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Outline

• Thermalisation protocol: sudden turn on of system (S) - 
bath (B) coupling

• key to thermalisation in quantum systems:  Canonical 
Typicality and Eigenstate Thermalisation Hypothesis

• exact diagonalization:  small (2+7 sites) Hubbard ring

• (A) Long time: thermalisation as function of S-B 
coupling

• (B) Dynamics of thermalisation

• Random matrix dynamics - analytical theory

• Conclusions
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Introduction + 
background
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Thermalisation

• subsystem reaches equilibrium with bath through energy/particle 
exchange

• independent of the initial subsystem state

• independent of microscopic details of the bath:  only macroscopic 
quantities matter,  eg. chemical potential  

• loss of coherence/entanglement within subsystem

• states of the subsystem are occupied with probability given by Gibbs 
distribution
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Thermalisation:  main results here

• Thermalisation in a small closed quantum system?

• yes, for surprisingly small systems, to canonical distribution

• dynamics of approach to thermalisation:  exponential and 
Gaussian relaxation regimes 

• both numerics for a range of systems, and analytical result 
(last part)

S. Genway,  A.F. Ho and D.K.K. Lee,  PRL 105,  260402 (2010)
S. Genway,  A.F. Ho and D.K.K. Lee,  PRA 86,  023609 (2012)
S. Genway,  A.F. Ho and D.K.K. Lee,  PRL 111,  130408 (2013)
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Canonical Ensemble

• Gibbs-Boltzmann distribution

• subsystem state       with energy      , S+B total energy 

• temperature defined from:

• Canonical ensemble in a closed quantum system?  Two concepts:     
Canonical Typicality   &   Eigenstate Thermalisation 

Canonical Ensemble

• Gibbs-Boltzmann distribution
• subsystem state |s� with energy εs

ρ ∝
�

s

Nbath(E0 − εs)|s��s|

∼
�

s

e−βεs |s��s| for large bath (E0 � εs)

• temperature defined from: β ≡ 1

kBT
=

d lnNbath

dE

����
E0
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Canonical Ensemble

• Gibbs-Boltzmann distribution
• subsystem state |s� with energy εs

ρ ∝
�

s

Nbath(E0 − εs)|s��s|

∼
�

s

e−βεs |s��s| for large bath (E0 � εs)

• temperature defined from: β ≡ 1

kBT
=

d lnNbath

dE

����
E0

standard textbook derivation: assumed weak system-bath coupling

E0

assumed: weak S-B 
coupling 
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Canonical Typicality

• Pick a pure state 

• Reduced density matrix      is 
approximately thermal  for almost all 
choices of

Goldstein et al. PRL 96, 050403 (2006)
Popescu et al. Nature Phys. 2, 754 (2006), ...
Canonical Typicality

• Pick a random state
• |Ψ� =

�

A

CA|EA�

|EA�: eigenstate of whole system
• CA �= 0 only in energy shell:

[E0, E0+δ]

• Reduced density matrix ρ is
approximately thermal for almost
all choices of |Ψ�

Goldstein et al. PRL 96, 050403 (2006)

Popescu et al. Nature Phys. 2, 754 (2006)
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• Measurement of local / few-body observable for an energy eigenstate     
gives thermal result

• Project eigenstate         to subsystem state       (energy     ):

•  For any state                      , time average of the reduced 
density matrix is the thermal state independent of 

Eigenstate Thermalisation Hypothesis
Deutsch PRA 43, 206 (1991), Srednicki PRE 50, 888 (1994),   Rigol et al., Nature 452, 854 (2008), ...

Eigenstate Thermalisation Hypothesis

Srednicki PRE 50, 888 (1994), Rigol et al., Nature 452, 854 (2008)

• Project eigenstate |EA� to subsystem state |s� (energy εs):
Ps ≡

�
b |sb��sb| for product states |sb�

Hypothesis: �EA|Ps|EA� � e−βεs

• subsystem thermal behaviour encoded into |EA�

.

.

. =
.
.
.

.

.

.

|E352� = |ε1�|�172�
|E351� = |ε2�|�98�
|E350� = |ε1�|�171�

.

.

. =
.
.
.

.

.

.






