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Two	  kinds	  of	  trapping	  potenOals	  (in	  physics)	  



MoOvaOon	  

•  Many-‐body	  physics	  without	  LDA	  	  
	   	  criOcal	  phenomena	  (diverging	  correlaOon	  lengths),	  
	   	  more	  generally	  “power-‐law	  physics”	  (e.g.	  2D,	  turbulence)	  	  

	  
	  
•  Topological	  edge	  states	  
	  
	  
•  “PracOcal	  advantages”:	  	   	  transport,	  unitary	  Bose	  gas,	  interferometry,	  

	   	   	   	   	   	  zooming	  in	  on	  slivers	  of	  the	  phase	  diagram…	  
	  
	  
•  Surprises	  

Other	  (interested)	  groups:	   	  1.	  Raizen,	  Heinzen,	  Dalibard,	  Chin,	  Zwierlein,	  Cornish…	  
	   	   	   	   	   	  2.	  Schneider/Bloch,	  Salomon,	  Spielman,	  Fallani/Inguscio…	  



Outline	  of	  the	  talk	  

BEC	  in	  a	  box:	  basics	  
	  
	  

(Kibble-‐Zurek)	  CriOcal	  dynamics	  of	  spontaneous	  symmetry	  breaking	  
	  
	  

Outlook	  &	  some	  new	  stuff	  (very	  preliminary)	  	  



OpOcal-‐box	  trap	  

spaOal	  light	  modulator	  

Basic	  protocol:	  
-‐	  Pre-‐cool	  in	  harmonic	  trap	  	  
-‐	  Transfer	  into	  opOcal	  box	  &	  cancel	  gravity	  (at	  10-‐4	  level)	  
-‐	  Cool	  more…	  

Methods	  also	  compaOble	  w/	  other	  geometries,	  Feshbach	  resonances,	  opOcal	  laaces,	  fermions…	  



CondensaOon	  in	  a	  box	  

Cooling	   Tc	  

In-‐situ	  

ToF	  

CondensaOon	  in	  momentum	  space	  only	  

CriOcal	  point:	  

Leading-‐order	  deviaOon	  from	  a	  perfect	  box	  potenOal:	  

0 20 40 60
0

50

100

150

200

1.5 2.0

1.5

2.0

N
c (

10
3 )

T (nK)

α
c

αf

T 3

Nc / T 3/2

U ⇠ r15�20

A.L. Gaunt et al., PRL 110, 200406 (2013) T.F. Schmidutz et al., PRL 112, 040403 (2014)  



k 

k+qr 

(a) (b) 

0.1 mm 

diffracted 
atoms 

(Quasi-‐pure)	  BEC	  properOes	  

Bragg	  spectroscopy:	   M. Kozuma, W. D. Phillips, et al., PRL 82, 871 (1999) 
J. Stenger, W. Ketterle, et al., PRL 82, 4569 (1999) 
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…all	  agree	  with	  with	  Heisenberg	  and	  Gross-‐Pitaevskii	  

Trap-‐bocom	  roughness:	   < 1 nK

Momentum	  distribuOon,	  interacOon	  energy,	  ToF	  expansion	  dynamics…	  	  

I. Gotlibovych et al.,  
PRA 89, 061604(R) (2014)  

hf = h(f1 � f2) ⇠ h⇥ 1kHzhf = hfr +
~2
m

kzqr +�Eint



(Kibble-‐Zurek)	  
CriOcal	  dynamics	  of	  spontaneous	  symmetry	  breaking	  

in	  a	  homogeneous	  Bose	  gas	  	  

N. Navon, A.L. Gaunt, R.P. Smith, and ZH, Science 347, 167 (2015) 



Kibble-‐Zurek	  picture	  

ρ > ρc 

ρ >> ρc 

(also	  topological	  defects,	  formed	  at	  domain	  boundaries)	  

