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Two	
  kinds	
  of	
  trapping	
  potenOals	
  (in	
  physics)	
  



MoOvaOon	
  

•  Many-­‐body	
  physics	
  without	
  LDA	
  	
  
	
   	
  criOcal	
  phenomena	
  (diverging	
  correlaOon	
  lengths),	
  
	
   	
  more	
  generally	
  “power-­‐law	
  physics”	
  (e.g.	
  2D,	
  turbulence)	
  	
  

	
  
	
  
•  Topological	
  edge	
  states	
  
	
  
	
  
•  “PracOcal	
  advantages”:	
  	
   	
  transport,	
  unitary	
  Bose	
  gas,	
  interferometry,	
  

	
   	
   	
   	
   	
   	
  zooming	
  in	
  on	
  slivers	
  of	
  the	
  phase	
  diagram…	
  
	
  
	
  
•  Surprises	
  

Other	
  (interested)	
  groups:	
   	
  1.	
  Raizen,	
  Heinzen,	
  Dalibard,	
  Chin,	
  Zwierlein,	
  Cornish…	
  
	
   	
   	
   	
   	
   	
  2.	
  Schneider/Bloch,	
  Salomon,	
  Spielman,	
  Fallani/Inguscio…	
  



Outline	
  of	
  the	
  talk	
  

BEC	
  in	
  a	
  box:	
  basics	
  
	
  
	
  

(Kibble-­‐Zurek)	
  CriOcal	
  dynamics	
  of	
  spontaneous	
  symmetry	
  breaking	
  
	
  
	
  

Outlook	
  &	
  some	
  new	
  stuff	
  (very	
  preliminary)	
  	
  



OpOcal-­‐box	
  trap	
  

spaOal	
  light	
  modulator	
  

Basic	
  protocol:	
  
-­‐	
  Pre-­‐cool	
  in	
  harmonic	
  trap	
  	
  
-­‐	
  Transfer	
  into	
  opOcal	
  box	
  &	
  cancel	
  gravity	
  (at	
  10-­‐4	
  level)	
  
-­‐	
  Cool	
  more…	
  

Methods	
  also	
  compaOble	
  w/	
  other	
  geometries,	
  Feshbach	
  resonances,	
  opOcal	
  laaces,	
  fermions…	
  



CondensaOon	
  in	
  a	
  box	
  

Cooling	
   Tc	
  

In-­‐situ	
  

ToF	
  

CondensaOon	
  in	
  momentum	
  space	
  only	
  

CriOcal	
  point:	
  

Leading-­‐order	
  deviaOon	
  from	
  a	
  perfect	
  box	
  potenOal:	
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(Quasi-­‐pure)	
  BEC	
  properOes	
  

Bragg	
  spectroscopy:	
   M. Kozuma, W. D. Phillips, et al., PRL 82, 871 (1999) 
J. Stenger, W. Ketterle, et al., PRL 82, 4569 (1999) 
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…all	
  agree	
  with	
  with	
  Heisenberg	
  and	
  Gross-­‐Pitaevskii	
  

Trap-­‐bocom	
  roughness:	
   < 1 nK

Momentum	
  distribuOon,	
  interacOon	
  energy,	
  ToF	
  expansion	
  dynamics…	
  	
  

I. Gotlibovych et al.,  
PRA 89, 061604(R) (2014)  
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(Kibble-­‐Zurek)	
  
CriOcal	
  dynamics	
  of	
  spontaneous	
  symmetry	
  breaking	
  

in	
  a	
  homogeneous	
  Bose	
  gas	
  	
  

N. Navon, A.L. Gaunt, R.P. Smith, and ZH, Science 347, 167 (2015) 



Kibble-­‐Zurek	
  picture	
  

ρ > ρc 

ρ >> ρc 

(also	
  topological	
  defects,	
  formed	
  at	
  domain	
  boundaries)	
  

Same	
  picture	
  for:	
  (homogeneous)	
  BEC,	
  magneOsm,	
  early	
  universe,	
  quantum	
  phase	
  transiOons…	
  

phase-­‐space	
  
density:	
  