λV−→ e−βε1 |ε1�|B1�+e−βε2 |ε2�|B2�+. . .

• For any state |Ψ� =
�

ACA|EA�, time average

ρss =
�

A |CA|2�EA|Ps|EA� is the thermal state independent

of CA

cf. quantum ergodicity theorem: 
von Neumann (1929), Snirelman (1974), de Verdiere (1985), Zelditch (1987), ...
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Thermalisation
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Hamiltonian
Hamiltonian

HS = −
�

σ=↑,↓
Jσ(c

†
1σc2σ + h.c.) + U(n1↑n1↓ + n2↑n2↓)

HB = −
L−1�

i=3

�

σ=↑,↓
Jσ(c

†
iσci+1,σ + h.c.) + U

L�

i=3

ni↑ni↓

λV = −λ
�

σ=↑,↓
Jσ

�
(c†2σc3σ + c

†
1σcLσ) + h.c.

�

• 8 fermions: 4↑, 4↓
• Jσ = J(1 + ξsgnσ), ξ = 0.05

• U = J = 1

• 15876 energy levels

• 16 subsystem energy levels

• λ = 1 → homogeneous ring
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Initial StateInitial States

• Product states

|Ψ(t = 0)� = |s� 1

N1/2
shell

�

b∈shell
|�b�

overlaps many exact eigenstates
|EA� in energy shell

• Switch on λV for t > 0

• Evolve ρ(t) = Trbath
�
|Ψ(t)��Ψ(t)|

�

with |Ψ(t)� = e−iHt|Ψ�
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Subsystem evolutionSubsystem Evolution

Diagonal elements of ρ (U/J = λ = 1)
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Subsystem evolutionSubsystem Evolution
Off-diagonal elements of ρ (U/J = λ = 1)

|a� = 1√
2

�
| ↑, 0�+ |0, ↑�

�
, |b� = 1√

2

�
| ↑, 0� − |0, ↑�

�
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Memory of Initial StateMemory of Initial State

Loss of memory for wide range 0.1 � λ � 4

∆r =
1
2

�

s

�
�ρ2

ss� − �ρss�2
�1/2 angular bracket: average over 

all (16) initial subsystem states
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Closeness to the Thermal StateCloseness to the Thermal State

Subsystem thermalises for λ � 0.1

σω =
1
2

�

s

�|ρss − ωss|� angular bracket: average over 
all (16) initial subsystem states
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S = −
�

s

�ρss ln ρss�

Thermal state

angular bracket: average over all 
(16) initial subsystem states

S. GENWAY, A. F. HO, AND D. K. K. LEE PHYSICAL REVIEW A 86, 023609 (2012)

ω. We quantify this with the quantity σω, defined as

σω = 1
2

∑

s

〈|rss − ωss |〉 . (13)

Here, 〈· · ·〉 denotes an average over all 16 initial states in the
subsystem Fock basis (eigenstates at J = 0). As such, this
is a measure of the average distance to the thermal state, ω,
for the set of initial subsystem states spins localized on the
lattice sites. It is a special case of a more general distance
measure [14], 〈 1

2 Tr
√

(r − ω)2〉, which equals σω in the case
where the elements of r in the subsystem eigenbasis form
diagonal matrices. As established above, this is the case for
0.05 ! λ ! 3. Within this range, we may interpret σω as the
probability, on making measurements on the subsystem, that
rss could be distinguished from ωss [12].

From the definitions of these two measures, it is clear that
if $r is large, then σω is necessarily large, too: If there is a
large variation in r for different initial states, many of these
states must be far from the uniquely defined canonical thermal
state ω. Conversely, it is possible for σω to be large with $r
small, because the subsystem may relax consistently to a state
r other than the canonical state ω.

We will also compute the von Neumann entropy of the
subsystem. Because off-diagonal elements of ρ(t) are virtually
zero at long times even for very small λ, we introduce an
initial-state-averaged subsystem entropy for the equilibrium
state, which we define by

S = −
∑

s

〈rss ln rss〉 , (14)

where 〈· · ·〉 denotes an average over all initial subsystem states
in the subsystem Fock basis.