Same	  picture	  for:	  (homogeneous)	  BEC,	  magneOsm,	  early	  universe,	  quantum	  phase	  transiOons…	  

phase-‐space	  
density:	  

Domain	  size	  (&	  defect	  density)	  follow	  “universal”	  power-‐law	  scaling	  

d 

Key	  concepts:	  	  diverging	  correlaOon	  length	  above	  TC	  (“criOcal	  opalescence”)	  

	   	   	  criOcal	  slowing	  down	  
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CorrelaOon	  length	  at	  “freeze-‐out”	  just	  above	  TC	  =	  coherence	  length	  at	  T=0	  
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Domain	  size	  d	  (=	  coherence	  length	  below	  TC)	  set	  by	  	  ξ	  	  at	  freeze-‐out:	  

⌧⇠

Freeze-‐out	  Ome:	   ⌧⇠(�t̂) = t̂

t̂

KZ	  hypothesis:	  
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⌫

1 + ⌫z

(T = Tc)

⌫ -‐	  correlaOon	  length	  criOcal	  exponent	  

z -‐	  dynamical	  criOcal	  exponent	  



(Some)	  previous	  experiments	  

Condensed	  macer:	  
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FIG. 1. Growth of coherence length during a quench and ex-
perimental sequence. a, Numerical calculation of the evolution
of the coherence length ⇠ when ramping from a strong interaction
(U/J)i in the Mott insulating regime (MI, right) over the critical
point (U/J)c to (U/J)f in the superfluid regime (SF, left) in a ho-
mogeneous 1D system. The colors indicate the quench velocity, from
fast (dark red) to the infinitely slow adiabatic limit (light red). b,
Experimental sequence for scattering length a (in units of the Bohr
radius a0), lattice depth Vlat, and U/J . During (I) we prepare a
large central Mott insulator with unity filling. The different scat-
tering length values a chosen in (II) lead to different initial (U/J)i
and final (U/J)f values for the final lattice ramp in (III), performed
in variable time tramp. In 1D (2D), only one (two) lattice directions
are reduced in the final lattice ramp. The horizontal dashed line in-
dicates the critical (U/J)c, separating the superfluid from the Mott
insulating regime. c, Recorded time-of-flight absorption images for
(U/J)f = 3.2 ((U/J)i = 110) in 2D for several ⌧ramp (main text).

are able to probe this phase transition experimentally in one-,
two-, and three-dimensional systems (1D, 2D, 3D), as well
as for negative absolute temperature states [24]. We compare
our measurements in the 1D case with a numerical analysis
and find excellent agreement.

Our experiments (Fig. 1b and Methods for details) started
by (I) loading a large n = 1 Mott insulator of 39K atoms in a
3D optical lattice of depth Vlat = Vi = 19Er at U/J � 250
close to the atomic limit of having a product state with ex-
actly one atom per site. Here, Er = h2/(2m�2

lat) denotes
the recoil energy with Planck’s constant h, the atomic mass
m, and the lattice wavelength �lat = 736.65 nm. The on-site
interaction energy of the Bose-Hubbard Hamiltonian [24] is
denoted by U and the tunnelling matrix element by J . In the
deep lattice (II), the scattering length was then tuned within
a wide range of values via a Feshbach resonance at a mag-
netic field of B = 402.50G [25], resulting in different values
of the initial interaction strength (U/J)i in the deep lattice.
We have verified numerically that this Feshbach ramp is very

close to adiabatic such that, within the central Mott insula-
tor, the state at this point can be assumed to be the ground
state of the system (Supplementary Section G). Following this
state preparation, the Mott to superfluid phase transition was
crossed (III) by linearly ramping down the lattice depth along
the horizontal x-direction to V x

lat = Vf = 6Er in variable times
tramp (Vlat(t) = Vi + (Vf � Vi) · t/tramp), resulting in a smaller
interaction strength (U/J)f in the final shallow lattice. For
experiments in 2D and 3D, we simultaneously ramped down
the lattice depth along both horizontal directions or all three
directions, respectively.

