pressure is the main driving force that stabilizes the
gas when T is small. At T ⇡ 0.17T

F

, the contribution
of the running coupling constant becomes comparable to
that of thermal pressure.
With a Feshbach resonance, the scattering length can

also be tuned to negative values, where there are no shal-
low dimers and the interaction between atoms is e↵ec-
tively attractive. At low temperatures, the gas is ther-
modynamically unstable due to the negative compress-
ibility generated by the attractive interaction, and a rel-
atively high temperature is necessary for the Bose gas
to be stable. It has been shown that for a small neg-
ative scattering length, Bose gases become stable at a
temperature slightly above the transition temperature of
Bose-Einstein condensate (BEC) for an ideal gas, T

BEC

[34–36]. This result can also be obtained using our ap-
proach outlined here. When T > T

BEC

, n is related to F

by n = �@F/@µ. By further supplementing an equation
for the self energy ⌃ = 8⇡an, we can identify the phase
boundary for small negative scattering lengths. Now we
present a more thorough phase diagram for Bose gases,
shown in the inset of Fig. 1. The red crosses mark the
instability points where  changes its sign for both small
negative scattering lengths and also around the critical
positive scattering lengths. Near resonance, we extrap-
olate between these two cases by smoothly connecting
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FIG. 1. (color online). The phase diagram of a scattering
atomic Bose gas near the T = 0 quantum critical point.
Temperature is shown in unit of the “Fermi temperature”
TF defined for a Bose gas with density n, which is equal to
(6⇡2)2/3/2n2/3 ⇡ 7.6n2/3. The blue solid line is where the
compressibility  changes its sign. It separates the stable and
unstable regions where the compressibility is positive and neg-
ative respectively. The red dot on the horizontal axis repre-
sents the quantum critical point. The inset shows the overall
phase diagram in the same parameter space with both pos-
itive and negative scattering lengths, where the red crosses
represent the data from our calculation. The red dashed line
connecting the data is drawn as a guide for the eyes in the
vicinity of resonance. The dot-dashed box marks the corre-
sponding region in the main plot. For reference, we plot in
blue and black dotted lines the BEC transition temperature
for an ideal Bose gas TBEC and TF respectively. The yellow
dotted line shows the position of resonance.

the compressibility  is calculated via,

1



=
@µ

@n

(1)

from the equation of state µ(n). µ is obtained from
µ = @F (n0, µ)/@n0, where n0 is the number density of
condensed atoms and F (n0, µ) is the free-energy den-
sity [26, 29]. F (n0, µ) itself is calculated at a prefixed
chemical potential, thus µ is determined self-consistently
(refer to Eq. (5) and the context there). In the low-
temperature limit, we have examined the free-energy di-
agrams in the Matsubara-frequency representation [31–
33]. We have identified two dominant processes that yield
the leading order contributions to F . We denote them as
F ⇡ F1 + F2.

F1 = T

Z
d

3
q

(2⇡)3
ln(1� e

��(✏k+⌘)), (2)

where ✏

k

= k

2
/2 is the energy of a free particle,

⌘ = ⌃ � µ, ⌃ is the self energy, and � = 1/T . For

clarity, we set the reduced Planck constant ~, the

Boltzmann constant k

B

, and the atomic mass m

to be unity throughout the paper. F1 counts the

contributions of scattering thermal atoms whose

energy receives a modification of ⌘ = ⌃�µ due to

many-body interactions. As expected, the ther-

mal pressure provided by F1 enhances the ther-

modynamical stability of the Bose gas. F2 on the

other hand can be attributed to the interaction

energy of the condensed atoms and can be writ-

ten as

F2 =
1

2
g2(⌘)n

2
0, (3)

where g2(⌘) corresponds to the renormalized two-

body running coupling constant at the energy

scale defined by ⌘ [21]. At finite temperature,

g2(⌘) has the form

g

�1
2 (⌘) =

1
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, (4)

where n

B

(x) = (e�x � 1)�1
is the bosonic distribu-

tion function. The last term of Eq. (4) represents
the bosonic-enhancement e↵ect due to thermally

excited atoms, which makes the two-body inter-

action more repulsive and in turn stabilizes the

gas. In the limit of low temperature, we also perform
an analytical expansion of Eqs. (2) and (4). Our analysis
shows that while the quantum critical point is dictated by
the scale dependence of the coupling constant, the ther-
mal pressure is the main driving force that stabilizes the
gas when T is small. At T ⇡ 0.17T