We would also like to characterize subsystems showing
thermalization with an effective temperature. As discussed in
Sec. II C, if we consider the subsystem at a given particle
number ns and spin sz

s , we expect the steady-state RDM, r ,
to approach the Boltzmann form (7) for ω if the subsystem
relaxes to the canonical thermal state ω. Therefore, we extract
an effective temperature Teff from the RDM, r , of the steady
states that we find using a least-squares fit to the form

ln rss = − εs

Teff
+ const. (15)

We will focus on the four-state subsector with ns = 2 and
sz
s = 0 because it is the subsector with the largest number of

bath states. Note that it is possible that we can have a good fit
to this form with an effective temperature even if the steady
state is not close to the canonical state ω.

C. The role of coupling strength

In the previous section, we discussed how we measure the
memory of the initial conditions ($r) in the steady state,
closeness (σω) to the canonical thermal state, the effective
subsystem temperature (Teff), and the entropy (S) of the
subsystem. We will now discuss how these measures of
thermalization change over a broad range of subsystem-bath
coupling strengths λ. We show results at different total energies
E0 between −4J and 1.77J .
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FIG. 6. (Color online) Memory of initial state $r , closeness to
the thermal state σω and the subsystem entropy S as a function of
coupling strength λ for different composite energies E0. (U = J ,
δB = 0.5J , L = 9.)

In Fig. 6, we present our results for $r , σω, and S as
a function of the coupling strength λ (for a system with
U = J and an initial state of bath width δB = 0.5J ). Our
results for $r demonstrate that the subsystem reaches a steady
state with little dependence on initial conditions over a wide
range of coupling strengths λ. We see significant dependence
on initial state beyond this range at both small and large λ.
Moreover, our results for σω show that the subsystem reaches
the canonical state ω over a similar, albeit slightly narrower,
range of coupling strengths. Outside this range, the long-time
steady state shows strong deviation from the canonical state.

In the coupling range where $r and σω are both small,
we find that the entropy S reaches a plateau as a function
of λ. Beyond this range at low λ, the subsystem entropy S
drops with decreasing λ. This is consistent with the subsystem
retaining information of its initial conditions. On the other

023609-6
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0.1 1
λ

Diagonal RDM

Canonical thermal

FIG. 7. A schematic diagram indicating the range in λ where the
subsystem reduced density matrix, r , is diagonal, and where it is close
to the canonical thermal reduced density matrix, ω.

hand, the entropy rises when λ is increased beyond the plateau.
The asymmetry between low and high coupling indicates that
the departure from thermalization at small and large λ have
different physical origins, as we discuss later. The behavior
of the subsystem reduced density matrix as a function of λ is
summarized by the schematic diagram in Fig. 7 for the range
of energies shown in Fig. 6.

We show in Fig. 8 the effective temperature Teff extracted at
different energies E0 using the fit in Eq. (15). We include only
the range of coupling strengths where the fit is reasonable.
It is noteworthy that our results with two lowest energies,
E0 = −4J and −2J , show effective temperatures close to the
degeneracy temperature, approximately 2J for this Hubbard
system near half filling.

We have not shown Teff for the highest energy we used,
E0 = 1.77. This energy corresponds to the center of the energy
spectrum for all λ plotted. At this energy, all the states of the
subsystem have nearly equal statistical weight at this energy. In
other words, the effective temperature is nearly infinite. This is
also reflected in the subsystem entropy (Fig. 6) which is close
to ln 16 at E0 = 1.77, as expected for our 16-state subsystem
at high temperatures.

For systems exhibiting canonical thermalization (small σω),
the effective temperature Teff is approximately independent
of the coupling strength up to λ " 1. In fact, this effective
temperature is close to the canonical temperature defined in
Eq. (7) by counting bath states in the limit of λ → 0, as
reported in Ref. [36]. As already mentioned, we find in this
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FIG. 8. (Color online) Effective temperature Teff as a function of
coupling strength λ in the thermalized regime for different composite
energies E0. (Inset) Example of fit of rss to the Boltzmann form (15).
(U = J , δB = 0.5J , L = 9.)

regime that the subsystem entropy (Fig. 6) is also roughly
independent of λ.