Domain	
  size	
  (&	
  defect	
  density)	
  follow	
  “universal”	
  power-­‐law	
  scaling	
  

d 

Key	
  concepts:	
  	
  diverging	
  correlaOon	
  length	
  above	
  TC	
  (“criOcal	
  opalescence”)	
  

	
   	
   	
  criOcal	
  slowing	
  down	
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CorrelaOon	
  length	
  at	
  “freeze-­‐out”	
  just	
  above	
  TC	
  =	
  coherence	
  length	
  at	
  T=0	
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Domain	
  size	
  d	
  (=	
  coherence	
  length	
  below	
  TC)	
  set	
  by	
  	
  ξ	
  	
  at	
  freeze-­‐out:	
  

⌧⇠

Freeze-­‐out	
  Ome:	
   ⌧⇠(�t̂) = t̂

t̂

KZ	
  hypothesis:	
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(Some)	
  previous	
  experiments	
  

Condensed	
  macer:	
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FIG. 1. Growth of coherence length during a quench and ex-
perimental sequence. a, Numerical calculation of the evolution
of the coherence length ⇠ when ramping from a strong interaction
(U/J)i in the Mott insulating regime (MI, right) over the critical
point (U/J)c to (U/J)f in the superfluid regime (SF, left) in a ho-
mogeneous 1D system. The colors indicate the quench velocity, from
fast (dark red) to the infinitely slow adiabatic limit (light red). b,
Experimental sequence for scattering length a (in units of the Bohr
radius a0), lattice depth Vlat, and U/J . During (I) we prepare a
large central Mott insulator with unity filling. The different scat-
tering length values a chosen in (II) lead to different initial (U/J)i
and final (U/J)f values for the final lattice ramp in (III), performed
in variable time tramp. In 1D (2D), only one (two) lattice directions
are reduced in the final lattice ramp. The horizontal dashed line in-
dicates the critical (U/J)c, separating the superfluid from the Mott
insulating regime. c, Recorded time-of-flight absorption images for
(U/J)f = 3.2 ((U/J)i = 110) in 2D for several ⌧ramp (main text).

are able to probe this phase transition experimentally in one-,
two-, and three-dimensional systems (1D, 2D, 3D), as well
as for negative absolute temperature states [24]. We compare
our measurements in the 1D case with a numerical analysis
and find excellent agreement.

Our experiments (Fig. 1b and Methods for details) started
by (I) loading a large n = 1 Mott insulator of 39K atoms in a
3D optical lattice of depth Vlat = Vi = 19Er at U/J � 250
close to the atomic limit of having a product state with ex-
actly one atom per site. Here, Er = h2/(2m�2

lat) denotes
the recoil energy with Planck’s constant h, the atomic mass
m, and the lattice wavelength �lat = 736.65 nm. The on-site
interaction energy of the Bose-Hubbard Hamiltonian [24] is
denoted by U and the tunnelling matrix element by J . In the
deep lattice (II), the scattering length was then tuned within
a wide range of values via a Feshbach resonance at a mag-
netic field of B = 402.50G [25], resulting in different values
of the initial interaction strength (U/J)i in the deep lattice.
We have verified numerically that this Feshbach ramp is very

close to adiabatic such that, within the central Mott insula-
tor, the state at this point can be assumed to be the ground
state of the system (Supplementary Section G). Following this
state preparation, the Mott to superfluid phase transition was
crossed (III) by linearly ramping down the lattice depth along
the horizontal x-direction to V x

lat = Vf = 6Er in variable times
tramp (Vlat(t) = Vi + (Vf � Vi) · t/tramp), resulting in a smaller
interaction strength (U/J)f in the final shallow lattice. For
experiments in 2D and 3D, we simultaneously ramped down
the lattice depth along both horizontal directions or all three
directions, respectively.