After the ramp, we immediately switched off all trapping
potentials and recorded absorption images along the vertical
z-direction after a time-of-flight of tTOF = 7ms (Fig. 1c).
From the width of the interference peaks, we extracted the
coherence length of the system, i.e. the characteristic length
scale of an exponential decay of correlations, by calculat-
ing the expected time-of-flight profiles for various coherence
lengths and fitting them to the experimental data (Fig. 2a and
Methods). We measure the number of tunneling times during
the ramp by defining a dimensionless ramp time ⌧ramp = tramp ·
2⇡J̄/h ⇡ tramp · 0.93/ms. Here, J̄ =

R
Vf

Vi
J(V ) dV/(Vf � Vi)

denotes the average tunneling rate during the ramp. We focus
on the short and intermediate ramp time regime, where mass
transport is negligible and the dynamics is governed by the be-
haviour of the homogeneous system at the multi-critical tip of
the Mott lobe [7]. This experiment captures for the first time
the physics of essentially homogeneous quantum systems en-
tering a critical phase. In contrast, previous work [26] investi-
gated the generic transition through the side of the Mott lobe,
which is typical for inhomogeneous systems and is dominated
by mass transport, studied the inverse superfluid to Mott insu-
lator transition [27], the vacuum to superfluid transition [28]
or the transition of spinor Bose-Einstein condensates to a fer-
romagnetic state [29].

The experimentally measured coherence length (Fig. 2) dis-
plays several distinct dynamical regimes. For very fast ramps,
the evolution can be approximated as being sudden, and the
measured coherence length ⇠ essentially equals that of the ini-
tial Mott insulator ⇠i. The latter is significantly below one
lattice spacing dlat = �lat/2 and increases for smaller (U/J)i
closer to the critical point at (U/J)c ⇡ 3.3 in 1D [30]. For
larger ⌧ramp, ⇠ quickly increases up to several lattice spacings.
For ⌧ramp & 2 � 5, the fitted ⇠ starts to decrease again due
to the influence of the trap: Contrary to a homogeneous sys-
tem, the equilibrium distributions of both density and entropy
density in a trapped system depend strongly on the interac-
tion strength. While strong interactions result in a large Mott
insulating core with constant density, surrounded by a super-
fluid or thermal shell at lower density, a weakly interacting
superfluid is described by a parabolic Thomas-Fermi distri-
bution. Intuitively speaking, the density distribution cannot
equilibrate during fast and intermediate lattice ramps and re-
sults in gradients in the chemical potential, which give rise to
dephasing between lattice sites that increases over time and
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FIG. 1. Growth of coherence length during a quench and ex-
perimental sequence. a, Numerical calculation of the evolution
of the coherence length ⇠ when ramping from a strong interaction
(U/J)i in the Mott insulating regime (MI, right) over the critical
point (U/J)c to (U/J)f in the superfluid regime (SF, left) in a ho-
mogeneous 1D system. The colors indicate the quench velocity, from
fast (dark red) to the infinitely slow adiabatic limit (light red). b,
Experimental sequence for scattering length a (in units of the Bohr
radius a0), lattice depth Vlat, and U/J . During (I) we prepare a
large central Mott insulator with unity filling. The different scat-
tering length values a chosen in (II) lead to different initial (U/J)i
and final (U/J)f values for the final lattice ramp in (III), performed
in variable time tramp. In 1D (2D), only one (two) lattice directions
are reduced in the final lattice ramp. The horizontal dashed line in-
dicates the critical (U/J)c, separating the superfluid from the Mott
insulating regime. c, Recorded time-of-flight absorption images for
(U/J)f = 3.2 ((U/J)i = 110) in 2D for several ⌧ramp (main text).

are able to probe this phase transition experimentally in one-,
two-, and three-dimensional systems (1D, 2D, 3D), as well
as for negative absolute temperature states [24]. We compare
our measurements in the 1D case with a numerical analysis
and find excellent agreement.

