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(HFB) functionals extract the pinning energy of a vortex on
a single nucleus using a cylindrical geometry. In particular,
the conclusion of Ref. [19] that the pinning force is repul-
sive (glitches would thereby require interstitial pinning)
was questioned by Ref. [21] but addressed in Ref. [20],
while a different set of calculations using the local density
approximation suggests that pinning is attractive over a
substantial region in the inner crust [18,22]. Moreover,
nearby vortices and the Casimir effect can significantly
polarize a nucleus—an effect absent in simple cylindrical
geometries—dramatically changing the nature of the nu-
clear pinning sites and disrupting the regularity of the
nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly accurate asymmetric stationary states in full 3D are
currently not feasible (these require a full diagonalization
of the single-particle Hamiltonian), but TDDFTalgorithms
can be applied to the unconstrained 3D problem (which
requires only applying the Hamiltonian), and scale well to
massively parallel supercomputers for both cold atoms and
nuclei, as has been demonstrated in Ref. [24]. We now
present a qualitatively new approach for calculating
vortex-pinning interactions, unencumbered by the afore-
mentioned issues, utilizing only real-time dynamics.

The idea, similar to the Stern-Gerlach experiment, is to
observe how a vortex moves when approached by a nu-
cleus. To zeroth order, the sign of the interaction is deter-
mined qualitatively by the direction of the motion (Fig. 1);
with a more careful inspection, one can extract the force-
separation relationship FðrÞ (Fig. 2).
We validate our procedure using a dynamical extended

Thomas-Fermi (ETF) model [25–28] equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic ‘‘dimers’’
mB ¼ 2m of fermionic pairs, with an equation of state
EðnÞ / !"5=3 characterized by the Bertsch parameter ! $
0:37 tuned to consistently fit both quantum Monte Carlo
and experimental results [27]. Despite the computational
simplicity of the ETF model, it has been demonstrated to
quantitatively reproduce a range of low-energy dynamics
of both UFG experiments [26] and fermionic density
functional theory simulations [28]. The UFG should also
qualitatively model the dilute neutron superfluid in the
crust of neutron stars [5] due to the large neutron-neutron
scattering length ann $ %18:9 fm [29]. Thus, by using a
physically motivated model of the nuclear pairing potential
[15], we anticipate that these ETF calculations will provide
a fairly good approximation of future fermionic TDDFT
simulations.
To gain some intuition for the vortex-nucleus interaction,

consider the phenomenological Hall-Vinen-Iordanskii
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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Fermionic Superfluids
Universality

Fermionic Superfluids

Neutron MatterkF ~ fm-1ann = -19 fmrnn = 2 fm
Cold AtomskF ~ µm-1

Tuneable arnn ~ 0.1 nm
Many systems

• different species
• dipole interactions
• optical lattices
• quantum simulators

Unitary 
Fermi Gasa = ∞re = 0Nuclei

neutrons 
and protons

Other Superfluids
• Superconductors (charged + phonons)
• Quarks (gluon interactions, Dark Matter?)
• 3He (p-wave)
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Unitary Fermi Gas (ufg)

• Characterize interactions by single number:
• S-wave scattering length a
Gas is dilute so we can ignore small-scale structure

• Tune interactions with magnetic field
Feshbach Resonance
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Unitary Fermi Gas (ufg)

• Unitary limit a=∞: No interaction length scale!

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.370(5)

• Simplest non-trivial model (dimensional analysis)
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Unitary Fermi Gas (ufg)

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.370(5)

• Simple, but hard to calculate!
Bertsch Many Body X-challenge
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•Only scales: T and N
•One convex dimensionless 

function hT(µ/T)
•Measured to percent level:

• ξexp = 0.370(5)(8)
Figure from Drut , Lähde, Wlazłowski, and Magierski, pra (2012)
Experiment: Ku, Sommer, Cheuk, and Zwierlein, Science (2012)
Zürn, Lompe, Wenz, Jochim, Julienne, and Hutson prl (2013) corrected resonance

Unitary 
Equation of 

State

RAPID COMMUNICATIONS

EQUATION OF STATE OF THE UNITARY FERMI GAS: . . . PHYSICAL REVIEW A 85, 051601(R) (2012)
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FIG. 2. (Color online) Energy E/EFG (red dots), as obtained by
Ku et al. [8]. Our AFQMC results extrapolated to infinite volume
are shown by open black circles. The results for Nx = 8 (open blue
squares) were obtained with the DMC algorithm in Ref. [9]. The green
square shows the QMC result of Ref. [20] for ξ at T = 0. The inset
shows the vicinity of the superfluid phase transition at Tc/ϵF ≃ 0.15.
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FIG. 3. (Color online) Chemical potential µ in units of ϵF as
measured by Ku et al. [8]. The notation for the AFQMC results is
identical to Fig. 2. The solid green square shows the result of Ref. [20]
assuming µ/ϵF (T = 0) = ξ .
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FIG. 4. (Color online) Density n(µ,T ) of the UFG (red circles)
as obtained by Ku et al. [8], normalized to the density n0(µ,T ) of
a noninteracting Fermi gas. The notation for the AFQMC results is
identical to Fig. 2. The diagrammatic MC results of Refs. [21,22]
(solid up and down triangles) and the Bold Diagrammatic MC results
of Ref. [23] are shown as well (solid squares). The inset shows the
vicinity of the superfluid phase transition at Tc/ϵF ≃ 0.15.

overpredicts this by ≃5%, which clearly exceeds the statistical
uncertainty. However, the larger lattices used here represent
a dramatic improvement over Ref. [9], in particular above
Tc/ϵF ≃ 0.15. Nevertheless, the discrepancy below Tc/ϵF

cannot be accounted for at present. In Fig. 4, we show the
particle number density relative to the temperature-dependent
density of the noninteracting Fermi gas. Again, a discrepancy
at low T/ϵF is found, which is analogous to that observed for
µ/ϵF .

While the agreement between our AFQMC calculation
and the data of Ref. [8] is satisfactory in general, notable
discrepancies persist. We have achieved a significant reduction
of the density from n ≃ 0.1 to n ≃ 0.04, with a concomitant
decrease in discretization (finite-range) effects. Nevertheless,
since finite-range effects scale as ∼n1/3, this still only
implies an effective reduction from n1/3 ≃ 0.46 to ≃0.34. The
possibility that the discrepancies between our AFQMC data
and experiment are due to residual finite-range effects can
therefore not be ruled out at present.

As the region where the discrepancies are largest appears
to be at very low T/ϵF (at least for E/EFG and µ/ϵF ), the
task of performing calculations at significantly lower values
of n1/3 for such temperatures is extremely demanding, indeed
largely beyond the capabilities of extant algorithms. In this
situation, accounting for the finite-range effects by improving
the transfer matrix (as in Refs. [14,15]) provides a systematic
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D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (prl 2006)

Bec-bcs Crossover 
Phase Diagram (T=0)

Grand canonical

What happens in 
middle?

Still need precision 
measurements for 
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Asymmetric?

Unequal Fermi surfaces
•Frustrates pairing
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Asymmetric
P-wave pairs

Kohn-Luttinger implies 
attractive at some l
Two coexisting 
superfluids
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order unity.) We therefore conclude that the P-wave su-
perfluid/BEC phase P1 may be observed in asymmetric
Fermi gases as one approaches the S-wave Feshbach reso-
nance from the BEC regime.

Our results are justified in weak coupling. The omitted
preexponential factors, however, depend on higher-order
induced interactions. It is expected that the resulting fac-
tors are of order unity. We also note that the pairing
interaction induced by single phonon exchange is related
to the effective mass m!=m " 1# F1=3 through the
Landau parameter F1 " $NFUP. Effective mass correc-
tions are thus higher order, but they would increase the
density of states at the Fermi surface, and thus increase the
magnitude of the P-wave gap and TP

c .
BCS regime.—Next, we show that all proposed asym-

metric Fermi-liquid phases are unstable towards a two-
component P-wave superfluid due to the exchange of
density fluctuations. This occurs in the BCS regime and
is denoted by P2 in our phase diagram Fig. 1. We start from
a two-component asymmetric Fermi gas with Fermi mo-
menta k"F > k#F, and calculate the induced interactions in
weak coupling. To lowest order in the S-wave interaction
4!a@2=m, the induced interaction for back-to-back scat-
tering is given by [15]:

U↑↑
ind(0, p⃗1 − p⃗2) = ↓ ↓

p⃗1,↑ −p⃗1,↑

p⃗2,↑ −p⃗2,↑

= −N↓
F

(
4πa!2

m

)2

L |p⃗1 − p⃗2| / (2!k↓
F)

)
. (14)

The induced interaction for the minority fermions is ob-
tained by interchanging the spin labels. As before, in weak
coupling we neglect the frequency dependence and con-
sider momenta on the Fermi surface. Thus, L%y& denotes
the static Lindhard function

 L%y& " 1

2
# 1$ y2

4y
ln
!!!!!!!!
1# y
1$ y

!!!!!!!!: (15)

The importance of induced interactions for superfluidity
has been pointed out for symmetric Fermi systems: in weak
coupling for S-wave pairing [16], for P-wave pairing with
repulsive interaction [17], and close to the Feshbach reso-
nance [18] based on [19]. In addition, it has been shown
that induced interactions significantly suppress the super-
fluid gaps in neutron stars [20,21]. For P-wave pairing in
neutron stars, it is known that central induced interactions
are attractive [22], but repulsive spin-orbit fluctuations
dominate this effect [21].

The resulting P-wave superfluid gap for the majority
component is given by !"

P ' ""F exp(1=%N"
FU

""
P&), where U""

p

denotes the P-wave projection of the induced interaction as
in Eq. (5) [23]. This leads to

 

!"
P

""F
' exp

"
$ !2

4k"Fk
#
Fa

2L1%k"F=k#F&

#
; (16)

with the P-wave superfluid gap for the minority component
given by interchanging the spin labels. The asymmetry
enters through the function
 

L1%z& "
5z2 $ 2

15z4
lnj1$ z2j$ z2 # 5

30z
ln
!!!!!!!!
1$ z
1# z

!!!!!!!!$
z2 # 2

15z2
;

which has the limiting behavior

 L1%z& !

8><
>:

z2=18 where z * 1;
"# %7$ 4 ln2&%z$ 1&=15 where z + 1;
2 ln%z&=%3z2& where z , 1:

For the symmetric case, we recover the result of [17], !P '
"F exp($!2=%4k2Fa2"&), with " " %2 ln2$ 1&=5; however,
the work of [17] considered repulsive S-wave interactions.
In our case, interspecies S-wave pairing will dominate for
the symmetric system. The phase P2 will start for some
small but finite asymmetry, and the deviations in the ex-
ponent will be linear in (z$ 1).

For large asymmetries k"F , k#F, the P-wave gap of the
majority component is

 

!"
P

""F
' exp

"
$ 3!2

2%2k#Fa&2 ln%k"F=k#F&
k"F
k#F

#
; (17)

while that of the minority component is

 

!#
P

"#F
' exp

"
$ 18!2

%2k#Fa&2
k"F
k#F

#
: (18)

The majority component has a larger gap, but both are
suppressed for large asymmetry.

For fixed k#F, the minority gap !#
P decreases monotoni-

cally for increasing asymmetry, while for fixed k"F, the
majority gap !"

P has a maximum at k#F + 0:77k"F, due to
the maximum of L1%z&=z " 0:11 for z " 1:3:

 

!";max
P

""F
' exp

"
$ !2

0:11%2k"Fa&2
#
: (19)

Finally, we note that the P2 phase does not destabilize
LOFF, or similar phases, whose condensation energy is
parametrically the same as that of the S-wave BCS phase
where !S ' exp%!=2kFa&. Thus, the P-wave energy gain
is parametrically smaller in weak coupling.

Discussion.—Several asymmetric phases proposed in
the literature contain Fermi surfaces, including the normal
Fermi-liquid phases as well as the gapless breached pair
phases. Kohn and Luttinger [24] pointed out that, at zero
temperature, all Fermi surfaces are unstable in the presence
of interactions. We have shown that, in weak coupling,
induced interactions lead to the formation of P-wave
superfluids with maximal gaps for intermediate asymme-
tries. Thus, the suggested normal Fermi-liquid phases and

PRL 97, 020402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JULY 2006

020402-3

D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk (prl 2006)
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Bulgac and Forbes prl 101 (2008) 215301

Dft predicts (ff)lo
at Unitarity: Supersolid!