After the ramp, we immediately switched off all trapping
potentials and recorded absorption images along the vertical
z-direction after a time-of-flight of tTOF = 7ms (Fig. 1c).
From the width of the interference peaks, we extracted the
coherence length of the system, i.e. the characteristic length
scale of an exponential decay of correlations, by calculat-
ing the expected time-of-flight profiles for various coherence
lengths and fitting them to the experimental data (Fig. 2a and
Methods). We measure the number of tunneling times during
the ramp by defining a dimensionless ramp time ⌧ramp = tramp ·
2⇡J̄/h ⇡ tramp · 0.93/ms. Here, J̄ =

R
Vf

Vi
J(V ) dV/(Vf � Vi)

denotes the average tunneling rate during the ramp. We focus
on the short and intermediate ramp time regime, where mass
transport is negligible and the dynamics is governed by the be-
haviour of the homogeneous system at the multi-critical tip of
the Mott lobe [7]. This experiment captures for the first time
the physics of essentially homogeneous quantum systems en-
tering a critical phase. In contrast, previous work [26] investi-
gated the generic transition through the side of the Mott lobe,
which is typical for inhomogeneous systems and is dominated
by mass transport, studied the inverse superfluid to Mott insu-
lator transition [27], the vacuum to superfluid transition [28]
or the transition of spinor Bose-Einstein condensates to a fer-
romagnetic state [29].

The experimentally measured coherence length (Fig. 2) dis-
plays several distinct dynamical regimes. For very fast ramps,
the evolution can be approximated as being sudden, and the
measured coherence length ⇠ essentially equals that of the ini-
tial Mott insulator ⇠i. The latter is significantly below one
lattice spacing dlat = �lat/2 and increases for smaller (U/J)i
closer to the critical point at (U/J)c ⇡ 3.3 in 1D [30]. For
larger ⌧ramp, ⇠ quickly increases up to several lattice spacings.
For ⌧ramp & 2 � 5, the fitted ⇠ starts to decrease again due
to the influence of the trap: Contrary to a homogeneous sys-
tem, the equilibrium distributions of both density and entropy
density in a trapped system depend strongly on the interac-
tion strength. While strong interactions result in a large Mott
insulating core with constant density, surrounded by a super-
fluid or thermal shell at lower density, a weakly interacting
superfluid is described by a parabolic Thomas-Fermi distri-
bution. Intuitively speaking, the density distribution cannot
equilibrate during fast and intermediate lattice ramps and re-
sults in gradients in the chemical potential, which give rise to
dephasing between lattice sites that increases over time and
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FIG. 1. Growth of coherence length during a quench and ex-
perimental sequence. a, Numerical calculation of the evolution
of the coherence length ⇠ when ramping from a strong interaction
(U/J)i in the Mott insulating regime (MI, right) over the critical
point (U/J)c to (U/J)f in the superfluid regime (SF, left) in a ho-
mogeneous 1D system. The colors indicate the quench velocity, from
fast (dark red) to the infinitely slow adiabatic limit (light red). b,
Experimental sequence for scattering length a (in units of the Bohr
radius a0), lattice depth Vlat, and U/J . During (I) we prepare a
large central Mott insulator with unity filling. The different scat-
tering length values a chosen in (II) lead to different initial (U/J)i
and final (U/J)f values for the final lattice ramp in (III), performed
in variable time tramp. In 1D (2D), only one (two) lattice directions
are reduced in the final lattice ramp. The horizontal dashed line in-
dicates the critical (U/J)c, separating the superfluid from the Mott
insulating regime. c, Recorded time-of-flight absorption images for
(U/J)f = 3.2 ((U/J)i = 110) in 2D for several ⌧ramp (main text).

are able to probe this phase transition experimentally in one-,
two-, and three-dimensional systems (1D, 2D, 3D), as well
as for negative absolute temperature states [24]. We compare
our measurements in the 1D case with a numerical analysis
and find excellent agreement.