Our experiments (Fig. 1b and Methods for details) started
by (I) loading a large n = 1 Mott insulator of 39K atoms in a
3D optical lattice of depth Vlat = Vi = 19Er at U/J � 250
close to the atomic limit of having a product state with ex-
actly one atom per site. Here, Er = h2/(2m�2

lat) denotes
the recoil energy with Planck’s constant h, the atomic mass
m, and the lattice wavelength �lat = 736.65 nm. The on-site
interaction energy of the Bose-Hubbard Hamiltonian [24] is
denoted by U and the tunnelling matrix element by J . In the
deep lattice (II), the scattering length was then tuned within
a wide range of values via a Feshbach resonance at a mag-
netic field of B = 402.50G [25], resulting in different values
of the initial interaction strength (U/J)i in the deep lattice.
We have verified numerically that this Feshbach ramp is very

close to adiabatic such that, within the central Mott insula-
tor, the state at this point can be assumed to be the ground
state of the system (Supplementary Section G). Following this
state preparation, the Mott to superfluid phase transition was
crossed (III) by linearly ramping down the lattice depth along
the horizontal x-direction to V x

lat = Vf = 6Er in variable times
tramp (Vlat(t) = Vi + (Vf � Vi) · t/tramp), resulting in a smaller
interaction strength (U/J)f in the final shallow lattice. For
experiments in 2D and 3D, we simultaneously ramped down
the lattice depth along both horizontal directions or all three
directions, respectively.

After the ramp, we immediately switched off all trapping
potentials and recorded absorption images along the vertical
z-direction after a time-of-flight of tTOF = 7ms (Fig. 1c).
From the width of the interference peaks, we extracted the
coherence length of the system, i.e. the characteristic length
scale of an exponential decay of correlations, by calculat-
ing the expected time-of-flight profiles for various coherence
lengths and fitting them to the experimental data (Fig. 2a and
Methods). We measure the number of tunneling times during
the ramp by defining a dimensionless ramp time ⌧ramp = tramp ·
2⇡J̄/h ⇡ tramp · 0.93/ms. Here, J̄ =

R
Vf

Vi
J(V ) dV/(Vf � Vi)

denotes the average tunneling rate during the ramp. We focus
on the short and intermediate ramp time regime, where mass
transport is negligible and the dynamics is governed by the be-
haviour of the homogeneous system at the multi-critical tip of
the Mott lobe [7]. This experiment captures for the first time
the physics of essentially homogeneous quantum systems en-
tering a critical phase. In contrast, previous work [26] investi-
gated the generic transition through the side of the Mott lobe,
which is typical for inhomogeneous systems and is dominated
by mass transport, studied the inverse superfluid to Mott insu-
lator transition [27], the vacuum to superfluid transition [28]
or the transition of spinor Bose-Einstein condensates to a fer-
romagnetic state [29].

The experimentally measured coherence length (Fig. 2) dis-
plays several distinct dynamical regimes. For very fast ramps,
the evolution can be approximated as being sudden, and the
measured coherence length ⇠ essentially equals that of the ini-
tial Mott insulator ⇠i. The latter is significantly below one
lattice spacing dlat = �lat/2 and increases for smaller (U/J)i
closer to the critical point at (U/J)c ⇡ 3.3 in 1D [30]. For
larger ⌧ramp, ⇠ quickly increases up to several lattice spacings.
For ⌧ramp & 2 � 5, the fitted ⇠ starts to decrease again due
to the influence of the trap: Contrary to a homogeneous sys-
tem, the equilibrium distributions of both density and entropy
density in a trapped system depend strongly on the interac-
tion strength. While strong interactions result in a large Mott
insulating core with constant density, surrounded by a super-
fluid or thermal shell at lower density, a weakly interacting
superfluid is described by a parabolic Thomas-Fermi distri-
bution. Intuitively speaking, the density distribution cannot
equilibrate during fast and intermediate lattice ramps and re-
sults in gradients in the chemical potential, which give rise to
dephasing between lattice sites that increases over time and