Large density contrast 
(factor of 2)

Similar to contrast of 
vortex core

3

y = µb/µa
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FIG. 2: The dimensionless convex function h(y) [18]
that defines the average pressure density P(µa, µb) =
2

5

`

2m
!2

´3/2
[µah(y)]5/2/(6π2), where y = µb/µa. In addition

to the constraints discussed in [18] (with the updated value
ξ = 0.40 [15, 16]), we have included the constraint imposed
by the parametrization of the normal state energy defining
the aslda functional and shown in Fig. 1 (thin solid blue
line). The pressure of the lo states are shown by the thick
red curve. The y dependence of the amplitude of the pairing
field ∆ = max{|∆(z)|} and the period L are shown as in-
sets, with normalizations that are described in Fig. 3. In the
absence of any other phases, our calculations suggest a sec-
ond order transition at yLO−N , and a first order transition at
yLO−SF , with the amplitude ∆ rising smoothly from ∆ = 0
to just below ∆0 at yLO−SF . The period also rises from a
minimum value LLO−N at yLO−N , to a finite maximum value
LLO−SF at yLO−SF . Were the transition at yLO−SF smooth,
LLO−SF → ∞ would diverge. Sample profiles for the states
marked × are shown in Fig. 3. (Colour online.)

lack of scales at unitarity – between L and the average
energy and pressure densities: L ∂P/∂L = 2E−3P . This
ensures that the unitary relationship P = 2

3
E is satisfied

by the physical state.
At unitarity, one may fully characterize all stable

phases by the single parameter y = µb/µa as de-
scribed in [18]. We start by describing the homogeneous
and isotropic states supported in the aslda functional:
For y < y0 [18], the system is a fully-polarized non-
interacting Fermi gas (Na); between y0 < y < yLO the
highest pressure corresponds to a partially polarized two-
component Fermi gas; and above yLO < y < 1, the fully-
paired superfluid has the highest pressure. The point
yLO is where the pressures of the partially polarized nor-
mal and fully-paired superfluid states are equal. This is
where the energetic competition of the normal and su-
perfluid states is minimized, and thus where the lo state

∆
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∆

0
n
(z
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n
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0
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FIG. 3: A single period exhibiting the spatial dependence
of the pairing field ∆(z) (top) and the number densities
of the majority (dotted) and minority (solid) species (bot-
tom). Profiles are shown for the values of y = µb/µa ∈
(yLO−N , yLO−SF ) indicated by × on the curves in Fig. 2.
The pairing field is expressed in terms of the gap ∆0 of the
competing superfluid state of the same average chemical po-
tential µ+. The amplitude increases smoothly from zero at
yLO−N , where the profile is almost sinusoidal, to a critical
value slightly less than ∆0 at yLO−SF , where the profile as-
sumes a domain wall structure. The units of the densities
and periods are chosen by fixing the chemical potential differ-
ence µ− to facilitate comparison with trap experiments: In a
trap, µ− is globally fixed while the average chemical potential
µ+(r) = µ0 − V (r) varies with the trapping potential V (r).
The densities and length scales are normalized to the density
n0 and interparticle spacing l0 of a single species in the fully-
paired superfluid at yLO−SF . Thus, the changes in magnitude
demonstrate how the parameters decrease with y as one moves
towards the edge of the trap (see [13, 18] for details). Large
oscillations of the minority component break translation in-
variance, giving the lo state the crystalline properties of a
quantum solid. These induce large oscillation in the mean-
field potentials (not shown), and have a significant impact on
the normal correlation energy. For this reason, all the terms
in the energy density functional are critical for a proper de-
scription of the lo phase. The majority component exhibits
much smaller oscillations because the larger local kinetic en-
ergy density suppresses gradients. (Colour online.)

is most likely to occur. For y > 1, the picture is re-
versed with the species a ↔ b exchanged. Our aslda

parametrization does not admit any stable homogeneous
gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive lo solutions
for a large range of the parameter y ∈ (yLO−N , yLO−SF )
with finite periods in the range LLO−N ≤ L ≤ LLO−SF .
At yLO−N , the transition appears to be second order, with
max{|∆(z)|} → 0 vanishing smoothly from the lo phase
to the normal phase, while at yLO−SF , the transition ap-
pears to be first order, with the order parameter abruptly
loosing its spatial oscillations at a finite period LLO−SF .
The remaining normal states between y0 < y < yLO−N

would be susceptible to the Kohn-Luttinger instability,

Phase Structure of Cold Asymmetric Fermionic Matter M. M. Forbes

MIT Vortex Data

M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, (2006)

NTG Seminar 18 October 2006 Page 8
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MIT Experimental data from Shin et. al (2008)

Observations: Nothing?
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Bulgac and Forbes prl 101 (2008) 215301

Dft predicts (ff)lo
at Unitarity: Supersolid!

Large density contrast 
(factor of 2)

Similar to contrast of 
vortex core
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FIG. 2: The dimensionless convex function h(y) [18]
that defines the average pressure density P(µa, µb) =
2

5

`

2m
!2

´3/2
[µah(y)]5/2/(6π2), where y = µb/µa. In addition

to the constraints discussed in [18] (with the updated value
ξ = 0.40 [15, 16]), we have included the constraint imposed
by the parametrization of the normal state energy defining
the aslda functional and shown in Fig. 1 (thin solid blue
line). The pressure of the lo states are shown by the thick
red curve. The y dependence of the amplitude of the pairing
field ∆ = max{|∆(z)|} and the period L are shown as in-
sets, with normalizations that are described in Fig. 3. In the
absence of any other phases, our calculations suggest a sec-
ond order transition at yLO−N , and a first order transition at
yLO−SF , with the amplitude ∆ rising smoothly from ∆ = 0
to just below ∆0 at yLO−SF . The period also rises from a
minimum value LLO−N at yLO−N , to a finite maximum value
LLO−SF at yLO−SF . Were the transition at yLO−SF smooth,
LLO−SF → ∞ would diverge. Sample profiles for the states
marked × are shown in Fig. 3. (Colour online.)

lack of scales at unitarity – between L and the average
energy and pressure densities: L ∂P/∂L = 2E−3P . This
ensures that the unitary relationship P = 2

3
E is satisfied

by the physical state.
At unitarity, one may fully characterize all stable

phases by the single parameter y = µb/µa as de-
scribed in [18]. We start by describing the homogeneous
and isotropic states supported in the aslda functional:
For y < y0 [18], the system is a fully-polarized non-
interacting Fermi gas (Na); between y0 < y < yLO the
highest pressure corresponds to a partially polarized two-
component Fermi gas; and above yLO < y < 1, the fully-
paired superfluid has the highest pressure. The point
yLO is where the pressures of the partially polarized nor-
mal and fully-paired superfluid states are equal. This is
where the energetic competition of the normal and su-
perfluid states is minimized, and thus where the lo state
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FIG. 3: A single period exhibiting the spatial dependence
of the pairing field ∆(z) (top) and the number densities
of the majority (dotted) and minority (solid) species (bot-
tom). Profiles are shown for the values of y = µb/µa ∈
(yLO−N , yLO−SF ) indicated by × on the curves in Fig. 2.
The pairing field is expressed in terms of the gap ∆0 of the
competing superfluid state of the same average chemical po-
tential µ+. The amplitude increases smoothly from zero at
yLO−N , where the profile is almost sinusoidal, to a critical
value slightly less than ∆0 at yLO−SF , where the profile as-
sumes a domain wall structure. The units of the densities
and periods are chosen by fixing the chemical potential differ-
ence µ− to facilitate comparison with trap experiments: In a
trap, µ− is globally fixed while the average chemical potential
µ+(r) = µ0 − V (r) varies with the trapping potential V (r).
The densities and length scales are normalized to the density
n0 and interparticle spacing l0 of a single species in the fully-
paired superfluid at yLO−SF . Thus, the changes in magnitude
demonstrate how the parameters decrease with y as one moves
towards the edge of the trap (see [13, 18] for details). Large
oscillations of the minority component break translation in-
variance, giving the lo state the crystalline properties of a
quantum solid. These induce large oscillation in the mean-
field potentials (not shown), and have a significant impact on
the normal correlation energy. For this reason, all the terms
in the energy density functional are critical for a proper de-
scription of the lo phase. The majority component exhibits
much smaller oscillations because the larger local kinetic en-
ergy density suppresses gradients. (Colour online.)

is most likely to occur. For y > 1, the picture is re-
versed with the species a ↔ b exchanged. Our aslda

parametrization does not admit any stable homogeneous
gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive lo solutions
for a large range of the parameter y ∈ (yLO−N , yLO−SF )
with finite periods in the range LLO−N ≤ L ≤ LLO−SF .
At yLO−N , the transition appears to be second order, with
max{|∆(z)|} → 0 vanishing smoothly from the lo phase
to the normal phase, while at yLO−SF , the transition ap-
pears to be first order, with the order parameter abruptly
loosing its spatial oscillations at a finite period LLO−SF .
The remaining normal states between y0 < y < yLO−N

would be susceptible to the Kohn-Luttinger instability,

Phase Structure of Cold Asymmetric Fermionic Matter M. M. Forbes

MIT Vortex Data

M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, (2006)
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MIT Experimental data from Shin et. al (2008)

Observations: Inconclusive
• Need detailed structure or novel signature
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Why fflo not seen?
• It is not there:

• Other homogenous phases might be better.
• T might be too high (fluctuations kill 1d fflo).
• Trap frustrates formation (traps are not flat enough).

• It is not seen:
• Noise washes out signature.
• Small physical volume for fflo.

• Need a nice flat trap: Large physical volume of fflo

see idea of Ozawa, Recati, Delehaye, Chevy, and Stringari pra 90 (2014) 043608
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Asymmetric
Exotica?

Need IR structure

Sign problem

Please benchmark!
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Computational Costs

Classical:

Quantum:

Fermionic dft: 

Bosonic dft:

6N Nt
Nx3N Nt
N Nx3 Nt
Nx3 Nt
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Bosons are “easy”

• Gross-Pitaevskii Equation (gpe)

• (all) bosons in single ground state
• Include interactions through mean field

• Non-linear Schrödinger equation

• Only one wave function ρ=|Ψ|2

E[�] =

�
3�x

�
�h2|��(�x)|2

2mB
+ VF(�x)⇥F + g

|�|4

2

⇥

⇤t� =

�
�

�2

2mB
+ [V + g|�|2]

⇥
�

  Nx3 Nt

a b
BEC
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Forbes, Gandolfi, Gezerlis [pra 86 (2012) 053603]

Misses “shell” effects
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Fermions are harder

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

Fermi Surface

a b

kFa kFb• Pauli Exclusion (blocking)
• Particles in different states

• Must track N wavefunctions
• Non-linear Schrödinger equation
for each wavefunction

Hartree-Fock–Bogoliubov (hfb), Bogoliubov de-Gennes (bdg)

• Must use symmetries or supercomputers (N) Nx3 Nt
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Fermions are harder

• Evolution: (N)Nx3 Nt
Scales reasonably well

• Ground state
Need repeated diagonalization!

(or does it...)

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

(NNx3)3

Fermi Surface

a b

kFa kFb
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Forbes, Gandolfi, Gezerlis [pra 86 (2012) 053603]

Correct “shell” effects
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Slda: Superfluid Local 
Density Approximation

• Three densities:n≈〈a†a〉, τ≈〈∇a†∇a〉, ν≈〈ab〉
• Three parameters:

• Effective mass (m/α)
• Hartree (β), Pairing (g)

Forbes, Gandolfi, Gezerlis [pra 2012]
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Bdg: contained in slda

• Variational: ℰ=〈H〉 (minimize over Gaussian states)

• Bogoliubov-de Gennes (bdg) contained in slda

• Unit mass (α=1)
• No Hartree term (β=0)

• (No polaron properties)

E(n, ⇧,⇤) = �
⇧

m
+ ⇥

(3⌅2n)5/3

10m⌅2
+ g ⇤†⇤

�⇤�a†⇤�a⇥+ �⇤�b
†
⇤�b⇥

��a†�b
†
⇥ ��b�a⇥
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Slda: Superfluid Local 
Density Approximation

• Three densities:n≈〈a†a〉, τ≈〈∇a†∇a〉, ν≈〈ab〉
• Three parameters:

• Effective mass (m/α)
• Hartree (β), Pairing (g)

Forbes, Gandolfi, Gezerlis (2012)
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Forbes, Gandolfi, Gezerlis (2012)

Unbiased slda fit atreff = 0
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Fit “unbiased” results
• ξ = 0.3742(5)
• ∆ = 0.65(1) 
• α =1.104(8)
• χ2 = 0.3
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Figure 4. (color online) Comparison of slda fits at zero range with zero-range extrapolated qmc upper bounds (blue) with all
unbiased zero-range extrapolations (green) from [12, 18] listed in table III. The light (yellow) band is the experimental value of
⇤S [5]. In addition, we fit the exact ⇤2 = �0.4153 · · · value discussed in section II C (not shown in the plot).

for N+ = 4 [18] and for N+ ⇥ {4, 14, 38, 48, 66} [12], and
experimental measurements of 6Li for N+ � 106 [5]. (Al-
though not strictly at zero-range, the error induced by
the non-zero range in the 6Li experiments should be less
than 0.003 (see also section III C).)

We use these points to fit our three-parameter zero-
range slda, finding:

⇤S = 0.3742(5), � = 1.104(8), ⇥ = 0.651(9). (8)

These error estimates must be taken with a grain of salt
since not all of the error bars quoted in table III are
1⌅ normal standard deviations. This is reflected by the
small reduced ⇧2r = 0.2 of the fit but shows that the slda
does a remarkable job of modelling the unitary Fermi
gas. The results of this full fit are shown in figure 4.

This addresses one of the concerns raised in [2] where
the suspiciously large value of ⇥ found by fitting fnqmc
results (see table ??) was noted. The effective mass and
gap obtained by this fit are much closer to the values
⇥ = 0.50(5) and � = 1.09(2) obtained from the N+ = 66
qmc quasiparticle dispersion relation [19, 20], and the
values ⇥ = 0.45(5) [21] and ⇥ = 0.44(3) [22] extracted
from experimental data. It appears that a large part
of the previous discrepancy is due to the fixed-node

approximation which works well for small systems, but
systematically overestimates the energy of large systems.
The gap still appears too large, but without more data,
we cannot conclude that this is a failing of the slda.

We regard the slda with the parameters (8) as the best
dft for modelling properties of the zero-temperature
symmetric ufg that are not sensitive to large gradient
corrections.