Our experiments (Fig. 1b and Methods for details) started
by (I) loading a large n = 1 Mott insulator of 39K atoms in a
3D optical lattice of depth Vlat = Vi = 19Er at U/J � 250
close to the atomic limit of having a product state with ex-
actly one atom per site. Here, Er = h2/(2m�2

lat) denotes
the recoil energy with Planck’s constant h, the atomic mass
m, and the lattice wavelength �lat = 736.65 nm. The on-site
interaction energy of the Bose-Hubbard Hamiltonian [24] is
denoted by U and the tunnelling matrix element by J . In the
deep lattice (II), the scattering length was then tuned within
a wide range of values via a Feshbach resonance at a mag-
netic field of B = 402.50G [25], resulting in different values
of the initial interaction strength (U/J)i in the deep lattice.
We have verified numerically that this Feshbach ramp is very

close to adiabatic such that, within the central Mott insula-
tor, the state at this point can be assumed to be the ground
state of the system (Supplementary Section G). Following this
state preparation, the Mott to superfluid phase transition was
crossed (III) by linearly ramping down the lattice depth along
the horizontal x-direction to V x

lat = Vf = 6Er in variable times
tramp (Vlat(t) = Vi + (Vf � Vi) · t/tramp), resulting in a smaller
interaction strength (U/J)f in the final shallow lattice. For
experiments in 2D and 3D, we simultaneously ramped down
the lattice depth along both horizontal directions or all three
directions, respectively.

After the ramp, we immediately switched off all trapping
potentials and recorded absorption images along the vertical
z-direction after a time-of-flight of tTOF = 7ms (Fig. 1c).
From the width of the interference peaks, we extracted the
coherence length of the system, i.e. the characteristic length
scale of an exponential decay of correlations, by calculat-
ing the expected time-of-flight profiles for various coherence
lengths and fitting them to the experimental data (Fig. 2a and
Methods). We measure the number of tunneling times during
the ramp by defining a dimensionless ramp time ⌧ramp = tramp ·
2⇡J̄/h ⇡ tramp · 0.93/ms. Here, J̄ =

R
Vf

Vi
J(V ) dV/(Vf � Vi)

denotes the average tunneling rate during the ramp. We focus
on the short and intermediate ramp time regime, where mass
transport is negligible and the dynamics is governed by the be-
haviour of the homogeneous system at the multi-critical tip of
the Mott lobe [7]. This experiment captures for the first time
the physics of essentially homogeneous quantum systems en-
tering a critical phase. In contrast, previous work [26] investi-
gated the generic transition through the side of the Mott lobe,
which is typical for inhomogeneous systems and is dominated
by mass transport, studied the inverse superfluid to Mott insu-
lator transition [27], the vacuum to superfluid transition [28]
or the transition of spinor Bose-Einstein condensates to a fer-
romagnetic state [29].

The experimentally measured coherence length (Fig. 2) dis-
plays several distinct dynamical regimes. For very fast ramps,
the evolution can be approximated as being sudden, and the
measured coherence length ⇠ essentially equals that of the ini-
tial Mott insulator ⇠i. The latter is significantly below one
lattice spacing dlat = �lat/2 and increases for smaller (U/J)i
closer to the critical point at (U/J)c ⇡ 3.3 in 1D [30]. For
larger ⌧ramp, ⇠ quickly increases up to several lattice spacings.
For ⌧ramp & 2 � 5, the fitted ⇠ starts to decrease again due
to the influence of the trap: Contrary to a homogeneous sys-
tem, the equilibrium distributions of both density and entropy
density in a trapped system depend strongly on the interac-
tion strength. While strong interactions result in a large Mott
insulating core with constant density, surrounded by a super-
fluid or thermal shell at lower density, a weakly interacting
superfluid is described by a parabolic Thomas-Fermi distri-
bution. Intuitively speaking, the density distribution cannot
equilibrate during fast and intermediate lattice ramps and re-
sults in gradients in the chemical potential, which give rise to
dephasing between lattice sites that increases over time and

Braun et al., 2014 

Liquid	
  crystals,	
  
Liquid	
  helium…	
  

Corman et al., 2014 

Chuang et al., 1991 Bauerle et al., 1996 
Ruutu et al., 1996 

2

Figure 1: Solitons in an elongated BEC: a, Formation after a quenched cooling on a thermal gas (i, red) across the BEC
transition, BEC is locally achieved forming several isles (ii) each with its own phase (grey). Further cooling makes them grow
and get close (iii) forming solitons. The sample is released from the trap and let expand for 180 ms (iv -v) in a levitating
field. b-e, Sample pictures of the BEC after expansion containing 0,1,2,3 solitons or even fancier structures with bendings and
crossings (f -g). For each picture the integrated profiles of the central region (1/3 of the Thomas-Fermi diameter) are shown in
black and compared to the parabolic Thomas-Fermi fit in red.

resolution. The expansion times we chose for imaging
are indeed much longer than standard ones, thanks to
an external magnetic field gradient used for levitating
the gas against gravity; this is essential to reduce the
optical density well below saturation and for solitons to
become large enough to be clearly detected.