We will now turn to the crossover from nonthermalization
to thermalization as we increase the coupling strength from
zero. We can choose a rough measure of the threshold,
λth, for this crossover as the coupling strength at which σω

drops below 25%. Alternatively, we can use the coupling
strength at which the subsystem entropy reaches a plateau in
Fig. 6. At E0 = −2J , we find λth " 0.05. At the lower energy
E0 = −4J , λth is higher at approximately 0.1. At the energy
E0 = 1.77J corresponding to the center of the spectrum,
λth is smallest at 0.03. The crossover between memory and
lack of memory of the initial state also occurs around this
characteristic coupling λth. (We discuss this criterion further in
Sec. V.) That thermalization does not occur for small coupling
strengths is because of the finite level spacing, %, in the finite-
size bath. Physical intuition might suggest that subsystem-bath
couplings, however weak, allow relaxation in subsystems. This
is a reasonable assertion for systems with macroscopic baths
where the bath spectrum is quasicontinuous. However, for a
small system with a nonzero level spacing at weak coupling,
the eigenstates of the composite system may only be slightly
perturbed from the decoupled subsystem-bath product states
|sb〉 if the typical matrix elements mixing these product states
are small, 〈sb|λV |s ′b′〉 ' %. In this weak-coupling limit,
thermalization cannot occur from an initial subsystem state
|φ〉S when the composite eigenstates are all close to product
states of the form |φ〉S ⊗ |b〉B . The system would retain
strong memory of the initial state. Therefore, we expect a
nonzero threshold for thermalization for a finite system. We
will examine more quantitatively the overlap of the composite
eigenstates with the decoupled product states in Sec. IV and we
will compare the empirical λth extracted here with a theoretical
estimate in Sec. IV B.

Let us now turn to the strong-coupling regime of λ ) 1.
As already discussed in Sec. III A, the system does not reach
a steady state at very high λ, and so it is not thermalized.
This is a boundary effect in the sense that the dynamics in
our “subsystem” consisting of sites 1 and 2 become altered at
very large λ because of the very large hopping on the links
between sites 2 and 3 and between sites 1 and L. As already
discussed in Sec. II A, single-particle states localized on these
links become visible as a feature the composite density of
states at λ = 10 (Fig. 3). The four sites (i = L,1,2,3) should
thermalize as a cluster in the sense that it has a canonical
diagonal reduced density matrix, provided that the bath of size
L − 4 is sufficiently large. Nevertheless, since the eigenstates
of the two-site cluster and the four-site cluster are very different
at large λ, the thermalization of the four-site cluster does not
imply a diagonal RDM for the two-site cluster. In other words,
we cannot discuss meaningfully the thermalization of the two-
site cluster if the coupling at the boundary significantly alters
the internal dynamics of the subsystem. It will be interesting to
investigate how this depends on the subsystem size but that is
beyond the scope of this paper. In any case, we wish to make
the point that this lack of thermalization at large coupling
differs qualitatively in origin from the lack of thermalization
at small coupling.

It is interesting to examine more closely the departure from
thermalization as we increase λ in the range of λ between 1 and

023609-7

von Neumann entropy:
plateau in thermalised regime

log ρss = − �s
Teff

+ const

Effective temperature       
down to quantum degeneracy 
for λ � 1

Teff
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Eigenstate Thermalisation

Projections on to
subsystem ground
state :

�EA|Ps|EA�

Ps =
�

b |sb��sb|

Eigenstate Thermalisation

scattered values at 
weak S-B coupling, 

well defined at 
intermediate 

couplingS. Genway,  A.F. Ho and D.K.K. Lee,  PRA 86,  023609 (2012)

Ns = 2, Sz = 0for
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Dynamics
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(B)  Dynamics of ThermalisationDynamics of Thermalisation

How does the subsystem reach thermalisation?

Initial state |εs� = | ↑, ↑� with composite energy E0 = −2

 0

 0 .2

 0 .4

 0 .6

 0 .8

 1

 0  80  160  240

!
s

s
(t

)

t

"=0.1

 0  0 .5  1  1 .5  2
t

t1

"=1

Exponential, Ae−γt + const ←−−→ Gaussian A�e−Γ2t2 + const
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Relaxation Rates
Relaxation rates

Points:
Fits to Gaussian/
exponential curves

Lines:
γFGR ∝ λ2

Γshort ∝ λ
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Random Couplings
Random Couplings

Shift in crossover.