N+ ⇤N+
Method

2 �0.415332919 · · · exact (see section II C)
4 0.288(3), 0.286(3) exact diagonalization [18]
” 0.28(1) afmc [18]
” 0.280(4) afmc [12]
14 0.39(1) afmc [12]
38 0.370(5), 0.372(2), 0.380(5) afmc [12]
48 0.372(3), 0.367(5) afmc [12]
66 0.374(5), 0.372(3), 0.375(5) afmc [12]
106 0.376(5) experiment [5]

Table III. Unbiased zero-range box energies. Most are extrapo-
lated afmc results except as noted. The ⇤4 values are consistent
with our upper bounds 0.2839(3) (VPT ), and 0.2829(3) (V2G).
This agreement indicates that the systematic error due to the
fixed-node constraint is sub-percent for N+ = 4.
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From Bulgac, Forbes, and Magierski [arXiv:1008.3933] with fndmc data from
Blume, von Stecher, and Greene, prl 99, 233201 (2007) and Blume, pra 78, 013635 (2008)

Works in traps (aslda)

Within few % except 
for smallest systems

Can add gradients
 Forbes [arXiv:1211.3779]

9.3.3 – Using the SLDA and ASLDA

Normal State
(Na,Nb) EFNDMC EASLDA (error)

(3,1) 6.6±0.01 6.687 1.3%
(4,1) 8.93±0.01 8.962 0.36%
(5,1) 12.1±0.1 12.22 0.97%
(5,2) 13.3±0.1 13.54 1.8%
(6,1) 15.8±0.1 15.65 0.93%
(7,2) 19.9±0.1 20.11 1.1%
(7,3) 20.8±0.1 21.23 2.1%
(7,4) 21.9±0.1 22.42 2.4%
(8,1) 22.5±0.1 22.53 0.14%
(9,1) 25.9±0.1 25.97 0.27%
(9,2) 26.6±0.1 26.73 0.5%
(9,3) 27.2±0.1 27.55 1.3%
(9,5) 30±0.1 30.77 2.6%
(10,1) 29.4±0.1 29.41 0.034%
(10,2) 29.9±0.1 30.05 0.52%
(10,6) 35±0.1 35.93 2.7%
(20,1) 73.78±0.01 73.83 0.061%
(20,4) 73.79±0.01 74.01 0.3%
(20,10) 81.7±0.1 82.57 1.1%
(20,20) 109.7±0.1 113.8 3.7%
(35,4) 154±0.1 154.1 0.078%
(35,10) 158.2±0.1 158.6 0.27%
(35,20) 178.6±0.1 180.4 1%

Superfluid State
(Na,Nb) EFNDMC EASLDA (error)

(1,1) 2.002±0 2.302 15%
(2,2) 5.051±0.009 5.405 7%
(3,3) 8.639±0.03 8.939 3.5%
(4,4) 12.573±0.03 12.63 0.48%
(5,5) 16.806±0.04 16.19 3.7%
(6,6) 21.278±0.05 21.13 0.69%
(7,7) 25.923±0.05 25.31 2.4%
(8,8) 30.876±0.06 30.49 1.2%
(9,9) 35.971±0.07 34.87 3.1%

(10,10) 41.302±0.08 40.54 1.8%
(11,11) 46.889±0.09 45 4%
(12,12) 52.624±0.2 51.23 2.7%
(13,13) 58.545±0.18 56.25 3.9%
(14,14) 64.388±0.31 62.52 2.9%
(15,15) 70.927±0.3 68.72 3.1%
(1,0) 1.5±0.0 1.5 0%
(2,1) 4.281±0.004 4.417 3.2%
(3,2) 7.61±0.01 7.602 0.1%
(4,3) 11.362±0.02 11.31 0.49%
(7,6) 24.787±0.09 24.04 3%

(11,10) 45.474±0.15 43.98 3.3%
(15,14) 69.126±0.31 62.55 9.5%

Table 9.2 Comparison between the ASLDA density functional as described in this section and the
FN-DMC calculations [136, 137] for a harmonically trapped unitary gas at zero temperature. The
normal state energies are obtained by fixing D = 0 in the functional: In the FN-DMC calculations,
this is obtained by choosing a nodal ansatz without any pairing. In the case of small asymmetry,
the resulting “normal states” may be a somewhat artificial construct as there is no clear way of
preparing a physical system in this “normal state” when the ground state is superfluid.

9.3.3.1 Trapped Systems

The functional form of both the SLDA and ASLDA have been completely fixed by
considering only homogeneous matter. Hence, a non-trivial test of the theory is to
compare the energy of trapped systems with Monte Carlo calculations. This was first
done for the SLDA in [127] and the results are shown in Fig. 9.12. Even for systems
with only a few particles—which have large gradients—the agreement is within 10%.
This rapidly improves to the percent level as one move to larger systems.

The agreement is somewhat remarkable. In particular, we have included no gradi-
ent corrections in the theory beyond the Kohn-Sham kinetic energy. These gradient
corrections will contribute at some level, but in the present system the coefficients are
extremely tiny (the leading gradient correction ⇠ (—n)2/n should give corrections
that scale as E µ N2/3 for which there is no evidence in the Monte Carlo data). In
any case, the agreement provides strong evidence that the SLDA captures the relevant
energetics to provide a quantitative model of the unitary Fermi gas.
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Wednesday, April 15, 15



What about Dynamics?
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Realtime Evolution

• No diagonalization needed for evolution
Just apply Hamiltonian
Use fft for kinetic term

• Efficient realtime evolution the scales well
Distribute wavefunctions over nodes
Utilize gpus

• Split Operator or abm evolution

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥
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DFT: Fermion still hard

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥

N Nx3 NtWlazłowski, Bulgac, Forbes, and Roche pra(r) (2015)

• 48×48×128 lattice

• 131 629 two-
component 
wavefunctions

• 1tb per state
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Scaling Properties

Slda realtime code
•Both Weak and 

Strong scaling

•Fully utilizes gpus
(gpus provide 90% of 
titan’s compute power)
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State Preparation?

• How to find initial (ground) state?

• Root-finders repeatedly diagonalize s.p. Hamiltonian
Slow and does not scale well

• Imaginary time evolution?
Non-unitary: spoils orthogonality of wavefunctions
Re-orthogonalization unfeasible (communication)
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Quantum Friction

• Unitary evolution (preserves orthonormality)

• Easy to compute: local time-dependent potential
Acts to remove local currents

• Couple with quasi-adiabatic state preparation
Bulgac, Forbes, Roche, and Wlazłowski (2013) [arXiv:1305.6891]

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t

Wednesday, April 15, 15



Quantum Friction

• Consider evolution with potential H+Vt:
∂tE = -i Tr ([H,ρ]⋅Vt)

• Therefore Vt = i[H,ρ]† guarantees ∂tE ≤ 0
Non-local potential equivalent to “complex time” evolution
Not suitable for fermionic problem

• Diagonal version is a local potential: Vt = diag(i[H,ρ]†)

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]:
32x32x128

State Preparation
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Quantum Friction

• General method: (works for many problems)
Needs a good initial state to ensure reasonable occupation numbers

• Easy to compute: local time-dependent potential
Acts to remove local currents

• Couple with quasi-adiabatic state preparation
Bulgac, Forbes,Roche, and Wlazłowski (2013) [arXiv:1305.6891]

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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Bosons are “easy”

• Gross-Pitaevskii Equation (gpe)

• (all) bosons in single ground state
Include interactions through mean field

• Non-linear Schrödinger equation

• Only one wave function ρ=|Ψ|2
Or a few if modelling coupled fluids

E[�] =

�
3�x

�
�h2|��(�x)|2

2mB
+ VF(�x)⇥F + g

|�|4

2

⇥

⇤t� =

�
�

�2

2mB
+ [V + g|�|2]

⇥
�

  Nx3 Nt

a b
BEC
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Gpe model for ufg?

• Think:
• Boson = Fermion pair (dimer)

• Galilean Covariant (fixes mass)

• Match Unitary Equation of State

• “Extended Thomas-Fermi” (etf) model

E[�] =

�
3�x

�
|��(�x)|2

4mF
+ VF(�x)⌅F + ⇤E(⌅F, {�⌅F})

⇥

ı⇧t� =

�
�

�2

4mF
+ 2[VF + ⇤⇥(⌅F, {�⌅F})]

⇥
�

⇤F = 2|�|2

EFG � ⇤
5/2
F

⇥F = E �
FG(⇤F) � ⇤

3/2
F
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Image Credit

Comparison
Fermions
SLDA TDDFT

Gross Pitaevskii
model

Bulgac et al. (Science 2011)
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Image Credit

Comparison
Fermions
SLDA TDDFT

Gross Pitaevskii
model

Bulgac et al. (Science 2011)

• Fermions:
• Simulation hard!
• Evolve 104-106 wavefunctions
• Requires supercomputers

• GPE:
• Simulation much easier!
• Evolve 1 wavefunction
• Use supercomputers to study 
large volumes
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Matching Theories:
The Good

• Galilean Covariance (fixes mass/density relationship)

• Equation of State

• Hydrodynamics
• speed of sound (exact)
• phonon dispersion (to order q3)
• static response (to order q2)
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Figure 3. Comparison of the linear response for the ugpe (top) and two fermionic dfts (bottom). The linear response of the bdg
which has ⌅ = 0.5906 · · · and � = 0.6864 · · ·EF (see also [7]) is on the left; the linear response of the slda tuned to ⌅ = 0.41 and
� = 0.502EF to match [8] is on the right. The ugpe has only the single tunable parameter ⌅, which is chosen as shown to match
the corresponding fermionic theory below. ¶ The bosonic ugpe reproduces the low-frequency response, but breaks down for
⌥ � 2� at the pair-breaking threshold: The slope of the phonon dispersion relationship is reproduced, but the curvature differs
between the fermionic and bosonic theories.

The ugpe has no transverse response. This is qualita-
tively consistent with the current estimate of the param-
eters c1/c0 = �3/8+ ⇥/4+O(⇥2) and c2 = 0+O(⇥2), or
taking the three-dimensional limit ⇥ = 1

c1 � �2

15⇧2(2⌅)3/2
+O(⇥2), c2 = 0+O(⇥2).

Thus, the leading order ⇥ expansion is consistent with
⇤ = 8/45 = 0.17 – slightly smaller than the natural value
⇤ = 1/4.

The vanishing of c2 is consistent in both approxima-
tions, and represents a shortcoming of the ugpe. As ar-
gued in [15], the transverse response should be positive
requiring c2 > 0. This is consistent with the fermionic
response shown in figure 3 which demonstrate that the
phonon dispersion ⌥q has a small negative curvature
implying c2 � 2

3 |c1|. Thus, the coefficients c1 and c2
likely have a similar magnitude in the Fermionic theory,
in contrast to the prediction of the ⇥ expansion.

To end this section, we consider the numerical values

of the leading order corrections using ⌅ = 0.374 [3]:

⌥q ⇥ 1� 8.5(c1 + 3
2c2)

q2

k2F
, ⌃(q) ⇥ 1+ 17.(c1 � 9

2c2)
q2

k2F
.

In the ugpe we have c1 � �0.029. Thus, we see that
the corrections to the leading order dynamics are quite
small, and since the physical values of c1 and c2 have
opposite signs, the correction to the dynamics through
⌥q is further suppressed by cancellation. The highest
sensitivity to the low-energy coefficients is thus through
the combination that enters the dynamic response ⌃(q)
(see [16]), and low energy dynamics are rather insensi-
tive to the limitation that c2 vanishes in the ugpe. The
partly explains the success that the ugpe enjoys at low-
energy.

VI. VORTEX DYNAMICS

Many properties of vortex dynamics that follow from
the gpe are well understood in the Bose context and
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� = 0.502EF to match [8] is on the right. The ugpe has only the single tunable parameter ⌅, which is chosen as shown to match
the corresponding fermionic theory below. ¶ The bosonic ugpe reproduces the low-frequency response, but breaks down for
⌥ � 2� at the pair-breaking threshold: The slope of the phonon dispersion relationship is reproduced, but the curvature differs
between the fermionic and bosonic theories.
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response shown in figure 3 which demonstrate that the
phonon dispersion ⌥q has a small negative curvature
implying c2 � 2
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the combination that enters the dynamic response ⌃(q)
(see [16]), and low energy dynamics are rather insensi-
tive to the limitation that c2 vanishes in the ugpe. The
partly explains the success that the ugpe enjoys at low-
energy.

VI. VORTEX DYNAMICS

Many properties of vortex dynamics that follow from
the gpe are well understood in the Bose context and
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Figure 3. Comparison of the linear response for the ugpe (top) and two fermionic dfts (bottom). The linear response of the bdg
which has ⌅ = 0.5906 · · · and � = 0.6864 · · ·EF (see also [7]) is on the left; the linear response of the slda tuned to ⌅ = 0.41 and
� = 0.502EF to match [8] is on the right. The ugpe has only the single tunable parameter ⌅, which is chosen as shown to match
the corresponding fermionic theory below. ¶ The bosonic ugpe reproduces the low-frequency response, but breaks down for
⌥ � 2� at the pair-breaking threshold: The slope of the phonon dispersion relationship is reproduced, but the curvature differs
between the fermionic and bosonic theories.

The ugpe has no transverse response. This is qualita-
tively consistent with the current estimate of the param-
eters c1/c0 = �3/8+ ⇥/4+O(⇥2) and c2 = 0+O(⇥2), or
taking the three-dimensional limit ⇥ = 1

c1 � �2

15⇧2(2⌅)3/2
+O(⇥2), c2 = 0+O(⇥2).

Thus, the leading order ⇥ expansion is consistent with
⇤ = 8/45 = 0.17 – slightly smaller than the natural value
⇤ = 1/4.

The vanishing of c2 is consistent in both approxima-
tions, and represents a shortcoming of the ugpe. As ar-
gued in [15], the transverse response should be positive
requiring c2 > 0. This is consistent with the fermionic
response shown in figure 3 which demonstrate that the
phonon dispersion ⌥q has a small negative curvature
implying c2 � 2

3 |c1|. Thus, the coefficients c1 and c2
likely have a similar magnitude in the Fermionic theory,
in contrast to the prediction of the ⇥ expansion.

To end this section, we consider the numerical values

of the leading order corrections using ⌅ = 0.374 [3]:

⌥q ⇥ 1� 8.5(c1 + 3
2c2)

q2

k2F
, ⌃(q) ⇥ 1+ 17.(c1 � 9

2c2)
q2

k2F
.

In the ugpe we have c1 � �0.029. Thus, we see that
the corrections to the leading order dynamics are quite
small, and since the physical values of c1 and c2 have
opposite signs, the correction to the dynamics through
⌥q is further suppressed by cancellation. The highest
sensitivity to the low-energy coefficients is thus through
the combination that enters the dynamic response ⌃(q)
(see [16]), and low energy dynamics are rather insensi-
tive to the limitation that c2 vanishes in the ugpe. The
partly explains the success that the ugpe enjoys at low-
energy.

VI. VORTEX DYNAMICS

Many properties of vortex dynamics that follow from
the gpe are well understood in the Bose context and
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What is missing?

Excessive phonon noise
Short-wavelength

Dissipation
Vortex lattice doesn’t crystallize

Incorrect vortex mass
Vortices move too slowly
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Matching Theories:
The Bad

• Gpe has ρ=2|Ψ|2
• Density vanishes in core of vortex
• Implies ∫|Ψ|2 conserved

• (Approximate conservation ∫|Ψ|2 in Fermi 
simulations provides measure of applicability)

• No “normal state”
• Two fluid model needed?
• Coarse graining (transfer to “normal” component)
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Vortex Structure
(empty core)

1.2 realization from the gross -pitaevskii equation

plt.subplot(122)
plt.plot(x, np.sqrt(s.n(x)/a.bc[1]), ’�’ + c)

plt.subplot(121)
plt.plot(v.rho[:,0], v.rho[:,1], ’ : ’)
plt.axis([0,4,0,1])
plt.xlabel(’$k_F r$’)
plt. title (’$n/n_\infty$’)

plt.subplot(122)
plt.plot(v.delta[:,0], v.delta[:,1], ’ : ’)
plt.axis([0,4,0,1])
plt.xlabel(’$k_F r$’)
plt. title (’$\Delta/\Delta_\infty$’)
plt.legend(loc=’lower right’)
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Figure 1: Comparison of slda vortex density (left) and gap (right) with
etf.

