Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions

Frontiers in Quantum Simulation with Cold Atoms, Seattle, April 1st 2015

Leonardo Fallani

Department of Physics and Astronomy & LENS University of Florence

Introduction

Multicolored SU(N) liquids of fermions

Two-orbital magnetism

Synthetic dimensions

Introduction

Multicolored SU(N) liquids of fermions

Two-orbital magnetism

Synthetic dimensions

Two-electron atoms

A valuable atomic platform for quantum science and technology

Precision spectroscopy

N. Hinkley et al., Science (2013) B. J. Bloom et al., Nature (2014) I. Ushijima et al., Nature Phot. (2015)

Quantum gases

Y. Takasu et al., PRL (2003) T. Fukuhara et al., PRL (2007) S. Kraft et al., PRL (2009) S. Stellmer et al., PRL (2009) Y. N. Martinez et al., PRL (2009)

Ultracold two-electron atoms (Yb, Sr, Ca)

New quantum simulation

M. Cazalilla et al., NJP (2009) A. Gorshkov et al., Nat. Phys. (2010) D. Banerjee et al., PRL (2013)

Quantum information

A. J. Daley, Quantum Inf. Proc.. (2011)

Ytterbium

Ytterbium

Electronic configuration [...]6s² Alkaline-earth-like structure

Seven stable isotopes:

¹⁶⁸ Yb	0.13%	I=0	boson
¹⁷⁰ Yb	3.04%	I=0	boson
¹⁷¹ Yb	14.28%	I=1/2	fermion
¹⁷² Yb	21.83%	I=0	boson
¹⁷³ Yb	16.13%	I=5/2	fermion
¹⁷⁴ Yb	31.83%	I=0	boson
¹⁷⁶ Yb	12.76%	I=0	boson

 $T \sim 0.1 T_F = 10 nK$ N = 10⁴ atoms/spin

Nuclear spin

Purely nuclear spin I=5/2

 $a = +200 a_0$

No dipole-dipole interactions

5/2

Same interaction between different spins \rightarrow SU(6) symmetry

3/2

1/2

-1/2

 \rightarrow 2-body contact interactions $V(\mathbf{r}) \simeq g \,\delta(\mathbf{r})$

-3/2

M. Cazalilla and A. M. Rey, Rep. Prog. Phys. 77, 124401 (2014).

-5/2

Long-lived electronic states

Metastable electronic state (~10 s lifetime)

Ultranarrow clock transition (doubly forbidden, ~10 s linewidth)

New possibilities for quantum simulation

Two internal degrees of freedom with long coherence times:

Nuclear spin / SU(N)

Electronic orbital

Introduction

Multicolored SU(N) liquids of fermions

Two-orbital magnetism

Synthetic dimensions

G. Pagano et al., Nature Phys. 10, 198 (2014)

Strongly-interacting SU(N) fermions

Independent 1D quantum wires of strongly repulsive fermions

2D optical lattice

- approx. 100 fermionic wires
- lattice depth 40 E_{rec} (no tunnelling)
- 3D scattering length $a = +200 a_0$

How does the physics of strongly interacting fermions change as a function of N?

Nuclear spin manipulation

Optical pumping + spin-selective detection (optical Stern-Gerlach) SU(N) symmetry \rightarrow no spin-changing collisions

Momentum distribution

Momentum distribution measured after time-of-flight expansion:

Collective dynamics

Redshift of the breathing frequency caused by strong 1D interactions

For $M \rightarrow \infty$ the breathing frequency approaches that of spinless bosons!

«<u>bosonization</u>» of large-spin fermionsG. Pagano et al., Nature Phys. **10**, 198 (2014)

A very general result first demonstrated in

C. N. Yang & Y. Yi-Zhuang, CPL **28**, 020503 (2011)

Outlook: SU(N) physics

A new experimental atomic system, with <u>tunable</u> interaction symmetry

SU(N) Fermi-Hubbard

SU(N) magnetism, chiral spin liquids, ...