A key point of our analysis is that the number of de-
fects that we observe is larger when the quench is faster,
as reported in Fig. 2. This is a clear indication that our
solitons are produced via the KZM. In order to provide
a quantitative support to this scenario we need to check
whether, for a given quench time, the transition front
propagates faster than the causal horizon hence activat-
ing the KZM [19]. To this aim, the details of the trapping
potential and the evaporation procedure are relevant.
Sodium atoms are trapped in an elongated magnetic po-
tential, whose profile is sketched in Fig. 3a (see Methods).
The evaporation threshold is set by a radio-frequency ⌫RF

tuned to flip the atomic spin, from the trapped to the un-
trapped state, at a given potential energy from the bot-
tom of the trap. The e↵ective evaporation threshold is
governed by the radial motion of the atoms and depends
on z, being fixed by the di↵erence between the evapora-
tion threshold at the trap bottom (r = z = 0) and the
local axial potential U(r = 0, z). Moreover, the elastic
collisional rate is large enough to ensure local thermal
equilibrium (collisional regime) but with a temperature
gradient along the axial direction [35]. For these reasons,
we define an axial temperature T (z) equal to the cor-
responding evaporation threshold expressed in thermal
units, divided by the truncation parameter ⌘ which is of

the order of 5 in our case [36, 37]:

T (z) =
h ⌫RF � U(r = 0, z)

⌘ kB
.

Typical temperature profiles for three values of evap-
oration radio-frequency are shown in the top panel of
Fig. 3b (red dashed lines).

The cooling process starts with a ramp of radio-
frequency forced evaporation down to a temperature 10%
higher than the largest critical value for observing a con-
densate fraction in our sample (see Fig. 3c). At this stage
the gas is non condensed and in thermal equilibrium. We
can estimate the profile of the critical temperature Tc(z)
by inserting the above-Tc equilibrium density distribu-
tion of the cloud in the expression of Tc for noninteracting
particles:

Tc(z) =
2⇡h̄2

mkB

✓
n(r = 0, z)

⇣(3/2)

◆2/3

where m is the atom mass and ⇣(...) the Riemann
⇣-function. A typical result is shown in the top panel
of Fig. 3b (solid blue line) for a sample of 25 ⇥ 106

atoms. Then the system is thermally quenched by
linearly reducing the evaporation threshold down to a
value such that T (z) < Tc(z) everywhere. During this
process, the local temperature profile crosses the local
critical temperature profile at some values of z, which
define the positions of the BEC planar transition fronts
propagating along z as the temperature lowers. The
speed of the transition fronts depends on z and on the

Weiler et al., 2008 Lamporesi et al., 2013 Ulm et al., 2013 Chen et al., 2011 

Atomic:	
  

Pyka et al., 2013 

Ejtemaee & Haljan, 2013 

Chae et al., 2012 

QuanOtaOve	
  issues:	
  
	
  
Scaling	
  law	
  

	
  System	
  inhomogeneity	
  
	
  Nature	
  of	
  the	
  transiOon	
  being	
  crossed	
  
	
  ….	
  