F

, the contribution
of the running coupling constant becomes comparable to
that of thermal pressure.
With a Feshbach resonance, the scattering length can

also be tuned to negative values, where there are no shal-
low dimers and the interaction between atoms is e↵ec-
tively attractive. At low temperatures, the gas is ther-
modynamically unstable due to the negative compress-
ibility generated by the attractive interaction, and a rel-
atively high temperature is necessary for the Bose gas
to be stable. It has been shown that for a small neg-
ative scattering length, Bose gases become stable at a
temperature slightly above the transition temperature of
Bose-Einstein condensate (BEC) for an ideal gas, T

BEC

[34–36]. This result can also be obtained using our ap-
proach outlined here. When T > T

BEC

, n is related to F

by n = �@F/@µ. By further supplementing an equation
for the self energy ⌃ = 8⇡an, we can identify the phase
boundary for small negative scattering lengths. Now we
present a more thorough phase diagram for Bose gases,
shown in the inset of Fig. 1. The red crosses mark the
instability points where  changes its sign for both small
negative scattering lengths and also around the critical
positive scattering lengths. Near resonance, we extrap-
olate between these two cases by smoothly connecting
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FIG. 1. (color online). The phase diagram of a scattering
atomic Bose gas near the T = 0 quantum critical point.
Temperature is shown in unit of the “Fermi temperature”
TF defined for a Bose gas with density n, which is equal to
(6⇡2)2/3/2n2/3 ⇡ 7.6n2/3. The blue solid line is where the
compressibility  changes its sign. It separates the stable and
unstable regions where the compressibility is positive and neg-
ative respectively. The red dot on the horizontal axis repre-
sents the quantum critical point. The inset shows the overall
phase diagram in the same parameter space with both pos-
itive and negative scattering lengths, where the red crosses
represent the data from our calculation. The red dashed line
connecting the data is drawn as a guide for the eyes in the
vicinity of resonance. The dot-dashed box marks the corre-
sponding region in the main plot. For reference, we plot in
blue and black dotted lines the BEC transition temperature
for an ideal Bose gas TBEC and TF respectively. The yellow
dotted line shows the position of resonance.

the compressibility  is calculated via,

1



=
@µ

@n

(1)

from the equation of state µ(n). µ is obtained from
µ = @F (n0, µ)/@n0, where n0 is the number density of
condensed atoms and F (n0, µ) is the free-energy den-
sity [26, 29]. F (n0, µ) itself is calculated at a prefixed
chemical potential, thus µ is determined self-consistently
(refer to Eq. (5) and the context there). In the low-
temperature limit, we have examined the free-energy di-
agrams in the Matsubara-frequency representation [31–
33]. We have identified two dominant processes that yield
the leading order contributions to F . We denote them as
F ⇡ F1 + F2.

F1 = T

Z
d

3
q

(2⇡)3
ln(1� e

��(✏k+⌘)), (2)

where ✏

k

= k

2
/2 is the energy of a free particle,

⌘ = ⌃ � µ, ⌃ is the self energy, and � = 1/T . For

clarity, we set the reduced Planck constant ~, the

Boltzmann constant k

B

, and the atomic mass m

to be unity throughout the paper. F1 counts the

contributions of scattering thermal atoms whose

energy receives a modification of ⌘ = ⌃�µ due to

many-body interactions. As expected, the ther-

mal pressure provided by F1 enhances the ther-

modynamical stability of the Bose gas. F2 on the

other hand can be attributed to the interaction

energy of the condensed atoms and can be writ-

ten as

F2 =
1

2
g2(⌘)n

2
0, (3)