Here t−1
1 = full

bandwidth ∼ 20

Bose-Hubbard Model

γFGR, Γshort (lines)
Fits to Gaussian/
exponential curves
(points)

7 bosons on 9+2
sites, U = J = 1

initial state: no

boson in subsystem

Bose-Hubbard Model

Gaussian 
regime 

universal
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Short Time Dynamics:  perturbation theoryShort Time Dynamics

• Initial state |Ψ(t = 0)� = |s0�
1

N
1/2
shell

�

b∈shell
|�b�

• Times greater than t1 = 1/4J = 1/single-particle bandwidth
• Perturbation theory for small λ

ρss(t)=
4λ2

Nshell

�

b�

�����

bu�

b=bl

sin[(Es�b�−Esb)
t

2 ]

Es�b� − Esb

�sb|V |s0b�

�����

2

Fermi Golden Rule:
dρss
dt

= −γFGR ∝ λ2

.....start of an exponential decay for small λ
• ”Very short” times: t � t1

• just one hop: |Ψ(t)� = e
−iHt|Ψ(0)� � (1− iHt)|Ψ(0)�

ρss(t) � 1− Γ2
shortt

2 with Γshort = λ

�
�

sb

|�sb|V |Ψ(0)�|2
�1/2

.... start of Gaussian for λ > 1
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−iHt|Ψ(0)� � (1− iHt)|Ψ(0)�

ρss(t) � 1− Γ2
shortt

2 with Γshort = λ

�
�

sb

|�sb|V |Ψ(0)�|2
�1/2
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s �= s0

s = s0
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Random matrix 
dynamics
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A random matrix model

Introduction Thermalization Dynamics Wavefunction statistics Random matrix dynamics Conclusions

A random matrix model

• Banded random coupling

H =
�

sb

(εs + �b)|sb��sb|+
�

ss�bb�

|sb��sb|V |s�b���s�b�|

• bath levels �b obeys Wigner-Dyson statistics

• coupling matrix elements �sb|V |s�b�� zero for

|Esb − Es�b� | > W

• each non-zero element has variance c∆
• ∆ = level spacing

• Two energy scales: c and W

• For Hubbard ring with local quench

• strength of coupling: c ∼ λ2
J

• coupling width: W = 4J , single-particle bandwidth
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coupling matrix structure
Generic coupling

Hubbard Model coupling matrix

in |sb� basis looks like...
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Origin of dynamics: overlaps

EAB = EA − EB

Origin of dynamics: overlaps

• Dynamics given by overlap of exact eigenstates |A� with
product states �A|sb�

• initial state |s0b0�
• reduced density matrix

ρss�(t) =
�

ABb

�B|s0b0��s0b0|A��A|sb��s�b|B� e−iEABt

• diagonal elements for subsystem state s = s0

ρss(t) =
�

ABb

�B|sb0��sb0|A��A|sb��sb|B� e−iEABt

• Need to understand statistics of overlaps...

NB:  this is like Fourier transform in t if the overlap combo depends only on         .      EAB

Monday, 13 April 2015



Origin of dynamics: overlapsOrigin of dynamics: overlaps

• Variance σ2 = |�A|sb�|2
• a function only of ∆EA ≡ EA −Esb after averaging over small

windows of |EA� and |sb�
• Reduced density matrix has Fourier components:

ρ̃ss(ω) ∼
�

A

σ2(∆EA − �ω)σ2(∆EA)

ρss(t) ∼ |σ̃2(t)|2

dropping terms of random signs

• Relaxation of ρss(t)
• exponential decay ↔ Lorentzian profile for σ2(∆E)
• Gaussian decay ↔ Gaussian profile for σ2(∆E)

(ETH ! see later)
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Method:   Dyson Brownian motion model

Dyson Brownian motion modelDyson Brownian Motion Model

H(τ) = HS +HB� �� �
H0

+

� τ

0
dτ �ξ(τ �)

where �
ξAB(τ)ξBA(τ

�)
�
= cAB δ(τ − τ �)