	
  
Validity	
  of	
  the	
  freeze-­‐out	
  hypothesis	
  



(Very)	
  qualitaOve:	
  ToF	
  images	
  	
  

very	
  slow	
   not	
  so	
  slow	
  

(all	
  pictures	
  have	
  same	
  N	
  =	
  105	
  and	
  T	
  =	
  10	
  nK,	
  phase-­‐space	
  density	
  ρ	
  >	
  10)	
  

Cooling	
  through	
  TC	
  at	
  different	
  rates	
  



QuanOtaOve:	
  two-­‐point	
  correlaOon	
  funcOons	
  

g1(x) = h (x) ⇤(0)i

One	
  approach:	
  

Two	
  short	
  Bragg	
  pulses	
  separated	
  by	
  a	
  variable	
  Ome	
  (Ramsey	
  style)	
  
	
  
Directly	
  measure	
  in	
  real	
  space	
  rather	
  than	
  momentum	
  space	
  

E. W. Hagley, W. D. Phillips, et al.,  
Phys. Rev. Lett. 83, 3112 (1999). 

Becer	
  approach:	
  

Momentum	
  distribuOon	
  (Bragg	
  spectroscopy)	
  +	
  Fourier	
  transform	
  



Homodyne	
  measurement	
  of	
  g1	
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cool	
  (very)	
  slowly	
  and	
  wait	
  for	
  a	
  (very)	
  long	
  Ome	
  

G1	
  in	
  equilibrium	
  	
  

g1(x) = 1

G1(x) = 1� x/L

L



No	
  equilibrium	
  	
  
interpretaOon	
  

G1	
  in	
  equilibrium	
  and	
  ajer	
  a	
  quench	
  	
  

Ficed	
  by	
   g1(x) = e

�x/`

supported	
  by	
  	
  
simulaOons:	
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⌧Q
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◆b

b =
⌫

1 + ⌫z

What	
  do	
  we	
  expect	
  from	
  KZ	
  theory?	
  	
  

	
  	
  -­‐	
  short	
  distance	
  (1	
  µm)	
  �
-­‐	
  quench	
  Ome	
  	
  ⌧Q
	
  -­‐	
  short	
  Ome	
  (30	
  ms)	
  ⌧0

Beyond	
  mean-­‐field:	
  

1.	
  Does	
  this	
  even	
  make	
  sense?	
  
	
  implies	
  that	
  making	
  a	
  pure	
  BEC	
  takes	
  an	
  hour	
  (not	
  true)	
  

2.	
  CondiOons	
  for	
  applicability	
  of	
  the	
  KZ	
  scaling	
  law?	
  
	
  actually	
  reconciles	
  things…	
  

Some	
  concerns…	
  

Mean-­‐field:	
  
c.f.	
  harmonic	
  trap:	
  



Quench	
  protocol	
  (1)	
  –	
  KZ	
  scaling	
  and	
  its	
  breakdown	
  

b = 1/4� 1/3

Self-­‐similar	
  cooling	
  curves	
  with	
  

tQ = 0.2 ! 3.5 s

cooling	
  Ome	
  (s)	
  

tQ

tbrQ

tc

tc ⇡ 0.72 tQ
g1	
  measurement	
  	
  



Breakdown	
  of	
  KZ	
  scaling?	
  

t̂ /
p

tQKZ	
  freeze-­‐out	
  Ome:	
  

t̂

tc ⇡ 0.72 tQ ) t̂ ⇡ 0.28
q

tQtbrQ

tbrQ

0 0 0 0 

t̂

KZ	
  scaling	
  
De-­‐freezing	
  and	
  	
  
domain-­‐coarsening	
  during	
  	
  
the	
  last	
  cooling	
  stage!	
  



Quench	
  protocol	
  (2)	
  –	
  tesOng	
  the	
  freeze-­‐out	
  hypothesis	
  

Accelerated	
  quench	
  ajer	
  TC	
  

tQ	
  =	
  0.2	
  s	
  
tQ	
  =	
  0.7	
  s	
  
tQ	
  =	
  3.2	
  s	
  

tc . tk  tQ“kink”	
  at	
  

cooling	
  Ome	
  (s)	
  

tQ

tc

`(
µ
m
)

tk/tQ

t̂(tQ = 3.2 s)

Direct	
  support	
  for	
  
the	
  KZ	
  freeze-­‐out	
  hypothesis!	
  	