where g2(⌘) corresponds to the renormalized two-

body running coupling constant at the energy

scale defined by ⌘ [21]. At finite temperature,

g2(⌘) has the form

g
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2 (⌘) =
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(q2/2 + ⌘)
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, (4)

where n

B

(x) = (e�x � 1)�1
is the bosonic distribu-

tion function. The last term of Eq. (4) represents
the bosonic-enhancement e↵ect due to thermally

excited atoms, which makes the two-body inter-

action more repulsive and in turn stabilizes the

gas. In the limit of low temperature, we also perform
an analytical expansion of Eqs. (2) and (4). Our analysis
shows that while the quantum critical point is dictated by
the scale dependence of the coupling constant, the ther-
mal pressure is the main driving force that stabilizes the
gas when T is small. At T ⇡ 0.17T

F

, the contribution
of the running coupling constant becomes comparable to
that of thermal pressure.
With a Feshbach resonance, the scattering length can

also be tuned to negative values, where there are no shal-
low dimers and the interaction between atoms is e↵ec-
tively attractive. At low temperatures, the gas is ther-
modynamically unstable due to the negative compress-
ibility generated by the attractive interaction, and a rel-
atively high temperature is necessary for the Bose gas
to be stable. It has been shown that for a small neg-
ative scattering length, Bose gases become stable at a
temperature slightly above the transition temperature of
Bose-Einstein condensate (BEC) for an ideal gas, T

BEC

[34–36]. This result can also be obtained using our ap-
proach outlined here. When T > T

BEC

, n is related to F

by n = �@F/@µ. By further supplementing an equation
for the self energy ⌃ = 8⇡an, we can identify the phase
boundary for small negative scattering lengths. Now we
present a more thorough phase diagram for Bose gases,
shown in the inset of Fig. 1. The red crosses mark the
instability points where  changes its sign for both small
negative scattering lengths and also around the critical
positive scattering lengths. Near resonance, we extrap-
olate between these two cases by smoothly connecting
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FIG. 1. (color online). The phase diagram of a scattering
atomic Bose gas near the T = 0 quantum critical point.
Temperature is shown in unit of the “Fermi temperature”
TF defined for a Bose gas with density n, which is equal to
(6⇡2)2/3/2n2/3 ⇡ 7.6n2/3. The blue solid line is where the
compressibility  changes its sign. It separates the stable and
unstable regions where the compressibility is positive and neg-
ative respectively. The red dot on the horizontal axis repre-
sents the quantum critical point. The inset shows the overall
phase diagram in the same parameter space with both pos-
itive and negative scattering lengths, where the red crosses
represent the data from our calculation. The red dashed line
connecting the data is drawn as a guide for the eyes in the
vicinity of resonance. The dot-dashed box marks the corre-
sponding region in the main plot. For reference, we plot in
blue and black dotted lines the BEC transition temperature
for an ideal Bose gas TBEC and TF respectively. The yellow
dotted line shows the position of resonance.

the compressibility  is calculated via,

1



=
@µ

@n

(1)

from the equation of state µ(n). µ is obtained from
µ = @F (n0, µ)/@n0, where n0 is the number density of
condensed atoms and F (n0, µ) is the free-energy den-
sity [26, 29]. F (n0, µ) itself is calculated at a prefixed
chemical potential, thus µ is determined self-consistently
(refer to Eq. (5) and the context there). In the low-
temperature limit, we have examined the free-energy di-
agrams in the Matsubara-frequency representation [31–
33]. We have identified two dominant processes that yield
the leading order contributions to F . We denote them as
F ⇡ F1 + F2.