M. Hermele et al., PRL 103, 135301 (2009)
A. V. Gorshkov et al., Nature Phys. 6, 289 (2010)
G. Szirmai et al., PRA 84, 011611 (2011)
P. Sinkovicz et al., PRA 88, 043619 (2013)

Poster: Conjun Wu

Quantum simulation of gauge theories

U(N), SU(N), CP(N) models D. Banerjee et al., PRL **100**, 125303 (2013) Posters: Debasish Banerjee, Marcello Dalmonte

Introduction

Multicolored SU(N) liquids of fermions

Two-orbital magnetism

Synthetic dimensions

G. Cappellini et al., PRL **113**, 120402 (2014) 😵

Multi-orbital physics

Optical clock transition

Optical clock technology:

Collaboration with Yb clock team @ INRIM (Turin)

Optical clock transition

Optical clock technology:

Collaboration with Yb clock team @ INRIM (Turin)

Multi-orbital physics

The interaction strength depends on the electronic state:

g-e spin-exchange interaction

Two fermions (g+e) in a trap

A. V. Gorshkov et al., Nature Phys. 6, 289 (2010)

A local spin-exchange interaction between different "orbitals" arises:

Differentizetizetiog leftettetvor-partiale states:

$$|eg^{-}\rangle \propto \left[\underbrace{\uparrow}_{g_{1}} \underbrace{\bullet}_{g_{2}} \underbrace{+}_{g_{1}} \underbrace{\bullet}_{g_{2}} \underbrace{\bullet}_{g_{2}} \underbrace{\bullet}_{g_{2}} \underbrace{\bullet}_{g_{2}} \underbrace{+}_{g_{2}} \underbrace{$$

g-e spin-exchange oscillations

A magnetic field B induces a mixing between the two channels:

$$|\psi\rangle = \alpha |\mathrm{eg}^+\rangle + \beta |\mathrm{eg}^-\rangle$$

B field quench + free evolution $|\psi(t)\rangle = \alpha |eg^+\rangle + \beta e^{-i2V_{ex}t/\hbar} |eg^-\rangle$

Ground-state magnetization: Spectrum of the 578nm clock transition $ikg \exists \psi(q) = Ha_{t}^{1} t = e^{\beta} \cos\left(\frac{2V_{ex}}{\hbar}t\right)$

direct observation of long-lived interorbital spin-exchange oscillations G. Cappellini et al., PRL **113**, 120402 (2014) **S**

g-e spin-exchange interaction

Very large spin-exchange energy!!!

 $V_{ex} >> k_B T$

Strong repulsion in the antisymmetric state, close to the lattice band separation

Beyond standard Hubbard treatment of interactions ("fermionization" of spatial wavefunction)

 $a_{eg}^{+} = 220 a_0$ $a_{eg}^{-} = 3300 a_0$

T. Busch et al., Found. Phys. 28, 549 (1998)

Outlook: two-orbital physics

Nuclear spin + electronic orbital: two stable internal degrees of freedom

Quantum information processing

Coherent control of nuclear and electronic state Two entangled internal degrees of freedom

Quantum simulation of two-orbital physics

Strong spin-orbital interaction SU(N) orbital magnetism, Kondo lattice model

A. V. Gorshkov et al., Nat. Phys. **6**, 289 (2010) Talk: Ana Maria Rey

Ultranarrow transitions: new manipulation/detection

Many-body physics with metrological control

SU(N) symmetry in g-e interaction

SU(N)-symmetric interactions in two-electron atoms

see related work:

X. Zhang et al., Science 345 , 1467 (2014)	Sr
F. Scazza et al., Nat. Phys. 10 , 779 (2014)	Yb

Measurement of spin-exchange frequency is a very accurate probe of SU(N) symmetry

Introduction

Multicolored SU(N) liquids of fermions

Two-orbital magnetism

Synthetic dimensions

collaboration with M. Rider, P. Zoller, M. Dalmonte

M. Mancini et al., arXiv:1502.02495 (2015)

Coherent coupling of nuclear spin

Raman transitions coupling coherently different nuclear spin states:

Coherent coupling of nuclear spin

Analogous to coherent tunnelling coupling in an optical lattice:

 $H = -t \sum_{j} \left(c_{j}^{\dagger} c_{j+1} + h.c. \right)$

Simulating an "extra dimension"

Raman transitions coupling coherently different nuclear spin states:

Realization of a synthetic lattice dimension

O. Boada et al., PRL 108, 133001 (2012)

An atomic Hall ribbon

Investigating topological states of matter in a hybrid lattice

An atomic Hall ribbon

Feature #1

Complex laser-assisted tunneling \rightarrow <u>Synthetic gauge fields</u> with minimal requirements