7

Wednesday, April 15, 15



Michael Forbes and Rishi Sharma pra 90 (2014) 043638

Linear Response
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Low energy Phonons
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Missing Pair-breaking
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Ancilotto, L. Salasnich, and F. Toigo (2012)

GPE vs. Experiment 
J Low Temp Phys

Fig. 4 1D density profiles at different times t showing the collision of two strongly interacting Fermi
clouds. Left part: our calculations [25]. Right part: experimental data from Ref. [40]. The normalized
density is in units of 10−2/µm per particle

We simulated the whole procedure by using the Runge-Kutta-Gill fourth-order
method [41, 42] to propagate in time the solutions of the following non-linear
Schrödinger equation (NLSE)

i! ∂

∂t
Ψ =

[
− !2

4m
∇2 + 2U(r) + 2

!2

2m

(
3π2)2/3

ξ |Ψ |4/3 + (1 − 4λ)
!2

4m

∇2|Ψ |
|Ψ |

]
Ψ

(31)

which is strictly equivalent [7, 8, 36, 37] to Eqs. (17) and (18), with E (n,∇n) given
by Eq. (4), and

Ψ (r, t) =
√

n(r, t) eiθ(r,t) (32)

Since the confining potential used in the experiments is cigar-shaped, we have ex-
ploited the resulting cylindrical symmetry of the system by representing the solution
of our NLSE on a 2-dimensional (r, z) grid. During the time evolution of our system,
when the two clouds start to overlap, many ripples whose wavelength is comparable
to the interparticle distance are produced in the region of overlapping densities. In or-
der to properly compare our results with the experimental data of resonant fermions
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Michael Forbes and Rishi Sharma pra 90 (2014) 043638

Conjecture

Resolve with:

Two-fluid hydrodynamics
Normal + Superfluid

Conversion via coarse-graining/
condensation

Provide dissipation - mocks pair-
breaking

Normal fluid will fill vortices

VALIDATING SIMPLE DYNAMICAL SIMULATIONS OF . . . PHYSICAL REVIEW A 90, 043638 (2014)

FIG. 7. (Color online) We compare the power spectra of the
fluctuations of density in the bosonic simulations (lower panel) and
the fermionic simulations (upper panel). For the bosonic (fermionic)
simulations we consider stirring velocities vstir = 0.11vF (0.10vF ),
vstir = 0.197vF (0.20vF ), and vstir = 0.242vF (0.25vF ), going from
left to right. The spatial Fourier transform is taken over the entire
simulation volume and the temporal transform is taken over the time
after the stirring potential is turned off. The solid horizontal line
(green) corresponds to the pair-breaking threshold, ω/EF = 2η. For
the SLDA simulations, there is little strength above the pair-breaking
threshold. For the ETF simulations with the smallest velocity, most of
the power is concentrated in the low frequencies. For higher velocities,
there is significant power near and above the pair-breaking threshold.
The curves (blue) correspond to the phonon dispersion relation.

noisy simulations that cannot reproduce features such as the
relaxation of vortex lattices (see Fig. 5).

To contrast the situation from the SLDA we compare the
power spectra of the density perturbations in Fig. 7. These
spectra are computed after the stirring potential is turned off
and demonstrate that the majority of the power lies along
the phonon dispersion. These simulations also have vortices,
which add power at low frequencies (one can think of a vortex
as a collection of virtual phonons). Note that in the ETF, even
the slowest simulation vstir = 0.11vF has energy above the
pair-breaking excitation, demonstrating the amplification of
short-wavelength modes.

All of this evidence is commensurate with the fundamental
failure of the ETF to properly describe pair-breaking excita-
tions above ω > 2# that appear to be present in all simulations
(except the vortexless vstir = 0.1 simulation). In the SLDA,
these excitations break superfluid pairs, transferring energy to
the normal component of the fluid which is absent in the ETF.
This provides a damping mechanism for the superfluid in the
SLDA that allows the vortex lattice to crystallize. In the ETF,
these excitations must remain in the superfluid and scatter off
of the vortices, preventing the lattice from crystallizing.

To check this, we can consider the superfluid order
parameter #. To make its dimensions match with the ETF
order parameter we compare the conservation of the following
integrated quantities:

SLDA:
∫

d3x
|2m#|2

ρ1/3
, vs ETF:

∫
d3x |%|2. (11)

The scaling has been chosen so that in the Thomas-Fermi
limit both the integrals are proportional to the total number
of particles. Pair-breaking effects reduce the amount of
superfluid, resulting in a decrease in the total integrated gap in
the SLDA, whereas the corresponding quantity in the ETF is
proportional to the conserved particle number (7).

To realize pair-breaking physics in an ETF-like model, one
needs to introduce an additional thermal “normal” component
to the system, transferring energy and mass to this as
excitations exceed the pair-breaking threshold. To test the
validity of this notion, we compare in Fig. 8 the evolution of
the integrated pairing gap (11) in the SLDA with the integrated
order parameter in the ETF after coarse-graining the field %
with a filter that removes excitations above q ! 1.3kF . (We
simply smoothed the 642 simulation with a two-dimensional
Gaussian smearing function of spatial width 0.75/kF .)

The qualitative agreement here shows that this character-
ization of the superfluid to normal conversion is reasonable.
This is visually confirmed in Fig. 5 where we also include a
coarse-grained representation of the density (smoothing now
the density ρ = 2|%|2 rather than %).

FIG. 8. (Color online) Conservation of the integrated squared
pairing gap (squared smoothed ψ) for the simulations for vstir = 0.1vF

(vstir = 0.11vF ), vstir = 0.2vF (vstir = 0.197vF ), and vstir = 0.25vF

(vstir = 0.242vF ) for SLDA (ETF). The wave function was smoothed
by convolving with a two-dimensional Gaussian smearing function
of spatial width 0.75/kF . Note that the scales of the three plots are
different: The vstir ∼ 0.1vF integral is essentially unchanged, while
the vstir ∼ 0.25vF integral decreases by about 25%.

043638-9
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Applications
Heavy Solitons are Vortex Rings/Lines

Quantum Turbulence
Glitches in Neutron Stars

Nuclear Fission
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Vortices: an application
• Resolving a Mystery:
MIT Heavy Solitons 
= Vortex Rings & Vortices
Fermionic dft for small systems 
validates bosonic model for realistic systems

• Vortex Reconnection

• Quantum Turbulence
New arena:

Strong interactions (unlike becs)
Experiments
Reliable theory (unlike He)

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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MIT Experiment
• 6Li atoms (N≈106) cooled in harmonic trap

• Step potential used to imprint a soliton

• Let system evolve

• Image after ramping magnetic field B and expanding

• Observe an oscillating soliton with long period T≈12Tz
• Bosonic solitons (becs) oscillate with T≈√2Tz≈1.4Tz
• Fermionic solitons (bdg) oscillate with T≈1.7Tz
• Interpret as “Heavy Solitons”
• Later resolved as vortex rings and vortices

Yefsah et al. Nature 499 (2013) 426 [arXiv:1302.4736]
Ku et al. prl 113 (2014) 065301
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Yefsah et al. Nature 499 (2013) 426 [arXiv:1302.4736]
Ku et al. prl 113 (2014) 065301

MIT Experiment

Imprint soliton

Step potential
phases evolve to π phase shift

Flat domain wall 
(dark/grey soliton)

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

MIT Experiment

Thick solitons
• 10 × coherence length

Slowly moving T≈12Tz
Theory (Walls):T ~ 1.2-1.4Tz
Is theory wrong?

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Period depends on:
• Aspect ratioλ∈{3.3, 6.2, 12}
• Interaction

Much longer than 
predicted for 
domain walls

inertial mass of the soliton M*, this force causes an acceleration

€z~{
M

M!
v2

z z. Because we observe oscillations, M* must be negative

as well, implying that the soliton is an effective particle that decreases
its kinetic energy as it speeds up. One obtains a direct relation26

between the relative effective mass M*/M and the normalized soliton
period Ts/Tz:

M!

M
~

Ts

Tz

! "2

ð2Þ

The observed soliton period of oscillation Ts is about one order of
magnitude longer than the trapping period Tz for single atoms. This
directly indicates an extreme enhancement of the relative effective
mass. In general, the difference between the effective mass M* and
the bare mass M of the soliton arises from the phase slip Dw across the
soliton, which implies a superfluid counterflow26. For the soliton to
move, an entire sheet of atoms thus has to flow past it. The difference
M 2 M* is the mass of that sheet, given by the mass density multiplied
by the entire soliton volume. In contrast, the soliton’s bare mass M is
only due to the mass deficit of jNsj atoms and can become much
smaller in magnitude than M* when the soliton is filled. For weakly
interacting BECs, where solitons are devoid of particles, the effective
mass is still of the same order of the bare mass, (M*/M)BEC 5 2. This
leads to an oscillation period that is only

ffiffiffi
2
p

times longer than Tz
(refs 20, 35), as has been observed in experiments14,17. In the BCS limit,
where only a minute fraction D0/EF of the gas contributes to Cooper
pairing, jNsj / D0/EF / exp[2p/(2kFjaj)] and thus the soliton’s rela-
tive effective mass can be expected to become exponentially large.

Indeed, as shown in Fig. 2, we find that the soliton period, and hence
the relative effective mass, increases dramatically as the interactions
are tuned from the limit of Bose–Einstein condensation (Fig. 2a)
towards the BCS limit. At 700 G, where 1/kFa 5 2.6(2), the system repre-
sents a strongly interacting Bose gas of molecules7. The soliton period
is Ts 5 4.4(5)Tz, already three times longer than in the case of a weakly
interacting BEC. At the Feshbach resonance (Fig. 2d), we measure a
soliton period of Ts 5 14(2)Tz, corresponding to a relative effective
mass of M*/M 5 200(50). This is more than 50 times larger than the

result of mean-field BdG theory in three dimensions26,36 that predicts
M*/M 5 3. Note that the superfluid is fully three-dimensional: on
resonance, the chemical potential m < 35BvH, where vH is the radial
trapping frequency. Still, for very elongated traps, one expects to reach a
universal quasi-one-dimensional regime where the tight radial confine-
ment is irrelevant for propagation along the long axis37. This prompted
us to study the dependence of the soliton period on the aspect ratio of
our trap.

Figure 3 summarizes our measurements for the soliton period and
the relative effective mass as a function of the interaction parameter
1/kFa throughout the BEC–BCS crossover, for aspect ratios l 5 3.3,
6.2 and 15. The strong increase of M*/M towards the BCS regime is
observed for all trap geometries. The normalized soliton period Ts/Tz
appears to converge to a limiting value for the most elongated trap: the
normalized period changes by only 15% as the aspect ratio is increased
by more than a factor of two from 6.2 to 15. This indicates that the
soliton dynamics approach a universal quasi-one-dimensional limit.
Even in a much less elongated trap with l 5 3.3(1), the soliton period
is only slightly increased by about 30% compared to l 5 6.2, accom-
panied by an increased susceptibility of the soliton towards bending or
‘snaking’10,13,15 (for examples, see Supplementary Information).

We attribute the large relative effective mass M*/M in the strongly
interacting regime to the filling of the soliton with uncondensed fer-
mion pairs resulting from strong quantum fluctuations. Similar filling
with uncondensed particles has been predicted for solitons in strongly
interacting Bose condensates10,22–25,33. A substantial filling of the soli-
ton will reduce the number jNsj of atoms missing inside the soliton,
therefore considerably weaken the restoring harmonic force from the
trap and strongly increase M*/M. At the Feshbach resonance, our in
situ density profiles provide a lower bound on the soliton filling of
90%, compared to the expected 20% from mean-field theory (see
Supplementary Information). Mean-field theory for the BEC–BCS
crossover heavily underestimates the role of quantum fluctuations
already on the BEC side, where it predicts a fraction of uncondensed
bosons that scales as na3 instead of the correct

ffiffiffiffiffiffiffi
na3
p

scaling7. Our
experiment thus directly reveals the importance of beyond mean-field
effects for the dynamics of strongly interacting fermionic superfluids.
Significant soliton filling was found theoretically in a strongly inter-
acting relativistic superfluid using methods from string theory38–40.
For the resonantly interacting Fermi gas, a theoretical study based on a
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Figure 2 | Soliton oscillations in the BEC–BCS crossover. Shown are soliton
oscillations in a trapped fermionic superfluid for various magnetic fields B
around the Feshbach resonance. a–d, The soliton period is observed to
markedly increase as the system is tuned from the BEC regime (a) to the
Feshbach resonance (d). The measured period (Ts/Tz), magnetic field (B in G)
and interaction parameter at the cloud centre 1/kFa were respectively: a, 4.4(5),
700, 2.6(2); b, 7.5(9), 760, 1.4(1); c, 12(2), 815, 0.30(2); d, 14(2), 832, 0. The
initial atom number per spin state (N0), its decay rate (t in s) and Thomas-
Fermi radius after time of flight (RTF in mm) range respectively from: 1.1 3 105,
1.2(2), 135 at B 5 700 G to 2.3 3 105, 12(1) and 200 on resonance. The aspect
ratio is l 5 6.2(7). Note that at B 5 700 G, the superfluid is short lived due to
enhanced three-body loss. At 760 G (b), the soliton survived for more than 6 s,
comparable to the lifetime of the superfluid at that field.
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Figure 3 | Soliton period and effective mass versus interaction strength in
the BEC–BCS crossover. The normalized soliton period Ts/Tz is shown as a
function of the interaction parameter 1/kFa in the cloud centre, for three
different trap aspect ratios: l 5 15(1) (black circles), 6.2(7) (red diamonds) and
3.3(1) (orange squares). The error bars correspond to the typical spread over
five measurements, and the solid lines are guides to the eye. The soliton period
strongly increases from the BEC regime towards the Feshbach resonance
(vertical dotted line), where Ts/Tz 5 12(2) for l 5 15(1), and to the BCS side.
This directly reflects an extreme enhancement of the relative effective mass
M!=M~T2
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z , which we attribute to strong quantum fluctuations and filling
of Andreev bound states. The result for a weakly interacting BEC, Ts=Tz~
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,
is shown as the dashed line. The star marks the mean-field prediction26 at
unitarity M!=M~T2
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inertial mass of the soliton M*, this force causes an acceleration
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z z. Because we observe oscillations, M* must be negative

as well, implying that the soliton is an effective particle that decreases
its kinetic energy as it speeds up. One obtains a direct relation26

between the relative effective mass M*/M and the normalized soliton
period Ts/Tz:
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The observed soliton period of oscillation Ts is about one order of
magnitude longer than the trapping period Tz for single atoms. This
directly indicates an extreme enhancement of the relative effective
mass. In general, the difference between the effective mass M* and
the bare mass M of the soliton arises from the phase slip Dw across the
soliton, which implies a superfluid counterflow26. For the soliton to
move, an entire sheet of atoms thus has to flow past it. The difference
M 2 M* is the mass of that sheet, given by the mass density multiplied
by the entire soliton volume. In contrast, the soliton’s bare mass M is
only due to the mass deficit of jNsj atoms and can become much
smaller in magnitude than M* when the soliton is filled. For weakly
interacting BECs, where solitons are devoid of particles, the effective
mass is still of the same order of the bare mass, (M*/M)BEC 5 2. This
leads to an oscillation period that is only

ffiffiffi
2
p

times longer than Tz
(refs 20, 35), as has been observed in experiments14,17. In the BCS limit,
where only a minute fraction D0/EF of the gas contributes to Cooper
pairing, jNsj / D0/EF / exp[2p/(2kFjaj)] and thus the soliton’s rela-
tive effective mass can be expected to become exponentially large.