F1 = T

Z
d

3
q

(2⇡)3
ln(1� e

��(✏k+⌘)), (2)

where ✏

k

= k

2
/2 is the energy of a free particle,

⌘ = ⌃ � µ, ⌃ is the self energy, and � = 1/T . For

clarity, we set the reduced Planck constant ~, the

Boltzmann constant k

B

, and the atomic mass m

to be unity throughout the paper. F1 counts the

contributions of scattering thermal atoms whose

energy receives a modification of ⌘ = ⌃�µ due to

many-body interactions. As expected, the ther-

mal pressure provided by F1 enhances the ther-

modynamical stability of the Bose gas. F2 on the

other hand can be attributed to the interaction

energy of the condensed atoms and can be writ-

ten as

F2 =
1

2
g2(⌘)n

2
0, (3)

where g2(⌘) corresponds to the renormalized two-

body running coupling constant at the energy

scale defined by ⌘ [21]. At finite temperature,

g2(⌘) has the form
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where n

B

(x) = (e�x � 1)�1
is the bosonic distribu-

tion function. The last term of Eq. (4) represents
the bosonic-enhancement e↵ect due to thermally

excited atoms, which makes the two-body inter-

action more repulsive and in turn stabilizes the

gas. In the limit of low temperature, we also perform
an analytical expansion of Eqs. (2) and (4). Our analysis
shows that while the quantum critical point is dictated by
the scale dependence of the coupling constant, the ther-
mal pressure is the main driving force that stabilizes the
gas when T is small. At T ⇡ 0.17T

F

, the contribution
of the running coupling constant becomes comparable to
that of thermal pressure.
With a Feshbach resonance, the scattering length can

also be tuned to negative values, where there are no shal-
low dimers and the interaction between atoms is e↵ec-
tively attractive. At low temperatures, the gas is ther-
modynamically unstable due to the negative compress-
ibility generated by the attractive interaction, and a rel-
atively high temperature is necessary for the Bose gas
to be stable. It has been shown that for a small neg-
ative scattering length, Bose gases become stable at a
temperature slightly above the transition temperature of
Bose-Einstein condensate (BEC) for an ideal gas, T

BEC

[34–36]. This result can also be obtained using our ap-
proach outlined here. When T > T

BEC

, n is related to F

by n = �@F/@µ. By further supplementing an equation
for the self energy ⌃ = 8⇡an, we can identify the phase
boundary for small negative scattering lengths. Now we
present a more thorough phase diagram for Bose gases,
shown in the inset of Fig. 1. The red crosses mark the
instability points where  changes its sign for both small
negative scattering lengths and also around the critical
positive scattering lengths. Near resonance, we extrap-
olate between these two cases by smoothly connecting
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FIG. 1. (color online). The phase diagram of a scattering
atomic Bose gas near the T = 0 quantum critical point.
Temperature is shown in unit of the “Fermi temperature”
TF defined for a Bose gas with density n, which is equal to
(6⇡2)2/3/2n2/3 ⇡ 7.6n2/3. The blue solid line is where the
compressibility  changes its sign. It separates the stable and
unstable regions where the compressibility is positive and neg-
ative respectively. The red dot on the horizontal axis repre-
sents the quantum critical point. The inset shows the overall
phase diagram in the same parameter space with both pos-
itive and negative scattering lengths, where the red crosses
represent the data from our calculation. The red dashed line
connecting the data is drawn as a guide for the eyes in the
vicinity of resonance. The dot-dashed box marks the corre-
sponding region in the main plot. For reference, we plot in
blue and black dotted lines the BEC transition temperature
for an ideal Bose gas TBEC and TF respectively. The yellow
dotted line shows the position of resonance.

the compressibility  is calculated via,

1



=
@µ

@n

(1)

from the equation of state µ(n). µ is obtained from
µ = @F (n0, µ)/@n0, where n0 is the number density of
condensed atoms and F (n0, µ) is the free-energy den-
sity [26, 29]. F (n0, µ) itself is calculated at a prefixed
chemical potential, thus µ is determined self-consistently
(refer to Eq. (5) and the context there). In the low-
temperature limit, we have examined the free-energy di-
agrams in the Matsubara-frequency representation [31–
33]. We have identified two dominant processes that yield
the leading order contributions to F . We denote them as
F ⇡ F1 + F2.
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where ✏
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/2 is the energy of a free particle,