Braun et al., 2014 

Liquid	  crystals,	  
Liquid	  helium…	  

Corman et al., 2014 

Chuang et al., 1991 Bauerle et al., 1996 
Ruutu et al., 1996 

2

Figure 1: Solitons in an elongated BEC: a, Formation after a quenched cooling on a thermal gas (i, red) across the BEC
transition, BEC is locally achieved forming several isles (ii) each with its own phase (grey). Further cooling makes them grow
and get close (iii) forming solitons. The sample is released from the trap and let expand for 180 ms (iv -v) in a levitating
field. b-e, Sample pictures of the BEC after expansion containing 0,1,2,3 solitons or even fancier structures with bendings and
crossings (f -g). For each picture the integrated profiles of the central region (1/3 of the Thomas-Fermi diameter) are shown in
black and compared to the parabolic Thomas-Fermi fit in red.

resolution. The expansion times we chose for imaging
are indeed much longer than standard ones, thanks to
an external magnetic field gradient used for levitating
the gas against gravity; this is essential to reduce the
optical density well below saturation and for solitons to
become large enough to be clearly detected.

A key point of our analysis is that the number of de-
fects that we observe is larger when the quench is faster,
as reported in Fig. 2. This is a clear indication that our
solitons are produced via the KZM. In order to provide
a quantitative support to this scenario we need to check
whether, for a given quench time, the transition front
propagates faster than the causal horizon hence activat-
ing the KZM [19]. To this aim, the details of the trapping
potential and the evaporation procedure are relevant.
Sodium atoms are trapped in an elongated magnetic po-
tential, whose profile is sketched in Fig. 3a (see Methods).
The evaporation threshold is set by a radio-frequency ⌫RF

tuned to flip the atomic spin, from the trapped to the un-
trapped state, at a given potential energy from the bot-
tom of the trap. The e↵ective evaporation threshold is
governed by the radial motion of the atoms and depends
on z, being fixed by the di↵erence between the evapora-
tion threshold at the trap bottom (r = z = 0) and the
local axial potential U(r = 0, z). Moreover, the elastic
collisional rate is large enough to ensure local thermal
equilibrium (collisional regime) but with a temperature
gradient along the axial direction [35]. For these reasons,
we define an axial temperature T (z) equal to the cor-
responding evaporation threshold expressed in thermal
units, divided by the truncation parameter ⌘ which is of

the order of 5 in our case [36, 37]:

T (z) =
h ⌫RF � U(r = 0, z)

⌘ kB
.

Typical temperature profiles for three values of evap-
oration radio-frequency are shown in the top panel of
Fig. 3b (red dashed lines).

The cooling process starts with a ramp of radio-
frequency forced evaporation down to a temperature 10%
higher than the largest critical value for observing a con-
densate fraction in our sample (see Fig. 3c). At this stage
the gas is non condensed and in thermal equilibrium. We
can estimate the profile of the critical temperature Tc(z)
by inserting the above-Tc equilibrium density distribu-
tion of the cloud in the expression of Tc for noninteracting
particles:

Tc(z) =
2⇡h̄2

mkB

✓
n(r = 0, z)

⇣(3/2)

◆2/3

where m is the atom mass and ⇣(...) the Riemann
⇣-function. A typical result is shown in the top panel
of Fig. 3b (solid blue line) for a sample of 25 ⇥ 106

atoms. Then the system is thermally quenched by
linearly reducing the evaporation threshold down to a
value such that T (z) < Tc(z) everywhere. During this
process, the local temperature profile crosses the local
critical temperature profile at some values of z, which
define the positions of the BEC planar transition fronts
propagating along z as the temperature lowers. The
speed of the transition fronts depends on z and on the

Weiler et al., 2008 Lamporesi et al., 2013 Ulm et al., 2013 Chen et al., 2011 

Atomic:	  

Pyka et al., 2013 

Ejtemaee & Haljan, 2013 

Chae et al., 2012 

QuanOtaOve	  issues:	  
	  
Scaling	  law	  

	  System	  inhomogeneity	  
	  Nature	  of	  the	  transiOon	  being	  crossed	  
	  ….	  