Indeed, as shown in Fig. 2, we find that the soliton period, and hence
the relative effective mass, increases dramatically as the interactions
are tuned from the limit of Bose–Einstein condensation (Fig. 2a)
towards the BCS limit. At 700 G, where 1/kFa 5 2.6(2), the system repre-
sents a strongly interacting Bose gas of molecules7. The soliton period
is Ts 5 4.4(5)Tz, already three times longer than in the case of a weakly
interacting BEC. At the Feshbach resonance (Fig. 2d), we measure a
soliton period of Ts 5 14(2)Tz, corresponding to a relative effective
mass of M*/M 5 200(50). This is more than 50 times larger than the

result of mean-field BdG theory in three dimensions26,36 that predicts
M*/M 5 3. Note that the superfluid is fully three-dimensional: on
resonance, the chemical potential m < 35BvH, where vH is the radial
trapping frequency. Still, for very elongated traps, one expects to reach a
universal quasi-one-dimensional regime where the tight radial confine-
ment is irrelevant for propagation along the long axis37. This prompted
us to study the dependence of the soliton period on the aspect ratio of
our trap.

Figure 3 summarizes our measurements for the soliton period and
the relative effective mass as a function of the interaction parameter
1/kFa throughout the BEC–BCS crossover, for aspect ratios l 5 3.3,
6.2 and 15. The strong increase of M*/M towards the BCS regime is
observed for all trap geometries. The normalized soliton period Ts/Tz
appears to converge to a limiting value for the most elongated trap: the
normalized period changes by only 15% as the aspect ratio is increased
by more than a factor of two from 6.2 to 15. This indicates that the
soliton dynamics approach a universal quasi-one-dimensional limit.
Even in a much less elongated trap with l 5 3.3(1), the soliton period
is only slightly increased by about 30% compared to l 5 6.2, accom-
panied by an increased susceptibility of the soliton towards bending or
‘snaking’10,13,15 (for examples, see Supplementary Information).

We attribute the large relative effective mass M*/M in the strongly
interacting regime to the filling of the soliton with uncondensed fer-
mion pairs resulting from strong quantum fluctuations. Similar filling
with uncondensed particles has been predicted for solitons in strongly
interacting Bose condensates10,22–25,33. A substantial filling of the soli-
ton will reduce the number jNsj of atoms missing inside the soliton,
therefore considerably weaken the restoring harmonic force from the
trap and strongly increase M*/M. At the Feshbach resonance, our in
situ density profiles provide a lower bound on the soliton filling of
90%, compared to the expected 20% from mean-field theory (see
Supplementary Information). Mean-field theory for the BEC–BCS
crossover heavily underestimates the role of quantum fluctuations
already on the BEC side, where it predicts a fraction of uncondensed
bosons that scales as na3 instead of the correct

ffiffiffiffiffiffiffi
na3
p

scaling7. Our
experiment thus directly reveals the importance of beyond mean-field
effects for the dynamics of strongly interacting fermionic superfluids.
Significant soliton filling was found theoretically in a strongly inter-
acting relativistic superfluid using methods from string theory38–40.
For the resonantly interacting Fermi gas, a theoretical study based on a
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Figure 2 | Soliton oscillations in the BEC–BCS crossover. Shown are soliton
oscillations in a trapped fermionic superfluid for various magnetic fields B
around the Feshbach resonance. a–d, The soliton period is observed to
markedly increase as the system is tuned from the BEC regime (a) to the
Feshbach resonance (d). The measured period (Ts/Tz), magnetic field (B in G)
and interaction parameter at the cloud centre 1/kFa were respectively: a, 4.4(5),
700, 2.6(2); b, 7.5(9), 760, 1.4(1); c, 12(2), 815, 0.30(2); d, 14(2), 832, 0. The
initial atom number per spin state (N0), its decay rate (t in s) and Thomas-
Fermi radius after time of flight (RTF in mm) range respectively from: 1.1 3 105,
1.2(2), 135 at B 5 700 G to 2.3 3 105, 12(1) and 200 on resonance. The aspect
ratio is l 5 6.2(7). Note that at B 5 700 G, the superfluid is short lived due to
enhanced three-body loss. At 760 G (b), the soliton survived for more than 6 s,
comparable to the lifetime of the superfluid at that field.
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Figure 3 | Soliton period and effective mass versus interaction strength in
the BEC–BCS crossover. The normalized soliton period Ts/Tz is shown as a
function of the interaction parameter 1/kFa in the cloud centre, for three
different trap aspect ratios: l 5 15(1) (black circles), 6.2(7) (red diamonds) and
3.3(1) (orange squares). The error bars correspond to the typical spread over
five measurements, and the solid lines are guides to the eye. The soliton period
strongly increases from the BEC regime towards the Feshbach resonance
(vertical dotted line), where Ts/Tz 5 12(2) for l 5 15(1), and to the BCS side.
This directly reflects an extreme enhancement of the relative effective mass
M!=M~T2
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z , which we attribute to strong quantum fluctuations and filling
of Andreev bound states. The result for a weakly interacting BEC, Ts=Tz~
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,
is shown as the dashed line. The star marks the mean-field prediction26 at
unitarity M!=M~T2
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Finite temperature:
• Anti-decay
• (Negative mass)

density functional approach found solitons with clear filling in the wake
of shock waves41. The strong increase of the soliton period is reminiscent
of the situation for dark-bright solitons in weakly interacting BECs,
where a distinguishable atomic species or another spin state resides
inside the soliton notch14,42,43. For fermions, mean-field theory in the
strongly interacting regime attributes a substantial part of the soliton
filling to Andreev bound states19,26–28. These are also predicted to carry
the dominant fraction of the superfluid flow across the soliton, which
can be regarded, in its rest frame, as a Josephson junction of vanishing
barrier height29. It will be an interesting topic for future experiments to
determine the contribution of Andreev states to the soliton filling.

Temperature dependence
To demonstrate that the slow soliton oscillations are a truly quantum
effect and not due to the finite temperature of our gas, we investigated
the soliton motion as a function of temperature for the unitary Fermi
gas at the Feshbach resonance (Figs 4 and 5). A measure of tempera-
ture is provided by the thermal fraction, the number of uncondensed
molecules observed after the rapid ramp. The soliton period is found
to be insensitive to changes in temperature within the measurement
uncertainty (Fig. 5a).

The stability of solitons is, however, strongly affected by thermal
effects. At low temperatures, the soliton oscillation occurs essentially
without energy loss, demonstrating dissipationless flow (Fig. 4a). For
increasing temperature, we observe anti-damping of soliton oscilla-
tions (Fig. 4b). This is characteristic of a particle with negative mass
that can lower its energy by accelerating. To our knowledge, such anti-
damping of solitons has not been directly observed previously in a
quantum gas experiment. The energy loss is likely to be due to colli-
sions with thermally induced phonons10, and we indeed observe a
strong decrease in the anti-damping time constant as the temperature
is raised (Fig. 5b). At even higher temperatures, the soliton’s position
becomes less reproducible (Fig. 4c) and its lifetime is strongly reduced
(Fig. 5c). Concurrently, we observe increased axial fluctuations in the
superfluid (see Fig. 4d–f), some of which appear to have comparable
contrast to the imprinted soliton. These additional solitons might be

‘thermal solitons’, predicted to occur even in equilibrium in weakly
interacting Bose condensates44. Similar to vortex–anti-vortex pairs in
two dimensions, soliton–anti-soliton pairs can be expected to spon-
taneously break in one dimension and proliferate.

We note that on resonance, the fastest solitons we observe move
at the exceedingly slow speed of 0.50 mm s21 or 5% of the (indepen-
dently measured) speed of sound on resonance. Their sudden dis-
appearance, observed for example in Fig. 4c, can thus not be related to
motion close to the Landau critical speed. Instead, their decay might
be tied to inelastic collisions with thermal solitons, as soliton collisions
have been found to become increasingly inelastic towards the BCS
side in theoretical simulations28. Another possibility for their decay at
such low speeds is that the soliton’s energy dispersion has a minimum
at an unexpectedly small fraction of the critical velocity28. One might
expect fermion pairs to break at finite temperatures and fill in the soli-
ton, in addition to quantum fluctuations. However, even for the highest
thermal fraction where solitons have been observed, the actual tem-
perature is determined to be below T 5 0.10EF/kB (kB is the Boltzmann
constant), while the bulk pairing gap is about D0 5 0.4EF (ref. 45). Pair
breaking should thus still be exponentially suppressed, explaining the
insensitivity of the soliton period to the thermal fraction.

Conclusion and outlook
We have created and observed long-lived solitons in a strongly inter-
acting fermionic superfluid. Their period of oscillation and thus their
relative effective mass increases markedly as the interactions are tuned
from the BEC limit of tightly bound molecules towards the BCS limit
of long-range Cooper pairs. This signals strong, beyond mean-field,
effects, which are likely to be due to uncondensed fermion pairs filling
the soliton, in addition to purely fermionic Andreev bound states. Our
study provides an important quantitative benchmark for theories
of non-equilibrium dynamics of strongly interacting Fermi gases.
An exciting prospect is to directly detect the Andreev bound states
spectroscopically19,46. Although they are not topologically protected,
their lifetime should equal that of the soliton—many seconds or 100,000

P
os

iti
on

 (R
TF

)
P

os
iti

on
 (R

TF
)

P
os

iti
on

 (R
TF

)

Time (s)

0.5

0.5

0.5

0.0

0.0

0.0

–0.5

–0.5

–0.5
0 1 2 3

d

e

f

a

b

c

100 μm

Figure 4 | Soliton motion in the unitary Fermi gas at various temperatures.
a–c, Soliton trajectories for increasing temperature, with thermal fractions
a, 7(2)%, b, 9(2)% and c, 15(3)%. The error bars indicate the standard deviation of
typically five repetitions and the solid lines are fits to the data to the anti-damped
sinusoidal function f(t) / exp(t/ts) sin(2pt/Ts 1 w). Whereas the period is found
to be independent of temperature within our uncertainty, the anti-damping time
decreases from ts/Ts 5 5(2) for the coldest clouds (a) to ts/Ts 5 1.3(5) for the
hottest ones (c). d–f, Representative optical densities (left) and residuals (right) of
the superfluid after the rapid ramp. Whereas at low temperatures, the soliton is
the only significant density variation, at higher temperatures transverse stripes
appear that we tentatively interpret as thermal solitons.
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Figure 5 | Effect of finite temperature on soliton motion. a, The soliton
period is found to be insensitive to temperature. b, The 1/e anti-damping time
and c, the soliton lifetime, are found to be strongly dependent on the thermal
fraction. The soliton lifetime is defined as the time when the probability of
observing a soliton decreased to 50%. The dashed lines are guides to the eye.
The horizontal error bars indicate the standard deviation of the thermal
fraction within a data set. The vertical error bars in a represent the typical
spread over five measurements, those in b result from the contribution of the
fitting error on ts and the error on Ts, and those in c reflect the time difference
between having 90% and 10% survival probability.
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Density Functional 
Theory (dft)

• Superfluid Local Density Approximation (slda)
• Well tested for statical properties
• Can we also use for dynamics
• Expensive

 (one of the largest supercomputing calculations to date)

• Effective Thomas-Fermi (etf) model
• “Bosonic model” (gpe with correct eos)
• Not as reliable, but can be scaled up
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Vortex Ring Oscillation
8
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FIG. 4. (color online) Oscillations of a vortex ring in a harmonic trap on a 24⇥ 24⇥ 96 lattice (left) and a 32⇥ 32⇥ 128 lattice
(right). We start with a cylindrical cloud (not shown, see Ref. [30, 38]) with central density nF = k

3
F /3⇡

2 where the Fermi
wavevector kF = 1/�x = 1. The harmonic trapping potential along z is then increased slowly while applying the quantum
cooling algorithm described in [38] to cool the system to a state with two separated clouds. These are the phase imprinted with
�� = ⇡ and the knife edge is removed, allowing the soliton to evolve as shown. Movies, including a case for a 48⇥ 48⇥ 128
lattice, may be found in [30]. This ring then oscillates along the axis of the trap. In the smaller simulation, the ring does not
fully form, and it collapses in on itself, re-forming as a dark-soliton near the turning points. This behavior mirrors that seen in
BEC [25], but is demonstrated here for the first time in a fermionic system. This new domain wall exhibits the same initial
instability, and a vortex ring of the opposite circulation and similar size forms and moves back along the trap in the opposite
direction. This oscillation is at the limit of the fermionic equivalent of the domain-wall branch of these types of excitations [26].
Note that [26] also discusses collisions of these excitations, which are elastic at low energies. Reducing the width of the trap,
one will continuously approach the quasi-1D situation of oscillating domain walls. Note that the period T ⇡

p
3Tz in this case

approximately agrees with other the quasi-1D simulations [14, 17, 18]
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Vortex Rings

• Thin vortex approximation in infinite matter
(follows essentially from Biot-Savart law)

• Approximately valid for rings near core
 (but not too near)

• Logarithmic + Thomas Fermi approx. in trap:
Pitaevskii arXiv:1311.4693
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Vortex Rings in a Trap

• MI: Inertial (kinetic mass) differs significantly from

• MVR: Mass depletion

• Long periods
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Vortex Rings in a Trap

• Behaviour depends on T ~ R/lcoh ~ kFR
• Large traps have long periods (kFR ~ 20 for experiment)

• Small (narrow) approach domain wall T≈√2Tz
Formula does not apply

• Depends on lcoh
Characterizes dependence on scattering length
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Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion
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Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion

Self-interaction
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Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion

Buoyant force
Magnus effect
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Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Near-Harmonic Motion 10

FIG. 6. Left column shows various trajectories of a vortex ring in the R-z–plane, while the right column shows the time
dependence of corresponding z-coordinate of the vortex ring. The forth row show an example of an almost stationary vortex ring.
The radius of a stationary vortex ring is ⇡ 0.49R?, where R? is the TF radius of the cloud. The last row shows an example of
a vortex ring trajectory in the presence of a considerable number of phonons.
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Vortex Motion

Buoyant force
Magnus effect
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Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

“Too Thick” for
Vortex Rings?