⌘ = ⌃ � µ, ⌃ is the self energy, and � = 1/T . For

clarity, we set the reduced Planck constant ~, the

Boltzmann constant k

B

, and the atomic mass m

to be unity throughout the paper. F1 counts the

contributions of scattering thermal atoms whose

energy receives a modification of ⌘ = ⌃�µ due to

many-body interactions. As expected, the ther-

mal pressure provided by F1 enhances the ther-

modynamical stability of the Bose gas. F2 on the

other hand can be attributed to the interaction

energy of the condensed atoms and can be writ-

ten as
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where g2(⌘) corresponds to the renormalized two-

body running coupling constant at the energy

scale defined by ⌘ [21]. At finite temperature,

g2(⌘) has the form
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where n

B

(x) = (e�x � 1)�1
is the bosonic distribu-

tion function. The last term of Eq. (4) represents
the bosonic-enhancement e↵ect due to thermally

excited atoms, which makes the two-body inter-

action more repulsive and in turn stabilizes the

gas. In the limit of low temperature, we also perform
an analytical expansion of Eqs. (2) and (4). Our analysis
shows that while the quantum critical point is dictated by
the scale dependence of the coupling constant, the ther-
mal pressure is the main driving force that stabilizes the
gas when T is small. At T ⇡ 0.17T

F

, the contribution
of the running coupling constant becomes comparable to
that of thermal pressure.
With a Feshbach resonance, the scattering length can

also be tuned to negative values, where there are no shal-
low dimers and the interaction between atoms is e↵ec-
tively attractive. At low temperatures, the gas is ther-
modynamically unstable due to the negative compress-
ibility generated by the attractive interaction, and a rel-
atively high temperature is necessary for the Bose gas
to be stable. It has been shown that for a small neg-
ative scattering length, Bose gases become stable at a
temperature slightly above the transition temperature of
Bose-Einstein condensate (BEC) for an ideal gas, T

BEC

[34–36]. This result can also be obtained using our ap-
proach outlined here. When T > T

BEC

, n is related to F

by n = �@F/@µ. By further supplementing an equation
for the self energy ⌃ = 8⇡an, we can identify the phase
boundary for small negative scattering lengths. Now we
present a more thorough phase diagram for Bose gases,
shown in the inset of Fig. 1. The red crosses mark the
instability points where  changes its sign for both small
negative scattering lengths and also around the critical
positive scattering lengths. Near resonance, we extrap-
olate between these two cases by smoothly connecting
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Three-body loss, lifetime

• Estimation of 3-body loss rate near instability 

• Near instability

L3 ⇡ 203.7a4f(a⇤⇤) Bedaque et al. (2000)

4

been extensive studies on L3 [11, 39–44]. It was shown
that, L3 increases as a

4 (apart from the peaks and dips
due to interference e↵ects) and saturates to ⇠ T

�2 when
a becomes comparable to the thermal wave length. This
smooth variation of L3 with a is fundamentally di↵erent
from the sharp sign change of  at the onset of the many-
body instability discussed above. In order to further com-
pare the few- and many-body e↵ects, we carry out an
estimation of L3 near the quantum critical point. In the
low-temperature limit, L3 was shown to be 203.7a4 up to
a periodic function of ln(a⇤), oscillating between 0 and 1,
where ⇤ is an ultraviolet momentum scale depending on
the short-distance details of the interatomic interaction
[43]. Near the critical point where an1/3 ⇡ 0.174, the en-
ergyscale set by the three-body loss rate can be estimated
as L3n