Divide into perturbative steps of interval δτ →
Langevin equation

δ|A� =
�

B �=A

ξAB δτ

EA − EB
|B�

� �� �
diffusion

− 1

2

�

B �=A

cAB δτ

(EA − EB)2
|A�

� �� �
drift

Wilkinson and Walker, J Phys A 26 6143 (1995)

Chalker, Lerner and Smith, PRL (1996)

λ2 = τ

Dyson, 1962, 1972
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�A(τ)|ξδτ |B(τ)� = ξAB Gaussian random  variables
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perturbation theory at each fictitious time 
step       :  δτ

Wilkison & Walker, J. Phys A 26, 6143 (1995)
Chalker, Lerner & Smith, PRL (1996)

Build up S-B coupling        as a sequence in 
fictitious time     of random kicks:τ

V
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Reduced density matrix

Introduction Thermalization Dynamics Wavefunction statistics Random matrix dynamics Conclusions

Reduced density matrix

• Diagonal element ρss(τ = λ2, t) with s = s0 (initial prepared
state s0, total energy E0)

• fourth moments of overlap:

�

b

�B|sa��sa|A��A|sb��sb|B�
�

b

�A|sa�2�sb|B�2

• for large bath (J � level spacing ∆)

ρss(λ
2, t) = ρss(τ,∞) + [1− ρss(τ,∞)] e−2cλ2Λ(t)

ρss(λ
2,∞) = Nbath(E0 − εs)∆ ∼ e−βεs

Nbath = bath density of states
• λ � 1: exponential decay in time with Fermi Golden Rule rate
• λ � 1: Gaussian decay in time (with short-time rate) plus

small exponential tail
• Same result for orthogonal and unitary ensembles

S. Genway,  A.F. Ho and D.K.K. Lee,  PRL 111,  130408 (2013)

Same envelope of decay for decoherence

Sunday, 12 April 2015

Mean-square overlaps:   results

Mean squared overlaps

• Brownian motion (imaginary time τ = λ2)

• Equation of motion for σ2
Asb(∆E = EA − Esb) = �A|sb�2:

∂σ2
A

∂τ
= −

�
dEB

c(EA − EB)

(EA−EB)2
(σ2

A − σ2
B)

c(E) = J/4 (|E| ≤ 4J), (zero otherwise)

• Fourier transform of σ2
A(∆E): σ̃2(t) = e−cτΛ(t)

Λ(t) = 2

� 4J

∆

1− cosEt

E2
dE ∼

�
π|t| J−1 � t � ∆−1

4Jt2 t � J−1

• λ � 1: σ̃2(t) exponential decay ⇒ σ2
A Lorentzian

• λ � 1: σ̃2(t) Gaussian (small exponential tail) ⇒ σ2
A Gaussian

coupling matrix: 

S. Genway,  A.F. Ho and D.K.K. 
Lee,  PRL 111,  130408 (2013)
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Mean-square overlaps and ETH

• analytical demonstration of ETH via result 
for           in Dyson Brownian motion model

�A|Ps|A� =
�

b

|�A|sb�|2 −→
�

b

|�A|sb�|2 � νb(EA − �s)∆

σ2
Asb

S. Genway,  A.F. Ho and D.K.K. Lee,  PRL 111,  130408 (2013)
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Reduced density matrix

Introduction Thermalization Dynamics Wavefunction statistics Random matrix dynamics Conclusions

Reduced density matrix

• Diagonal element ρss(t) with s = s0 (initial prepared state s0)
• two-level system at high effective temperature
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red line: random matrix numerics
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Conclusions

• Understanding thermalisation of systems from a purely quantum-
mechanical perspective is possible

• Surprisingly small Hubbard-model systems in pure states 
demonstrate subsystem thermalisation for a range of coupling 
strengths: short inelastic length

• Dynamics is strongly dependent on coupling strength, with Gaussian 
behaviour seen at moderate/strong coupling strength

• Gaussian behaviour is generic and  holds in the limit of large bath in 
ring geometry

• Random matrix theory gives full time dependence: Gaussian decay 
with exponential tail

• Cold atom experiment:  single-site addressability, local 
measurements and initial state preparation
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