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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MIT Experiment

Subtle imaging:
• Need expansion

(turn off trap)
• Must ramp to B<700G
•~10% depletion
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Tarik Yefsah, Ariel T. Sommer, Mark J.H. Ku, Lawrence W. Cheuk, Wenjie Ji, Waseem S. Bakr, and Martin W.
Zwierlein

Imaging Solitons

Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.

2

Wednesday, April 15, 15



Yefsah et al. Nature 499 (426) 2013 Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013)

Explains Dependence 
on Bmin

0

30

0

30

60

90

r
[µ

m
]

�200 �150 �100 �50 0 50 100 150 200
x [µm]

�90

�60

�30

0

30

60

90

y
[µ

m
]

W W W. N A T U R E . C O M / N A T U R E  |  1

SUPPLEMENTARY INFORMATION
doi:10.1038/nature12338

Supplementary information:
Heavy Solitons in a Fermionic Superfluid

Tarik Yefsah, Ariel T. Sommer, Mark J.H. Ku, Lawrence W. Cheuk, Wenjie Ji, Waseem S. Bakr, and Martin W.
Zwierlein

Imaging Solitons

Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Imaging Solitons

Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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We Assumed
Axial Symmetry

•2013 mit paper claimed cylindrical symmetry

• Scherpelz et al.
• Trapped rings unstable: decay to vortex (arXiv:1401.8267)

• Rings and vortices move in the same way:
• Buoyant force, Magnus effect, and speed
• Imaging process
• Small quantitative differences
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See online supplemental material to Bulgac, Luo, Magierski, Roche, and Yu,
Science, 332, 1288 (2011) 

Asymmetric Rings 
Decay to Vortices

Reconnection
•Quantum turbulence
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See online supplemental material to Bulgac, Luo, Magierski, Roche, and Yu,
Science, 332, 1288 (2011) 

Asymmetric Rings 
Decay to Vortices

Reconnection
•Quantum turbulence
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Wlazłowski, Bulgac, Forbes, and Roche [arXiv:1404.1038]

Evolution of a Vortex
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Wlazłowski, Bulgac, Forbes, and Roche [arXiv:1404.1038]

Consistent Alignment?

Short vortex = lower E

No vortex = lowest E!

Depends on geometry?
This vortex is along long axis
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Wlazłowski, Bulgac, Forbes, and Roche [arXiv:1404.1038]

Alignment

Tilt to imprint vortex
N.Parker Ph.D. thesis 2004

Oblique vortex rotates

Alignment needs 
dissipation
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Vortex Reconnection
Quantum Turbulence

Paoletti, Fisher, Sreenivasan, and Lathrop, 
prl 101, 154501 (2008)

• Vortex reconnection: the origin of quantum turbulence
• Feynman 1955
• Very few experimental realizations
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4

one may need to quantitatively understand energy loss
during crossing and recombination as inputs to glitching
models (see e.g. [10]). The UFG provides an almost ideal
laboratory study these phenomena and benchmark the
SLDA. Using multiple tilted imprints, for example, one
can control the generation and arrangement of multiple
vortices in order to study collisions, reconnection, and
interactions. The UFG and SLDA thus provides a new
microscopic framework to study aspects of quantum tur-
bulence in a strongly interacting system, complementing
weakly-interacting dilute Bose gases [30, 31] modelled with
the GPE as the only microscopic frameworks presently
available for studying superfluid dynamics.

The phase imprint technique can be also utilized to cre-
ate turbulent states with many tangled vortices. Here we
demonstrate one approach, adding a phase imprint [2, 3]
to a lattice of vortices which can be created experimentally
by stirring using laser beams [? ]. In Fig. 5 we show con-
secutive frames of turbulent motion exhibiting crossings
and recombinations of quantized vortices in an elongated
harmonic trap. The simulation was done in a 48

2 ⇥ 128

box comprising 1410 fermions (see supplemental mate-
rial [16] for a movie). We also show the corresponding
probability distribution function (PDF) of the velocities
for longitudinal v

k

and transverse v

?

components of the
velocity (with respect to long axis).

We start with the ground state of a cloud cut in half
with a knife-edge potential. We then stir the system with
two circulating laser beams parallel to the long axis of
the trap. Once a vortex lattice is generated, we imprint a
⇡ phase shift between the halves. Just before removing
the edge knife, we introduce a slight tilt to speed the
formation of a vortex tangle. After the knife-edge is
removed, the vortex lines twist, cross, and reconnect.
From the velocity PDFs one sees a clear departure from
gaussian behaviour as the tangle evolves – a hallmark of
quantum turbulence. Eventually the system relaxes to a
vortex lattice and equilibrates in v

k

. Somewhat similar
velocity PDFs are seen in theoretical studies of dilute
Bose gases [32] and in phenomenological filament model
of the crossing-recombination vortex line dynamics [33].

In conclusion, have shown the crucial role played by
the trap geometry in the formation of a vortex line after
a phase imprint. In particular we identified a few possible
scenarios for the short term evolution of the phase imprint
in the experiments [2, 3], showing that the details are
highly sensitive to geometric factors. To precisely charac-
terize the behavior realized in the experiments [2, 3], the
experiment will likely need to be simulated with precise
values of the trapping asymmetries known, and with re-
alistic particle numbers which are currently are beyond
the capabilities of the most advanced implementations
of the SLDA approach. Satisfactory agreement with the
latest MIT experiments serves as the next step in validat-
ing the time-dependent SLDA, demonstrating that it is
capable of qualitatively describing the complex dynam-
ics of strongly interacting fermionic systems. We have
demonstrated that recombination is likely present in the
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FIG. 5. (Color online, click on frames to view movie online.)
Generation of quantum turbulence by phase imprint of the
vortex lattice. In the left column consecutive frames show:
a) vortex lattice with knife edge dividing cloud, b) just after
phase imprint removal of the knife, c-e) decay of turbulent
motion. In the right column we show the corresponding PDFs
for longitudinal v

||

and transverse v
?

components of collective
velocity. Dotted lines show the gaussian best fit to the data.

early stages of the experiments [2, 3] (see Figs. 2 and 3)
and can be selected for by reducing the anharmonicity of
the trap. We have also presented that the phase imprint
technique can be utilized to generate quantum turbulent
state. Therefore, using improved imaging techniques [3]
coupled with carefully designed initial conditions, cold
atom experiments have a great opportunity to directly
probe and quantify the dynamics and interactions vortices
and the potential to significantly advance our understand-
ing of quantum turbulence. In this regard, the unitary
Fermi gas is of particular interest as the results will have

Wlazłowski, Bulgac, Forbes, and Roche [arXiv:1404.1038]

Quantum Turbulence
with Fermions

Wednesday, April 15, 15



Dany Page: http://www.astroscu.unam.mx/neutrones/NS-Picture/NS-Picture.html

Neutron Star Glitches
•Rapid increase in pulsation rate

•Anderson and Itoh (1975) 
suggested pinned superfluid 
vortices

Pulsar Astronomy by Andrew G. Lyne and Francis Graham-Smith
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Understanding Pinning

• Calculate vortex pinning forces and vortex interactions
Probably requires fermionic dfts (i.e. Skyrme, hfb) with shell effects, etc.

• Calculate dynamics of vortex networks
Probably requires large numbers of vortices: tangles, knock-on, knock-off, 
turbulence, 3d dynamics, etc.
Needs efficient superfluid hydrodynamics

• Can’t use the same tool for both
Use hybrid approach: fermionic dft → hydrodynamics → filament models
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P. Donati, P.M. Pizzochero Nucl. Phys. A742 (2004) 363
Avogadro, F. Barranco, R. A. Broglia, and E. Vigezzi, Nucl. Phys. A811 (2008) 378

Pinning from Statics

Energy calculations

Must diagonalize to 
high precision

(subtraction involved)

How to extract F(r)?

P. Avogadro et al. / Nuclear Physics A 811 (2008) 378–412 385

Fig. 5. (Left) The pinning energy Epinning is obtained taking the difference between the energy of the pinned con-
figuration (1), in which the vortex axis passes through the center of the nucleus, and the energy of the interstitial
configuration (2), in which the vortex is far from the nucleus. (Right) We rearrange the configurations on the left, in-
dicating that the pinning energy is equivalent to the difference between the energy cost to build the vortex on a nucleus
(Evor

nuc) and in uniform matter (Evor
unif), so that Epinning = Evor

nuc − Evor
unif.

(Fig. 6(b)), yielding Enucleus; one with Z = 0, ν = 1 (Fig. 6(c)), yielding Evortex; and finally,
one with Z = 0, ν = 0 (Fig. 6(d)), yielding Euniform. To obtain the correct pinning energy it is
essential that the calculations refer to the same asymptotic neutron density. In the calculations
(b) and (d), without the vortex, we use the same value of the neutron chemical potential λn,
yielding respectively an average number of neutrons Nnucleus and Nuniform in the cylindrical cell.
The presence of the vortex in calculations (a) and (c) leads in each case to a small decrease of
the number of particles. We compensate this reduction by a slight increase in the value of λn.
In practice, rather than attempting a very fine tuning of λn we prefer to account for the residual
difference in the number of particles adding the term

#Epinned = λn(Nnucleus − Npinned); #Evortex = λn(Nuniform − Nvortex) (10)

respectively to Epinned and to Evortex (cf. Table 3). We remark that a similar correction for protons
is not needed, because their number is exactly fixed, and equal either to 0 or to 40. Even if the pin-
ning energies represent only a small fraction of the total energy, of the order of 10−3–10−4, the
subtraction scheme we have just outlined produces numerically reliable results (cf. Appendix B),
which will be presented in the next section. One should notice that the size of the cylindrical
cell does not have to coincide with that of the physical Wigner–Seitz cell; it must only be large
enough, so as to lead to convergent results for Epinning. It is clear, however, that neglecting neigh-
bouring nuclei can be inconsistent, if the radius of the box becomes of the order of the lattice
constant. This point will be further discussed below in Section 4.3.

4. Results

We have performed calculations at different densities in the inner crust, ranging from n ≈
0.001 fm−3 to n ≈ 0.04 fm−3. Our discussion will be mostly based on the results obtained at

370 P. Donati, P.M. Pizzochero / Nuclear Physics A 742 (2004) 363–379

Fig. 1. The two vortex–nucleus configurations used in our calculation: interstitial pinning (IP, left) and nuclear
pinning (NP, right). The cubes indicate the WS-cells, the spheres represent the nuclei in the middle of the cell and
the cylinders picture the position of the vortex core.

The pressure in the normal phase is then equal to

Pn(x) = 2
5

h̄2k2f,n(x)
2mn

nn(x) = 2
5
µfer,n(x)nn(x), (10)

while that in the superfluid phase is given by

Ps(x) =
[
2
5
µfer,s(x) + 1

4
∆2(x)

µfer,s(x)
− 3
4

∆(x)ns(x)
µfer,s (x)

δ∆(x)
δn(x)

]
ns(x). (11)

We can now describe the vortex–nucleus configurations in our model. We start by con-
sidering two cubic WS-cells, over which we will integrate the energies, and we put them
adjacent along a direction labeled as the x-axis. The vortex axis is aligned along the z di-
rection. At the center of each cell we have a nucleus and in the leftmost one we put the
origin of our Cartesian system of reference, so that the other nucleus lies on the x-axis.
The nuclear pinning (NP) configuration has the vortex passing through the nucleus at the
origin. The interstitial pinning (IP) configuration has the vortex equidistant between the
two nuclei (see Fig. 1).
So far, when discussing the neutrons in the WS-cell we have implicitly assumed that

they were all either in the normal phase (and thus without any vortex) or in the superfluid
phase (with one vortex-line singularity in the NP or IP configuration). However, the usual
hybrid state used in all previous calculations of pinning is also possible in the Thomas–
Fermi approach, namely the neutrons in the cell can be superfluid everywhere except in
the so-called vortex core, an axially symmetric region around the vortex axis where they
are normal. In order to fulfill the condition of hydrostatic equilibrium of the model, the
pressure of the normal phase must be equal to that of the superfluid one all along the
boundary of the vortex core. The thermodynamical equilibrium is already guaranteed by
taking the same µ for both phases.
More precisely, in the present semi-classical picture there are only two possible struc-

tures for a vortex which are consistent with mechanical equilibrium. The ‘mixed’ phase,
in which an axially symmetric surface coaxial with the vortex, SM(z), is determined by
the condition Ps(x) = Pn(x); in this phase matter is normal inside SM(z) and superfluid
outside (normal core). The ‘pure’ phase, in which matter is always superfluid, but with its
density going smoothly to zero along some other axially symmetric surface coaxial with the
vortex, SP (z), determined by the condition ns(x) = 0; in this phase there are no neutrons
inside SP (z) (empty core). We point out that the surfaces SM(z) and SP (z) unambiguously

Wednesday, April 15, 15



Aurel Bulgac, Michael Forbes, and Rishi Sharma: prl 110 (2013) 241102 

Pinning: Dynamics

Extract force with 
dynamical methods

Scales well numerical:
No diagonalization

Extract force at any 
separation

Still needs fermion dft

(HFB) functionals extract the pinning energy of a vortex on
a single nucleus using a cylindrical geometry. In particular,
the conclusion of Ref. [19] that the pinning force is repul-
sive (glitches would thereby require interstitial pinning)
was questioned by Ref. [21] but addressed in Ref. [20],
while a different set of calculations using the local density
approximation suggests that pinning is attractive over a
substantial region in the inner crust [18,22]. Moreover,
nearby vortices and the Casimir effect can significantly
polarize a nucleus—an effect absent in simple cylindrical
geometries—dramatically changing the nature of the nu-
clear pinning sites and disrupting the regularity of the
nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly accurate asymmetric stationary states in full 3D are
currently not feasible (these require a full diagonalization
of the single-particle Hamiltonian), but TDDFTalgorithms
can be applied to the unconstrained 3D problem (which
requires only applying the Hamiltonian), and scale well to
massively parallel supercomputers for both cold atoms and
nuclei, as has been demonstrated in Ref. [24]. We now
present a qualitatively new approach for calculating
vortex-pinning interactions, unencumbered by the afore-
mentioned issues, utilizing only real-time dynamics.