2 ⇡ 0.0246T
F

, while the chemical potential near
this point is calculated to be µ ⇡ 0.735T

F

, i.e., the onset
of many-body instability sets in before the three-body
loss becomes significant. This is in contrast to the com-
mon belief that few-body loss is the main limitation to
the experimental accessibility of highly degenerate Bose
gases. On the other hand, we can also infer that, com-
pared with the many-body timescale, the lifetime due to
three-body loss is long near the critical point. This vali-
dates our treatment of the system as a thermodynamical
system and justifies our thermodynamical analysis above.
Besides, the presence of the ultraviolet parameter ⇤ in L3

reflects the nonuniversality of Bose gases near resonance,
which is related to the Efimov physics [45]. This e↵ect
can be incorporated in the e↵ective-field-theory approach
quite straightforwardly at zero temperature by including
the three-body interaction energy with an ultraviolet cut-
o↵ [20]. By varying the ultraviolet cuto↵ from 10�2

n

1/3

to 10�3
n

1/3, our calculation shows an oscillation of the
position of the critical point, indicating nonuniversality,
but the relative magnitude of the oscillation is less than
2%. This suggests that the three-body e↵ect is negligi-
ble even near the critical point, which is consistent with
previous studies.

At last, we briefly introduce our technique. We adopt
an e↵ective-field-theory approach combined with self-
consistent equations [20, 21]. In this approach, the free-
energy density F (n0, µ) (which reduces to the energy den-
sity at zero temperature) is calculated as a function of
condensed-particle density n0 and a preassumed chemi-
cal potential µ. At equilibrium, µ is further related to
F (n0, µ) by

µ =
@F (n0, µ)

@n0
. (5)

From this self-consistent equation for µ, we can solve µ as
a function of n0. By further supplementing an equation
for atom number

n = n0 �
@F (n0, µ)

@µ

, (6)

the chemical potential, condensation fraction, and ther-
modynamical quantities like compressibility can be ob-
tained.
The evaluation of F can be carried out diagrammati-

cally [26, 29, 31–33]:

F (n0, µ) =
1X

M=0

g

(0)
M

(µ)

M !
n

M

0 , (7)

where g

(0)
M

(µ) is the e↵ective M -body interaction. How-
ever, the traditional perturbation expansion based on
bare interactions was demonstrated to converge quite
slowly. For instance, the LHY correction in the dilute
limit involves a summation of infinite number of dia-
grams. In our approach, we further introduce the renor-
malized coupling constant and the irreducible M -body
interactions which depend on n0 themselves [20]. In this
case, F can be rewritten as,

F (n0, µ) =
1X

M=0

g

(IR)
M

(µ, n0)

M !
n

M

0 , (8)

where g

(IR)
M

is the irreducible M -body interaction. At
zero temperature, this summation starts with M = 2,

and g

(IR)
2 has been shown to produce more than 99% of

the LHY correction in the dilute limit. Near resonance,
this expansion has also been proven to converge rapidly
[20]. According to our calculations at zero temperature,

the contribution of g(IR)
3 to F near the critical point is

less than 5% of that of g(IR)
2 . A rigorous solution at 4� ✏

dimensions [46] further demonstrated that the e↵ect of
M -body (M � 3) interactions is indeed suppressed by an
extra power of ✏, which, after extrapolation, is consistent
with the numerical smallness we observed here. In our
present analysis, we neglect contributions with M � 3.

On the other hand, there are contributions from g

(IR)
0 at

finite temperatures, which correspond to the free energy
of thermal atoms. Among this type of diagrams, those
involving a single thermal atom give the leading-order
contribution while others are suppressed by additional
e