	  
Validity	  of	  the	  freeze-‐out	  hypothesis	  



(Very)	  qualitaOve:	  ToF	  images	  	  

very	  slow	   not	  so	  slow	  

(all	  pictures	  have	  same	  N	  =	  105	  and	  T	  =	  10	  nK,	  phase-‐space	  density	  ρ	  >	  10)	  

Cooling	  through	  TC	  at	  different	  rates	  



QuanOtaOve:	  two-‐point	  correlaOon	  funcOons	  

g1(x) = h (x) ⇤(0)i

One	  approach:	  

Two	  short	  Bragg	  pulses	  separated	  by	  a	  variable	  Ome	  (Ramsey	  style)	  
	  
Directly	  measure	  in	  real	  space	  rather	  than	  momentum	  space	  

E. W. Hagley, W. D. Phillips, et al.,  
Phys. Rev. Lett. 83, 3112 (1999). 

Becer	  approach:	  

Momentum	  distribuOon	  (Bragg	  spectroscopy)	  +	  Fourier	  transform	  



Homodyne	  measurement	  of	  g1	  
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cool	  (very)	  slowly	  and	  wait	  for	  a	  (very)	  long	  Ome	  

G1	  in	  equilibrium	  	  

g1(x) = 1

G1(x) = 1� x/L

L



No	  equilibrium	  	  
interpretaOon	  

G1	  in	  equilibrium	  and	  ajer	  a	  quench	  	  

Ficed	  by	   g1(x) = e

�x/`

supported	  by	  	  
simulaOons:	  	  	  	  	  	  	  	  	  	  	  	  	  	  

` = d

L
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⌧Q
⌧0

◆b

b =
⌫

1 + ⌫z

What	  do	  we	  expect	  from	  KZ	  theory?	  	  

	  	  -‐	  short	  distance	  (1	  µm)	  �
-‐	  quench	  Ome	  	  ⌧Q
	  -‐	  short	  Ome	  (30	  ms)	  ⌧0

Beyond	  mean-‐field:	  

1.	  Does	  this	  even	  make	  sense?	  
	  implies	  that	  making	  a	  pure	  BEC	  takes	  an	  hour	  (not	  true)	  

2.	  CondiOons	  for	  applicability	  of	  the	  KZ	  scaling	  law?	  
	  actually	  reconciles	  things…	  

Some	  concerns…	  

Mean-‐field:	  
c.f.	  harmonic	  trap:	  



Quench	  protocol	  (1)	  –	  KZ	  scaling	  and	  its	  breakdown	  

b = 1/4� 1/3

Self-‐similar	  cooling	  curves	  with	  

tQ = 0.2 ! 3.5 s

cooling	  Ome	  (s)	  

tQ

tbrQ

tc

tc ⇡ 0.72 tQ
g1	  measurement	  	  



Breakdown	  of	  KZ	  scaling?	  

t̂ /
p

tQKZ	  freeze-‐out	  Ome:	  

t̂

tc ⇡ 0.72 tQ ) t̂ ⇡ 0.28
q

tQtbrQ

tbrQ

0 0 0 0 

t̂

KZ	  scaling	  
De-‐freezing	  and	  	  
domain-‐coarsening	  during	  	  
the	  last	  cooling	  stage!	  