An atomic Hall ribbon

Feature #2

Sharp and addressable edges Single-site imaging along synthetic dimension

 $H = -t \sum_{j,m} (c_{j,m}^{\dagger} c_{j+1,m} + h.c.) - \Omega \sum_{j,m} (e^{i\varphi j} c_{j,m}^{\dagger} c_{j,m+1} + h.c.)$

Harper, Proc. Phys. Soc. A **68**, 874 (1955) Hofstadter, PRB **14**, 2239 (1976)

The Hofstadter butterfly

Spectrum of a charged particle in a 2d lattice + magnetic field (bulk states)

Bulk and edge states

Eigenstates of the Harper-Hofstadter model in a finite-sized system (30)

(30x20 lattice)

							(0.0)		逛逛						833	
		1923) 6226				Ç.		141	邋遢	羅			XX		680	hered
10]	致风		\$¢							XX	376			和其	ť.#C	891169 691169
	20012 1010 1010 1010 1010 1010 1010 101	\$2. \$2.		からな				2112 2112			(* 1		$\begin{bmatrix} 0,1 & [1,0] \\ 1 & 1 \\ 0,1 & [1,0] \end{bmatrix}$	b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i (Čji
				XX		<u>O</u>					33				E E	Audited
					á: ið		- (Ç) -									
HËH							1880 (22 []			1.0.0.3 1010-3				
	BIH			(8:8)			(1321)					:				
					**		*::*									
2013 2012		4	anna Anna				N tot N N tot N								000	
•••		11 100 (11		XXXXX) i - i (9 9 2 5								61013 61013	1.1	24145 24142
	801103		54 . 42 24 . 43						010						$\langle x \rangle$	
					$\mathbf{x}_{\mathbf{x}}^{\mathbf{v}}(\mathbf{x})$			8 2 8 8 2 8 8 2 8					$\mathbb{D}_{\mathcal{L}}^{(1)}$	sin nir ga ag		
							0 0		+ 2, 3, 4 (3‡0) 4, 7, 7, 4	эх.	0.0					

Bulk and edge states

2-leg ladders

Adiabatic loading of a 2-leg ladder (edges only)

Lattice momentum distribution:

Chiral phase transition

3-leg ladders

Adiabatic loading of a 3-leg ladder (edges + bulk)

Lattice momentum distribution:

Conductive edges and no bulk current

Evolution of a wavepacket prepared on the edge:

Evolution of a wavepacket prepared on the edge:

Initial state with <k>=0 on the m=-5/2 leg

Quenched dynamics after activation of synthetic tunneling

A hallmark of quantum Hall physics

see related work by Spielman's group (NIST):

B. K. Stuhl et al., arXiv:1502.02496 (2015)

Outlook: synthetic dimensions

Synthetic dimensions: a <u>brand new concept</u> for atomic physics experiments

New manipulation/detection possibilities

Engineering topology

Periodic boundary conditionsRings, cylinders, tori, Moebius strips...O. Boada et al., arXiv:1409.4770 (2014)

Interactions + gauge fields

Fractional quantum Hall effect New interaction-induced quantum phases Anisotropic interactions

Discussions with Innsbruck, Pisa, ... Talk: Hui Zhai, Poster: Leonardo Mazza

Summary

Multicomponent 1D liquids of fermions

G. Pagano et al., Nature Phys. 10, 198 (2014)

Two-orbital magnetism

G. Cappellini et al., PRL 113, 120402 (2014)

Edge states in synthetic dimensions

M. Mancini et al., arXiv:1502.02495 (2015)

Credits

Funding from EU, ERC, MIUR

two-electron atoms (Yb)

superfluid fermions (Li)

quantum interferometry (K)

disorder (K)

bose-bose mixtures (Rb/K)

atom chip (Rb)

fermi-fermi mixtures (Cr/Li)

trapped ion + atoms (Ba+/Li)

Thank you!

Multicomponent 1D liquids of fermions

G. Pagano et al., Nature Phys. 10, 198 (2014)

Two-orbital magnetism

G. Cappellini et al., PRL 113, 120402 (2014)

Edge states in synthetic dimensions

M. Mancini et al., arXiv:1502.02495 (2015)