  

< tbrQ ⇡ 1 s}



Extending	
  the	
  KZ	
  range	
  

tk/tQ

`(
µ
m
)

tQ(s)

QP1	
   QP2	
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Homogeneous-­‐system	
  KZ	
  scaling	
  law	
  

b = 0.33
b = 0.25MF:	
  

beyond	
  MF:	
  

QP1	
  
QP2	
  

b = 0.35(4)

See also: Corman et al., PRL 2014 (ring), Chomaz et al., Nat. Comm. 2015 (2D) 

Ways	
  to	
  uncover	
  beyond-­‐MF	
  physics:	
   	
  crank	
  up	
  interacOons	
  (Feshbach,	
  laaces)	
  
	
   	
   	
   	
   	
   	
   	
   	
  reduce	
  dimensionality	
  
	
   	
   	
   	
   	
   	
   	
   	
  go	
  close	
  to	
  the	
  criOcal	
  point	
  
	
   	
   	
   	
   	
   	
   	
   	
  … 	
  	
  



Dynamical	
  criOcal	
  exponent?	
  

⌫ = 0.67 ⌫ = 1/2(MF:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  	
  	
  	
  known	
  from	
  helium	
  (and	
  atoms)	
  	
  	
  	
  	
  	
  

(MF:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  	
  	
  	
  never	
  measured	
  	
  	
  	
  	
  z = 3/2 z = 2

b =
⌫

1 + ⌫z

⌫ = 1/2 & b = 0.35(4) ) z = 0.9(4)MF	
  inconsistent:	
  

⌫ = 0.67 & b = 0.35(4) ) z = 1.4(4)



Outlook	
  	
  (on	
  KZ)	
  

Directly	
  measure	
  z	
  

t̂(d) / dz

Effects	
  of	
  interacOons	
  on	
  criOcal	
  dynamics	
  
	
  “Ginzburg	
  vs.	
  Kibble-­‐Zurek”	
  –	
  dynamical	
  emergence	
  of	
  criOcal	
  correlaOons?	
  
	
  ConOnuous	
  tuning	
  of	
  the	
  universality	
  class?	
  

Post-­‐quench	
  phase-­‐ordering	
  kineOcs	
  
	
  Closed	
  vs.	
  open	
  systems	
  

does	
  not	
  depend	
  on	
  	
  	
   ⌫



(pre-­‐producOon	
  trailer…)	
  
Shaken, not stirred…	



InteresOng	
  problems	
  (naïve):	
  

-­‐	
  Basic	
  superfluidity,	
  collecOve	
  excitaOons	
  
	
  (criOcal	
  velocity,	
  resonances…)	
  

	
  
-­‐	
  Driven	
  steady	
  state	
  &	
  RelaxaOon	
  

	
  (turbulence,	
  Kolmogorov,	
  	
  
	
  non-­‐thermal	
  fixed	
  points,	
  AdS/CFT…)	
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momentum	
  cascade,	
  isotropy	
  

post-­‐shake	
  phase	
  ordering	
  (~ 1s,	
  ~ no	
  atom	
  loss)	
  

GP	
  simulaOon	
  

can	
  measure	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and/or	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  at	
  any	
  point	
  g1(r) n(k)
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Summary	
  

A.L. Gaunt et al.,  
PRL 110, 200406 (2013) 

I. Gotlibovych et al.,  
PRA 89, 061604(R) (2014)  

T.F. Schmidutz et al.,  
PRL 112, 040403 (2014)  
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BEC	
  in	
  a	
  box	
   Thermodynamics	
   Ground-­‐state	
  properOes,	
  
interacOon	
  energy,	
  ToF	
  dynamics	
  

Non-­‐equilibrium:	
  quenches	
  &	
  criOcal	
  dynamics,	
  driving	
  &	
  relaxaOon…	
  

N. Navon, A.L. Gaunt, R.P. Smith, ZH, Science 347, 167  (2015) 
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Quantum	
  
Joule-­‐Thomson	
  

CriOcal	
  	
  
point	
  

Heisenberg	
  

-­‐	
  KZ	
  freeze-­‐out	
  hypothesis	
  
-­‐	
  Beyond-­‐MF	
  KZ	
  scaling	
  law	
  

-­‐	
  CriOcal	
  exponent(s)	
  

-­‐	
  Phase-­‐ordering	
  kineOcs	
  

-­‐	
  Turbulence	
  

QP1	
  
QP2	
  