Quench	  protocol	  (2)	  –	  tesOng	  the	  freeze-‐out	  hypothesis	  

Accelerated	  quench	  ajer	  TC	  

tQ	  =	  0.2	  s	  
tQ	  =	  0.7	  s	  
tQ	  =	  3.2	  s	  

tc . tk  tQ“kink”	  at	  

cooling	  Ome	  (s)	  

tQ

tc

`(
µ
m
)

tk/tQ

t̂(tQ = 3.2 s)

Direct	  support	  for	  
the	  KZ	  freeze-‐out	  hypothesis!	  	  

< tbrQ ⇡ 1 s}



Extending	  the	  KZ	  range	  

tk/tQ

`(
µ
m
)

tQ(s)

QP1	   QP2	  



0.1 0.4 1.6

2.0

1.0

tQ HsL

{
Hmm
L

Homogeneous-‐system	  KZ	  scaling	  law	  

b = 0.33
b = 0.25MF:	  

beyond	  MF:	  

QP1	  
QP2	  

b = 0.35(4)

See also: Corman et al., PRL 2014 (ring), Chomaz et al., Nat. Comm. 2015 (2D) 

Ways	  to	  uncover	  beyond-‐MF	  physics:	   	  crank	  up	  interacOons	  (Feshbach,	  laaces)	  
	   	   	   	   	   	   	   	  reduce	  dimensionality	  
	   	   	   	   	   	   	   	  go	  close	  to	  the	  criOcal	  point	  
	   	   	   	   	   	   	   	  … 	  	  



Dynamical	  criOcal	  exponent?	  

⌫ = 0.67 ⌫ = 1/2(MF:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  	  	  known	  from	  helium	  (and	  atoms)	  	  	  	  	  	  

(MF:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  	  	  never	  measured	  	  	  	  	  z = 3/2 z = 2

b =
⌫

1 + ⌫z

⌫ = 1/2 & b = 0.35(4) ) z = 0.9(4)MF	  inconsistent:	  

⌫ = 0.67 & b = 0.35(4) ) z = 1.4(4)



Outlook	  	  (on	  KZ)	  

Directly	  measure	  z	  

t̂(d) / dz

Effects	  of	  interacOons	  on	  criOcal	  dynamics	  
	  “Ginzburg	  vs.	  Kibble-‐Zurek”	  –	  dynamical	  emergence	  of	  criOcal	  correlaOons?	  
	  ConOnuous	  tuning	  of	  the	  universality	  class?	  

Post-‐quench	  phase-‐ordering	  kineOcs	  
	  Closed	  vs.	  open	  systems	  

does	  not	  depend	  on	  	  	   ⌫



(pre-‐producOon	  trailer…)	  
Shaken, not stirred…	


InteresOng	  problems	  (naïve):	  

-‐	  Basic	  superfluidity,	  collecOve	  excitaOons	  
	  (criOcal	  velocity,	  resonances…)	  

	  
-‐	  Driven	  steady	  state	  &	  RelaxaOon	  

	  (turbulence,	  Kolmogorov,	  	  
	  non-‐thermal	  fixed	  points,	  AdS/CFT…)	  
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Summary	  

A.L. Gaunt et al.,  
PRL 110, 200406 (2013) 

I. Gotlibovych et al.,  
PRA 89, 061604(R) (2014)  

T.F. Schmidutz et al.,  
PRL 112, 040403 (2014)  
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BEC	  in	  a	  box	   Thermodynamics	   Ground-‐state	  properOes,	  
interacOon	  energy,	  ToF	  dynamics	  

Non-‐equilibrium:	  quenches	  &	  criOcal	  dynamics,	  driving	  &	  relaxaOon…	  

N. Navon, A.L. Gaunt, R.P. Smith, ZH, Science 347, 167  (2015) 
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Quantum	  
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Heisenberg	  

-‐	  KZ	  freeze-‐out	  hypothesis	  
-‐	  Beyond-‐MF	  KZ	  scaling	  law	  

-‐	  CriOcal	  exponent(s)	  

-‐	  Phase-‐ordering	  kineOcs	  

-‐	  Turbulence	  

QP1	  
QP2	  