��µ factors. For example, the Nozieres-Schmitt-Rink
type diagrams considered in Ref. [37] are suppressed in
the low-temperature limit.
In summary, we have studied the stability of the reso-

nant atomic Bose gas. Near the T = 0 instability point
dictated by the scale-dependent interactions, thermal ex-
citations enhance the repulsiveness of the interatomic in-
teractions and generate thermal pressure, which stabilize
Bose gases and shift the instability to larger scattering
lengths. Unlike the smooth decrease of lifetime due to
few-body loss, this onset of instability is mainly due to
the many-body e↵ects and is characterized by a sharp
sign change of the compressibility. As a precursor of the
instability, this anomalous compressibility induces a flat
top for the density profile in the presence of a harmonic
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FIG. 2. (color online). (a) The compressibility as a func-
tion of scattering length when temperature T = 0.2TF (red
solid line) and T = 0.05TF (green dashed line). (b) Density
profile for N = 2.44 ⇥ 109 atoms in a harmonic trap with
frequency ! = 10�4a�2. The blue solid line shows the re-
sult of our calculation within local-density approximation at
temperature T = 10�3a�2. The density in the trap center
is na3 = 5.25 ⇥ 10�3, slightly below the critical value. The
blue solid line in the inset shows the compressibility as a func-
tion of density. Note that the rapid drop of compressibility
near na3 = 5.25⇥ 10�3 (see inset) leads to the flat top of the
density profile. We also plot the density profile and compress-
ibility as a function of density from Lee-Huang-Yang theory
[24, 25] in red dashed lines for comparison.

the two sides as a guide for the eyes. The resultant ex-
trapolated curve (red dashed line) near a = 1 is qual-
itatively consistent with the picture in Ref. [37] derived
via a high-temperature expansion. The di�culty at res-
onance is mainly due to the strong interplay between
many-body interactions and thermal fluctuations when
the thermal wave length becomes comparable with the
coherence length set by the chemical potential. Never-
theless, combined with the result for small negative a, the
finite temperature result we obtained for positive a pro-
vides a comprehensive, thorough picture of the metasta-
bility of Bose gases for a wide range of scattering lengths.

Now we turn to question 2) asked in the in-
troduction regarding the experimental signature
of the stability boundary. A previous study on
two dimensional Bose gases which applied a the-
oretical approach similar to the one outlined here
[23] also implies an anomalous behavior of com-
pressibility. That is the inverse of compressibil-
ity as a function of scattering length develops a
maxima as a precursor of the instability. This is
consistent with a recent experiment for two di-
mensional Bose gases [10] where a maxima in the
inverse of compressibility was measured. Given
the success in two dimension, it is appealing to
ask what is the potential smoking gun for the sta-
bility boundary in three dimensional Bose gases.

We identify the stability boundary by monitor-
ing the sign change of compressibility. A typical
behavior of compressibility near the onset of in-
stability is shown in Fig. 2 (a) for T = 0.2T

F

and
T = 0.05T

F

, where T

F

= (6⇡2)2/3/2n2/3 ⇡ 7.6n2/3 is
the “Fermi temperature” defined for bosons. We
can see a drop of compressibility before it changes
sign. Since most of the experiments of quantum
gases employ traps to confine the atom clouds, it
will be useful to study the e↵ect of compressibil-
ity in the presence of a trap potential. For a shallow
trap where the harmonic length is much larger than co-
herence length, the local-density approximation is appli-
cable. Within the local-density approximation the trap
renders a position-dependent chemical potential, which
reaches its maximum value in the center of the trap and
decreases towards the edge [38]. Consequently, the den-
sity profile of the gas, n(r), is a direct reflection of the
compressibility and can provide experimental evidence of
the quantum critical behavior discussed above. In Fig. 2
(b), we plot in the blue solid line the density profile for a
Bose gas in a harmonic trap with frequency ! = 10�4

a

�2

at T = 10�3
a

�2. The peak density, which is located in
the center of the trap, is set slightly below the critical
value na

3 = 5.25⇥ 10�3. In this case, the particle num-
ber N = 2.44⇥ 109 can be regarded as the critical parti-
cle number for this set of !, T , and a, beyond which the
gas near the center of the trap becomes unstable. For
comparison, we also plot in the red dashed line the den-
sity profile obtained using the Lee-Huang-Yang (LHY)
theory [24, 25] for the same !, a, and N at zero tem-
perature. It can be seen that our calculation predicts a
much flatter top for the density profile compared with
the LHY result. This is due to the rapid drop of  near
the critical point (i.e., the gas becomes di�cult to com-
press before reaching the instability), in contrast to the
mild decrease in the LHY theory, as shown in the inset
of Fig. 2 (b). There have been experimental evidences
of a flat top of the density profile for a Bose gas in a
harmonic trap near resonance, but they have long been
attributed to the strong three-body loss in the center of
the trap. However, our analysis shows that the worrying
three-body loss is still relatively small near the instabil-
ity point, which we will discuss in more details below.
As a result, the observed flat top is a strong evidence of
the anomalous compressibility, a precursor of the onset
of many-body instability.