The idea, similar to the Stern-Gerlach experiment, is to
observe how a vortex moves when approached by a nu-
cleus. To zeroth order, the sign of the interaction is deter-
mined qualitatively by the direction of the motion (Fig. 1);
with a more careful inspection, one can extract the force-
separation relationship FðrÞ (Fig. 2).
We validate our procedure using a dynamical extended

Thomas-Fermi (ETF) model [25–28] equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic ‘‘dimers’’
mB ¼ 2m of fermionic pairs, with an equation of state
EðnÞ / !"5=3 characterized by the Bertsch parameter ! $
0:37 tuned to consistently fit both quantum Monte Carlo
and experimental results [27]. Despite the computational
simplicity of the ETF model, it has been demonstrated to
quantitatively reproduce a range of low-energy dynamics
of both UFG experiments [26] and fermionic density
functional theory simulations [28]. The UFG should also
qualitatively model the dilute neutron superfluid in the
crust of neutron stars [5] due to the large neutron-neutron
scattering length ann $ %18:9 fm [29]. Thus, by using a
physically motivated model of the nuclear pairing potential
[15], we anticipate that these ETF calculations will provide
a fairly good approximation of future fermionic TDDFT
simulations.
To gain some intuition for the vortex-nucleus interaction,

consider the phenomenological Hall-Vinen-Iordanskii
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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(HVI) equation (see Ref. [30] for a discussion) for a
vortex in 2D:

M€~rv ! ~fqp ¼ !s ~"# ð _~rv ! ~vsÞ þ ~Fv: (1)

Here, ~rv is the position of the vortex, the force ~Fv is per
unit length along the vortex, !s is the number density of the
‘‘background’’ superfluid, ~" ¼ 2#@~z is the quantized vor-
tex circulation, and ~vs is the ‘‘background’’ superfluid
velocity. This equation should only be taken as an intuitive
guide since terms on the left-hand side are ill-defined. The
‘‘mass of the vortex’’M, for example, depends strongly on

the way it is measured [31], and the force ~fqp due to
excited phonons has significant memory effects.

For slowly accelerating vortices, the contribution from
the term proportional to €~rv is small. Furthermore, if the
vortex and pinning site move sufficiently slowly, phonons

are not excited ( ~fqp ¼ 0), and we can ignore the entire left-
hand side of Eq. (1) [32]. This leaves the well-established
Magnus relationship !s ~"# ð _~rv ! ~vsÞ ' ! ~Fv relating the
force ~Fv applied to the vortex and its perpendicular veloc-
ity _~rv relative to the background superfluid velocity ~vs.
Thus, by observing the dynamical deflection of a vortex
from a nuclear pinning site, one can directly extract the
direction and approximate magnitude of the vortex-nucleus
force without requiring a subtle subtraction of energies.

In small systems, the Magnus relation can only be used
to estimate the magnitude of the force since the superfluid

density !s and velocity vs are not precisely defined, though
reasonable estimates can be obtained. With an external
pinning potential Vpinð ~rpin ! ~xÞ, however, one can directly
and unambiguously calculate the force on the pinning site:

~F pin ¼ !
Z

d3x
Vpinð ~rpin ! ~xÞ

~rpin
!ð ~xÞ: (2)

In the nuclear context where neutrons are present in the
both the pinning site (the nucleus) and the superfluid
medium, the force can be obtained in two ways: (1)
Eq. (2) can be directly applied to a Coulomb potential
(Vpin) that couples to the proton charge density (!)—this
will be the force that the vortex exerts on the nuclear
lattice—or (2) one can estimate the force using Newton’s
law ~Fpin ¼ mpin ~apin for a dynamic pinning site comprising
protons and entrained neutrons. The position of the
pinning site can be unambiguously defined as the center
of mass of the protons, and the effective mass mpin can be
estimated [33].
What remains is to prepare the initial conditions with a

vortex and nucleus interacting at various distances. The
traditional self-consistent approach requires diagonalizing
N # N matrices (N ¼ NxNyNz) which takesOðN3Þ opera-
tions. This is not feasible for realistic N ( 106, as each
iteration would required a day of supercomputing wall
time. Instead, one can use adiabatic state preparation
[34,35] which takes OðN2 logNÞ operations. The idea is
to adiabatically evolve in real time a state of some solvable
system to a desired initial state in the system of interest. For
example, starting with a noninteracting (Bose) gas trapped
in a harmonic potential VHOðrÞ ¼ mB!

2r2=2, we can form
either the ground state "GS / expð!mB!r2=2Þ, or an
exact vortex ‘‘Landau level’’ "$ / ðxþ iy! $Þ#
expð!mB!r2=2@Þ (stationary in a rotating frame) with
angular momentum lz ¼ N@=ð1þmB!$2=@Þ where $ is
the displacement of the vortex node from the center of the
harmonic trap. From this exact noninteracting state, we
adiabatically evolve the system to an interacting state in the
desired trapping potential Vtrap by simultaneously switch-
ing on the interaction s% and interpolating the trapping
potentials Vt ¼ ð1! sÞVHO þ sVtrap where s ¼ sðt=TÞ is a
smooth C1 switching function that goes from 0 to 1 over a
characteristic time T chosen to be longer than any intrinsic
time scale in the system:

From "GS we can generate the ground state, and from
"$¼0 we can generate a single vortex in the center of the
trap, both to high precision. The adiabatic state preparation
can be significantly accelerated by introducing a ‘‘quantum
friction’’ term to remove phonon noise [35]. With this
combined approach, one can efficiently produce almost
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FIG. 2 (color online). Here we demonstrate consistency in
dynamically extracting a vortex-pinning force. We use the
nuclear pairing potential [15] VpinðrÞ ¼ 0:75 MeV=½1þ
expðr=fm! 7:5Þ* at densities !( 0:045 fm!3 ' 0:28!sat. The
triangular (blue) points come from the computationally expen-
sive ‘‘stationary’’ method, while the solid (green) curve comes
from using the ‘‘dynamic’’ real-time evolution analogous to that
shown on the left panel of Fig. 1. The dotted (red) curve shows
the Magnus estimate for the force (1) using a Thomas-Fermi
approximation for !s and estimating ~vs from the image vortex
[36]. The double curves come from the pinning site moving in
then out.
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Pinning: Dynamics
Extract force with 
dynamical methods

Scales well numerical:
No diagonalization

Extract force at any 
separation

Multiscale analysis:
•Microscopic dft 
•Mesoscopic gpe
•Macroscopic hydro

(HFB) functionals extract the pinning energy of a vortex on
a single nucleus using a cylindrical geometry. In particular,
the conclusion of Ref. [19] that the pinning force is repul-
sive (glitches would thereby require interstitial pinning)
was questioned by Ref. [21] but addressed in Ref. [20],
while a different set of calculations using the local density
approximation suggests that pinning is attractive over a
substantial region in the inner crust [18,22]. Moreover,
nearby vortices and the Casimir effect can significantly
polarize a nucleus—an effect absent in simple cylindrical
geometries—dramatically changing the nature of the nu-
clear pinning sites and disrupting the regularity of the
nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly accurate asymmetric stationary states in full 3D are
currently not feasible (these require a full diagonalization
of the single-particle Hamiltonian), but TDDFTalgorithms
can be applied to the unconstrained 3D problem (which
requires only applying the Hamiltonian), and scale well to
massively parallel supercomputers for both cold atoms and
nuclei, as has been demonstrated in Ref. [24]. We now
present a qualitatively new approach for calculating
vortex-pinning interactions, unencumbered by the afore-
mentioned issues, utilizing only real-time dynamics.

The idea, similar to the Stern-Gerlach experiment, is to
observe how a vortex moves when approached by a nu-
cleus. To zeroth order, the sign of the interaction is deter-
mined qualitatively by the direction of the motion (Fig. 1);
with a more careful inspection, one can extract the force-
separation relationship FðrÞ (Fig. 2).
We validate our procedure using a dynamical extended

Thomas-Fermi (ETF) model [25–28] equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic ‘‘dimers’’
mB ¼ 2m of fermionic pairs, with an equation of state
EðnÞ / !"5=3 characterized by the Bertsch parameter ! $
0:37 tuned to consistently fit both quantum Monte Carlo
and experimental results [27]. Despite the computational
simplicity of the ETF model, it has been demonstrated to
quantitatively reproduce a range of low-energy dynamics
of both UFG experiments [26] and fermionic density
functional theory simulations [28]. The UFG should also
qualitatively model the dilute neutron superfluid in the
crust of neutron stars [5] due to the large neutron-neutron
scattering length ann $ %18:9 fm [29]. Thus, by using a
physically motivated model of the nuclear pairing potential
[15], we anticipate that these ETF calculations will provide
a fairly good approximation of future fermionic TDDFT
simulations.
To gain some intuition for the vortex-nucleus interaction,

consider the phenomenological Hall-Vinen-Iordanskii
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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(HVI) equation (see Ref. [30] for a discussion) for a
vortex in 2D:

M€~rv ! ~fqp ¼ !s ~"# ð _~rv ! ~vsÞ þ ~Fv: (1)

Here, ~rv is the position of the vortex, the force ~Fv is per
unit length along the vortex, !s is the number density of the
‘‘background’’ superfluid, ~" ¼ 2#@~z is the quantized vor-
tex circulation, and ~vs is the ‘‘background’’ superfluid
velocity. This equation should only be taken as an intuitive
guide since terms on the left-hand side are ill-defined. The
‘‘mass of the vortex’’M, for example, depends strongly on

the way it is measured [31], and the force ~fqp due to
excited phonons has significant memory effects.

For slowly accelerating vortices, the contribution from
the term proportional to €~rv is small. Furthermore, if the
vortex and pinning site move sufficiently slowly, phonons

are not excited ( ~fqp ¼ 0), and we can ignore the entire left-
hand side of Eq. (1) [32]. This leaves the well-established
Magnus relationship !s ~"# ð _~rv ! ~vsÞ ' ! ~Fv relating the
force ~Fv applied to the vortex and its perpendicular veloc-
ity _~rv relative to the background superfluid velocity ~vs.
Thus, by observing the dynamical deflection of a vortex
from a nuclear pinning site, one can directly extract the
direction and approximate magnitude of the vortex-nucleus
force without requiring a subtle subtraction of energies.

In small systems, the Magnus relation can only be used
to estimate the magnitude of the force since the superfluid

density !s and velocity vs are not precisely defined, though
reasonable estimates can be obtained. With an external
pinning potential Vpinð ~rpin ! ~xÞ, however, one can directly
and unambiguously calculate the force on the pinning site:

~F pin ¼ !
Z

d3x
Vpinð ~rpin ! ~xÞ

~rpin
!ð ~xÞ: (2)

In the nuclear context where neutrons are present in the
both the pinning site (the nucleus) and the superfluid
medium, the force can be obtained in two ways: (1)
Eq. (2) can be directly applied to a Coulomb potential
(Vpin) that couples to the proton charge density (!)—this
will be the force that the vortex exerts on the nuclear
lattice—or (2) one can estimate the force using Newton’s
law ~Fpin ¼ mpin ~apin for a dynamic pinning site comprising
protons and entrained neutrons. The position of the
pinning site can be unambiguously defined as the center
of mass of the protons, and the effective mass mpin can be
estimated [33].
What remains is to prepare the initial conditions with a

vortex and nucleus interacting at various distances. The
traditional self-consistent approach requires diagonalizing
N # N matrices (N ¼ NxNyNz) which takesOðN3Þ opera-
tions. This is not feasible for realistic N ( 106, as each
iteration would required a day of supercomputing wall
time. Instead, one can use adiabatic state preparation
[34,35] which takes OðN2 logNÞ operations. The idea is
to adiabatically evolve in real time a state of some solvable
system to a desired initial state in the system of interest. For
example, starting with a noninteracting (Bose) gas trapped
in a harmonic potential VHOðrÞ ¼ mB!

2r2=2, we can form
either the ground state "GS / expð!mB!r2=2Þ, or an
exact vortex ‘‘Landau level’’ "$ / ðxþ iy! $Þ#
expð!mB!r2=2@Þ (stationary in a rotating frame) with
angular momentum lz ¼ N@=ð1þmB!$2=@Þ where $ is
the displacement of the vortex node from the center of the
harmonic trap. From this exact noninteracting state, we
adiabatically evolve the system to an interacting state in the
desired trapping potential Vtrap by simultaneously switch-
ing on the interaction s% and interpolating the trapping
potentials Vt ¼ ð1! sÞVHO þ sVtrap where s ¼ sðt=TÞ is a
smooth C1 switching function that goes from 0 to 1 over a
characteristic time T chosen to be longer than any intrinsic
time scale in the system:

From "GS we can generate the ground state, and from
"$¼0 we can generate a single vortex in the center of the
trap, both to high precision. The adiabatic state preparation
can be significantly accelerated by introducing a ‘‘quantum
friction’’ term to remove phonon noise [35]. With this
combined approach, one can efficiently produce almost
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FIG. 2 (color online). Here we demonstrate consistency in
dynamically extracting a vortex-pinning force. We use the
nuclear pairing potential [15] VpinðrÞ ¼ 0:75 MeV=½1þ
expðr=fm! 7:5Þ* at densities !( 0:045 fm!3 ' 0:28!sat. The
triangular (blue) points come from the computationally expen-
sive ‘‘stationary’’ method, while the solid (green) curve comes
from using the ‘‘dynamic’’ real-time evolution analogous to that
shown on the left panel of Fig. 1. The dotted (red) curve shows
the Magnus estimate for the force (1) using a Thomas-Fermi
approximation for !s and estimating ~vs from the image vortex
[36]. The double curves come from the pinning site moving in
then out.
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Application to Nuclei
• Hydrodynamic dft for nuclei

Much simpler/faster than hfb, Skyrme, etc.