Bose gases of scattering atoms su↵er three-body-
recombination processes due to the presence of bound
states deeper in the energy spectrum. When three atoms
scatter, two atoms can form a bound state while the third
atom gains appreciable kinetic energy and may escape
from the trap; this is known as three-body loss. The gas
therefore has a finite lifetime. The lifetime due to losses is
determined by the rate of this three-body-recombination
event, known as the three-body loss rate L3. There have
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stability is shown in Fig. 2 (a) for T = 0.2T

F

and
T = 0.05T

F

, where T

F

= (6⇡2)2/3/2n2/3 ⇡ 7.6n2/3 is
the “Fermi temperature” defined for bosons. We
can see a drop of compressibility before it changes
sign. Since most of the experiments of quantum
gases employ traps to confine the atom clouds, it
will be useful to study the e↵ect of compressibil-
ity in the presence of a trap potential. For a shallow
trap where the harmonic length is much larger than co-
herence length, the local-density approximation is appli-
cable. Within the local-density approximation the trap
renders a position-dependent chemical potential, which
reaches its maximum value in the center of the trap and
decreases towards the edge [38]. Consequently, the den-
sity profile of the gas, n(r), is a direct reflection of the
compressibility and can provide experimental evidence of
the quantum critical behavior discussed above. In Fig. 2
(b), we plot in the blue solid line the density profile for a
Bose gas in a harmonic trap with frequency ! = 10�4

a

�2

at T = 10�3
a

�2. The peak density, which is located in
the center of the trap, is set slightly below the critical
value na

3 = 5.25⇥ 10�3. In this case, the particle num-
ber N = 2.44⇥ 109 can be regarded as the critical parti-
cle number for this set of !, T , and a, beyond which the
gas near the center of the trap becomes unstable. For
comparison, we also plot in the red dashed line the den-
sity profile obtained using the Lee-Huang-Yang (LHY)
theory [24, 25] for the same !, a, and N at zero tem-
perature. It can be seen that our calculation predicts a
much flatter top for the density profile compared with
the LHY result. This is due to the rapid drop of  near
the critical point (i.e., the gas becomes di�cult to com-
press before reaching the instability), in contrast to the
mild decrease in the LHY theory, as shown in the inset
of Fig. 2 (b). There have been experimental evidences
of a flat top of the density profile for a Bose gas in a
harmonic trap near resonance, but they have long been
attributed to the strong three-body loss in the center of
the trap. However, our analysis shows that the worrying
three-body loss is still relatively small near the instabil-
ity point, which we will discuss in more details below.
As a result, the observed flat top is a strong evidence of
the anomalous compressibility, a precursor of the onset
of many-body instability.

Bose gases of scattering atoms su↵er three-body-
recombination processes due to the presence of bound
states deeper in the energy spectrum. When three atoms
scatter, two atoms can form a bound state while the third
atom gains appreciable kinetic energy and may escape
from the trap; this is known as three-body loss. The gas
therefore has a finite lifetime. The lifetime due to losses is
determined by the rate of this three-body-recombination
event, known as the three-body loss rate L3. There have
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Conclusions

• Phase diagram in T-a plane 

• Finite temperatures stabilize Bose gases via two 
mechanisms 

• Many-body instability sets in before losses become 
significant. 

• Anomalous compressibility along critical line 

• Flat top in density profile as a precursor of the onset of 
many-body instability 

Thank you!