• Fits to nuclear masses and charge radii

• Giant Dipole Resonances (gdr)

• 238U Fission

• Collaboration with
• Aurel Bulgac and Shi Jin

University of Washington

• Piotr Magierski
Warsaw University of Technology, University of Washington

0 50 100 150 200 250

A

45

50

55

60

65

70

75

80

85

E
G

D
R
A

1
/
3

[M
eV

]

EGDR ⇡ 31.2A-1/3 + 20.6A-1/6

-0.4
-0.2

0.0
0.2
0.4

�R
c

[f
m

]

0 50 100 150 200 250

A

-10

-5

0

5

10

�E
[M

eV
]

�E = 2.59 MeV, �LD = 0.60 MeV, �R = 0.0587 fm
⌘ = 0.47, a = -712, b = 881, c = 137, c 0 = -160
⇢0 = 0.14, "0 = -15.4, S = 26, L = 29, K = 226

Wednesday, April 15, 15



Density Functional

• Extended Thomas-Fermi (etf) form
• q(ρn, ρp)

Equation of state.  Saturation and symmetry properties: 4 parameters

• q∇(∇ρn, ∇ρp, ⋯)
Gradients: Weisäcker term and higher order: 1-4 parameters

• EC(ρn, ρp) 
Coulomb (includes nucleon charge form-factors)

• Pairing (by hand)

E =

ˆ
d3x

�
E(�n, �p) + E�(��n, ��p, · · · )

�
+ EC(�n, �p)
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Equation of State
E(�n,p) =

3

5

�h2(3�2�n)2/3

2mn
+

3

5

�h2(3�2�p)2/3

2mp
+

+
�
a0�

2/3
+ + a1�+ + a2�

4/3
+ + · · ·

�
�++

+
�
b0�

2/3
+ + b1�+ + b2�

4/3
+ + · · ·

�
�+

�
�n � �p

�+

�2

• Thomas-Fermi (tf) non-interating
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Equation of State
E(�n,p) =

3

5

�h2(3�2�n)2/3

2mn
+

3

5

�h2(3�2�p)2/3

2mp
+

+
�
a0�

2/3
+ + a1�+ + a2�

4/3
+ + · · ·

�
�++

+
�
b0�

2/3
+ + b1�+ + b2�

4/3
+ + · · ·

�
�+

�
�n � �p

�+

�2

• Symmetric nuclear matter

• Exchange for saturation properties: 
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Equation of State
E(�n,p) =

3

5

�h2(3�2�n)2/3

2mn
+

3

5

�h2(3�2�p)2/3

2mp
+

+
�
a0�

2/3
+ + a1�+ + a2�
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+ + · · ·

�
�++

+
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2/3
+ + b1�+ + b2�

4/3
+ + · · ·

�
�+

�
�n � �p
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• Symmetry Energy
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Equation of State

• a0 and b2 small (neglect)
E.g. fit aρ+γ+1 finding γ=4/3
Think expansion in kF = (3π2ρ)1/3

• New term in symmetry energy: b0ρ+5/3
Introduced by Tondeur (1978) to fit P. Siemens nuclear matter calculations
Not in Skyrme functionals, but important for fits!  (needed in unitary gas limit)

E(�n,p) =
3

5

�h2(3�2�n)2/3

2mn
+

3

5

�h2(3�2�p)2/3

2mp
+

+
�
a0�

2/3
+ + a1�+ + a2�

4/3
+ + · · ·

�
�++

+
�
b0�

2/3
+ + b1�+ + b2�

4/3
+ + · · ·

�
�+

�
�n � �p

�+

�2
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Saturation Properties

E �
�
E0 + 1

2K0�2
�

+
�
S0 � L� + 1

2KS�2
� �

�n � �p

�

�2

� =
�0 � �

3�0

• Trade a0, a1, a2 for saturation properties: ρ0, q0, K0
• Trade b0, b1, b2 for symmetry properties: S0, L, KS
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Coulomb Energy

• No new fit parameters

• Fixed proton and neutron form factors GE
• Last term - the Coulomb exchange term - minor role

Omitting does not significantly alter fits, but it helps somewhat
Fitting finds coefficient close to unity

EC(�n, �p) = e2

�ˆ
3�x 3�y

Q(�x)Q(�y)

2��x � �y� �
3

4

�
3

�

�1/3

�4/3
p

�

Q = Gp
E � �p + Gn

E � �n

Wednesday, April 15, 15



Semiclassical Expansion
of Kinetic Energy

�h2

2m

�

c0�5/3 + c2(�
�

�)2 + c4n1/3

��
�2�

�

�2

�
9

8

�
�2�

�

��
��

�

�2

+
1

3

�
��

�

�4
�

+ · · ·
�

See e.g. Brack and Bhaduri “Semiclassical physics” (1997) or
Dreizler and Gross “Density Functional Theory: An Approach to the Quantum Many-Body Problem” (1990)

• c2=1/9 (non-interacting)

• Suggests form for gradient terms
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Brack and Bhaduri “Semiclassical physics” (1997)

Semiclassical Expansion
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Functional

• Original form due to von Weizsäcker (1935)
• η=1
Valid in the limit of a rapidly fluctuating (but weak) external potential

• Semiclassical expansion (non-interacting)
• η=1/9
Valid in the limit of a small gradients

• Fit: η=1/2

E =ETF(�n, �p) + a1�2 + a2�7/3 +
�
b0�5/3 + b1�2

� �
�n � �p

�

�2

+ �
�h2

2

�
(��

�n)2

mn
+

(��
�p)2

mp

�

+ c4 +

η=1/4 looks like dimers
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Liquid Drop Formula

•5 parameter fit to 2249 nuclei
• χr = 2.95 MeV

•7-parameters fit to 2249 nuclei
• χr = 2.49 MeV

Fit to Audi (2012) data with errors < 200keV

a A+ a A2/3 + a
Z2

A1/3
+ a

(Z−N)2

A
+ a

(Z 2) + (N 2)

A1/2

+a
Z2

A2/3
+ a

(Z−N)2

A4/3
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No charge form-factors

Just fit masses

Close agreement with 
liquid drop model (red)

(but fewer parameters!)

Missing shell effects

Masses: 
Audi (2012) - 2236 nuclei

Charge radii: 
Angeli (2013) - 879 radii
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No charge form-factors

Just fit masses

Close agreement with 
liquid drop model (red)

(but fewer parameters!)

Missing shell effects

Masses: 
Audi (2012) - 2236 nuclei

Charge radii: 
Angeli (2013) - 879 radii
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Add Charge form factors
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Fit Charge Radii too

Charge radii from 
Angeli (2013)
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Fit individual c4 terms
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Missing Shell Effects
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• Coupled equations for protons and neutrons
Follow from varying the functional while imposing Galilean covariance

• Pure superfluid hydrodynamics
Irrotational implies
Could extend with viscosity etc.
Implement as a non-linear Schrödinger equation

(Hydro)Dynamics
∂tρ+ ∇⃗ · (ρv⃗) = 0

m
(
∂t + v⃗ · ∇⃗

)
v⃗+ ∇⃗

(
δE(ρ,∇ρ, · · · )

δρ

)
= 0

m∂tv⃗+ ∇⃗
[
mv2

2
+

δE(ρ,∇ρ, · · · )
δρ

]
= 0
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Implement as NLSEQ

• Numerically stable and efficient (same code as before)
(Some tricks with Coulomb)

• Artificial “quantization”
but η=1/4 looks like dimers...
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Calculation by Piotr Magierski
Empirical formula from Berman and Fultz (1975)

Giant Dipole Resonance

Preliminary results

~30% too low
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Entrainment

Galilean invariant

Best fit: α=-0.3
30% to effective mass

Time-dependent 
Skyrme functionals do 
not have this term...
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(no entrainment)

Entrainment does not 
spoil mass fits
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(Preliminary results)

238U Fission
238U ground state ρn,p
Quadrupole v added

Fully 3d simulation
20 min on laptop 
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(dx=1fm)
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Can you simulate 
nuclei?

Boselets, Fermilets, ...
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Realtime 
Methods
•Efficient

•Dft + Hydro.
•Validated with cold 

atoms, nuclei

•New arena to study 
Quantum Turbulence 
and neutron star 
phenomenology
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(HFB) functionals extract the pinning energy of a vortex on
a single nucleus using a cylindrical geometry. In particular,
the conclusion of Ref. [19] that the pinning force is repul-
sive (glitches would thereby require interstitial pinning)
was questioned by Ref. [21] but addressed in Ref. [20],
while a different set of calculations using the local density
approximation suggests that pinning is attractive over a
substantial region in the inner crust [18,22]. Moreover,
nearby vortices and the Casimir effect can significantly
polarize a nucleus—an effect absent in simple cylindrical
geometries—dramatically changing the nature of the nu-
clear pinning sites and disrupting the regularity of the
nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly accurate asymmetric stationary states in full 3D are
currently not feasible (these require a full diagonalization
of the single-particle Hamiltonian), but TDDFTalgorithms
can be applied to the unconstrained 3D problem (which
requires only applying the Hamiltonian), and scale well to
massively parallel supercomputers for both cold atoms and
nuclei, as has been demonstrated in Ref. [24]. We now
present a qualitatively new approach for calculating
vortex-pinning interactions, unencumbered by the afore-
mentioned issues, utilizing only real-time dynamics.

The idea, similar to the Stern-Gerlach experiment, is to
observe how a vortex moves when approached by a nu-
cleus. To zeroth order, the sign of the interaction is deter-
mined qualitatively by the direction of the motion (Fig. 1);
with a more careful inspection, one can extract the force-
separation relationship FðrÞ (Fig. 2).
We validate our procedure using a dynamical extended

Thomas-Fermi (ETF) model [25–28] equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic ‘‘dimers’’
mB ¼ 2m of fermionic pairs, with an equation of state
EðnÞ / !"5=3 characterized by the Bertsch parameter ! $
0:37 tuned to consistently fit both quantum Monte Carlo
and experimental results [27]. Despite the computational
simplicity of the ETF model, it has been demonstrated to
quantitatively reproduce a range of low-energy dynamics
of both UFG experiments [26] and fermionic density
functional theory simulations [28]. The UFG should also
qualitatively model the dilute neutron superfluid in the
crust of neutron stars [5] due to the large neutron-neutron
scattering length ann $ %18:9 fm [29]. Thus, by using a
physically motivated model of the nuclear pairing potential
[15], we anticipate that these ETF calculations will provide
a fairly good approximation of future fermionic TDDFT
simulations.
To gain some intuition for the vortex-nucleus interaction,

consider the phenomenological Hall-Vinen-Iordanskii
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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(HFB) functionals extract the pinning energy of a vortex on
a single nucleus using a cylindrical geometry. In particular,
the conclusion of Ref. [19] that the pinning force is repul-
sive (glitches would thereby require interstitial pinning)
was questioned by Ref. [21] but addressed in Ref. [20],
while a different set of calculations using the local density
approximation suggests that pinning is attractive over a
substantial region in the inner crust [18,22]. Moreover,
nearby vortices and the Casimir effect can significantly
polarize a nucleus—an effect absent in simple cylindrical
geometries—dramatically changing the nature of the nu-
clear pinning sites and disrupting the regularity of the
nuclear lattice [23].

Characterizing the nuclear-pinning interaction will thus
require fully 3D (unconstrained by symmetries) self-
consistent calculations using realistic nuclear functionals.
Highly accurate asymmetric stationary states in full 3D are
currently not feasible (these require a full diagonalization
of the single-particle Hamiltonian), but TDDFTalgorithms
can be applied to the unconstrained 3D problem (which
requires only applying the Hamiltonian), and scale well to
massively parallel supercomputers for both cold atoms and
nuclei, as has been demonstrated in Ref. [24]. We now
present a qualitatively new approach for calculating
vortex-pinning interactions, unencumbered by the afore-
mentioned issues, utilizing only real-time dynamics.

The idea, similar to the Stern-Gerlach experiment, is to
observe how a vortex moves when approached by a nu-
cleus. To zeroth order, the sign of the interaction is deter-
mined qualitatively by the direction of the motion (Fig. 1);
with a more careful inspection, one can extract the force-
separation relationship FðrÞ (Fig. 2).
We validate our procedure using a dynamical extended

Thomas-Fermi (ETF) model [25–28] equivalent to a
Gross-Pitaevskii equation (GPE) for bosonic ‘‘dimers’’
mB ¼ 2m of fermionic pairs, with an equation of state
EðnÞ / !"5=3 characterized by the Bertsch parameter ! $
0:37 tuned to consistently fit both quantum Monte Carlo
and experimental results [27]. Despite the computational
simplicity of the ETF model, it has been demonstrated to
quantitatively reproduce a range of low-energy dynamics
of both UFG experiments [26] and fermionic density
functional theory simulations [28]. The UFG should also
qualitatively model the dilute neutron superfluid in the
crust of neutron stars [5] due to the large neutron-neutron
scattering length ann $ %18:9 fm [29]. Thus, by using a
physically motivated model of the nuclear pairing potential
[15], we anticipate that these ETF calculations will provide
a fairly good approximation of future fermionic TDDFT
simulations.
To gain some intuition for the vortex-nucleus interaction,

consider the phenomenological Hall-Vinen-Iordanskii
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FIG. 1 (color online). Deflection of a vortex in the ETF model of trapped dilute neutron matter as a UFG by a repulsive (left panel)
and attractive (right panel) pinning potential VpinðrÞ ¼ &3:5 MeV=½1þ expðr=fm% 7:5Þ) moving on a straight line from left to right

at a constant subsonic velocity v $ 0:1cs. The trajectory of the vortex is shown by the (black) curve and the relative separation vector
between the pinning site, and the vortex core is shown as thin (white) lines for select times connecting the corresponding dots on the
trajectories. Initially the potential displaces the bulk superfluid, carrying the vortex to the right/left. Once the potential overlaps with
the vortex, the vortex rapidly moves down/up (almost) perpendicular to the force. In the frame shown on the left, the pinning site is just
to the left of the center (x $ %2:5 fm), and the vortex is moving (almost) perpendicular along the edge of the pinning potential. After
the potential has passed through, the vortex orbits in a counterclockwise circle direction due to boundary effects from the trap that can
be quantitatively described in this sharp, flat trap by placing an image vortex outside of the potential to cancel the tangential current at
the boundary: this induces a counterclockwise superflow vs in Eq. (1). The geometry of the right simulation is such that the potential
carries the vortex around almost the entire trap: this extended interaction allows the pinning potential to excite phonons in the system
visible as ripples in the circular trajectory.
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