Higgs bound states and heavy solitons of Bose gases in optical lattices

— Designing different kinds of superfluid —

Ippei Danshita (段下 一平)

Yukawa Institute for Theoretical Physics, Kyoto University

Frontiers in Quantum Simulation with Cold Atoms @ INT, Seattle April 14th, 2015

1. Introduction:

Strongly correlated superfluids in optical lattices

2. Higgs bound states in a single-component Bose gas T. Nakayama, I. Danshita, T. Nikuni, & S. Tsuchiya, arXiv:1503.01516 (2015)

3. Heavy solitary waves in a two-component Bose gas Y. Kato, D. Yamamoto, & I. Danshita, Phys. Rev. Lett. 112, 055301 (2014) I. Danshita, D. Yamamoto, & Y. Kato, Phys. Rev. A 91, 013630 (2015)

1. Introduction:

Strongly correlated superfluids in optical lattices

2. Higgs bound states in a single-component Bose gas T. Nakayama, I. Danshita, T. Nikuni, & S. Tsuchiya, arXiv:1503.01516 (2015)

3. Heavy solitary waves in a two-component Bose gas Y. Kato, D. Yamamoto, & I. Danshita, Phys. Rev. Lett. 112, 055301 (2014) I. Danshita, D. Yamamoto, & Y. Kato, Phys. Rev. A 91, 013630 (2015)

Takeru Nakayama ISSP, Univ. Tokyo

Tetsuro Nikuni Tokyo Univ. of Science

Shunji Tsuchiya Tohoku Tech.

1. Introduction:

Strongly correlated superfluids in optical lattices

- **2. Higgs bound states in a single-component Bose gas** T. Nakayama, I. Danshita, T. Nikuni, & S. Tsuchiya, arXiv:1503.01516 (2015)
- **3. Heavy solitary waves in a two-component Bose gas** Y. Kato, D. Yamamoto, & I. Danshita, Phys. Rev. Lett. 112, 055301 (2014) I. Danshita, D. Yamamoto, & Y. Kato, Phys. Rev. A 91, 013630 (2015)

Yasuyuki Kato RIKEN → Univ. Tokyo

Daisuke Yamamoto WIAS, Waseda Univ.

1.1. Schrödinger equation with cubic nonlinearity

Steinhauer et al., PRL (2002)

Florence: De Sarlo et al., PRA (2005)

Albiez et al., PRL (2005)

1.2. Superfluid (SF)-Mott insulator (MI) transition of Bose gases in optical lattices

Greiner et al., Nature (2002)

Shallow lattice \rightarrow Superfluid

Particles are delocalized !!

Deep lattice \rightarrow Mott insulator Particles are localized !!

- Quantum phase transitions
- Superfluidity in a strongly interacting regime

Discrete Landau-Lifshitz equation with no damping:

$$i\hbar \frac{d}{dt}\psi_j = -2J\left(\frac{1}{2} - n_j\right)\sum_{\langle l\rangle_j}\psi_l - \mu_0\psi_j$$

Different solitary waves Barakrishnan et al., PRL (2009) Demler & Maltsev, Ann. Phys. (2011)

1.4. What we do here

The strong correlations in optical-lattice systems can be useful for designing SF equations of motion in various forms.

Specifically, we study

Effects of potential barriers on the relativistic SF, especially the Higgs modes

$$i\hbar \underline{v_K(\mathbf{x})}\frac{\partial \psi}{\partial t} - \hbar^2 W_0 \frac{\partial^2 \psi}{\partial t^2}$$
$$= \left(-\frac{\hbar^2 \nabla^2}{2m_*} + r_0 + \underline{v_r(\mathbf{x})} + u_0 |\psi|^2\right) \psi$$

 \diamond Solitary waves of SF obeying NLSE

 $i\hbar\frac{\partial}{\partial t}\psi = \left[-\frac{\hbar^2\nabla^2}{2m_{\rm eff}} + V - \mu + u|\psi|^2 + w|\psi|^4\right]$

(more precisely, its two-component version)

with cubic and <u>quintic nonlinearity</u>

 $u/(wn_0)$

1. Introduction:

Strongly correlated superfluids in optical lattices

2. Higgs bound states in a single-component Bose gas T. Nakayama, I. Danshita, T. Nikuni, & S. Tsuchiya, arXiv:1503.01516 (2015)

3. Heavy solitary waves in a two-component Bose gas Y. Kato, D. Yamamoto, & I. Danshita, Phys. Rev. Lett. 112, 055301 (2014) I. Danshita, D. Yamamoto, & Y. Kato, Phys. Rev. A 91, 013630 (2015)

Takeru Nakayama ISSP, Univ. Tokyo

Tetsuro Nikuni Tokyo Univ. of Science

Shunji Tsuchiya Tohoku Tech.

2.1. Higgs modes in condensed matter physics

Experiments on Higgs modes:

♦ Quantum magnets; Rüegg *et al.*, PRL (2008)

Superconductors; Matsunaga *et al.*, PRL (2013).

Charge density wave materials; Yusupov *et al.*, Nat. Phys. (2010).

Superfluid ³He-*B*; Collett *et al.*, JLTP (2013)

Superfluid Bose gases in optical lattices; Endres *et al.*, Nature (2012).

Higgs modes are interesting because ...

- Ubiquitous collective mode in systems with particlehole symmetry and breaking of continuous symmetry. a 1.2⁰
- Analogous to the Higgs particle in high energy physics.
- Low-energy mode playing a crucial role in the vicinity of quantum phase transitions.
- Smoking gun of the "relativistic" SF.

2.2. Bose gases in optical lattices

Bose-Hubbard model:

$$\begin{split} \hat{H} &= -J\sum_{\langle j,l\rangle} (\hat{b}_{j}^{\dagger}\hat{b}_{l} + \hat{b}_{l}^{\dagger}\hat{b}_{j}) + \frac{U}{2}\sum_{j} \hat{n}_{j}(\hat{n}_{j} - 1) - \mu\sum_{j} \hat{n}_{j} \\ \text{Near} \\ \text{SF-MI} \\ \text{transition} \\ J: \text{ hopping, } U: \text{ onsite interaction, } \mu: \text{ chemical potential transition} \\ \text{Time-dependent Ginzburg-Landau (TDGL) equation: } 20 \\ \text{(See, e.g. Sachdev "Quantum Phase Transitions")} \\ iK \frac{\partial}{\partial t}\psi - W \frac{\partial^{2}}{\partial t^{2}}\psi = \left[-\frac{\nabla^{2}}{2m_{*}} + r + u|\psi|^{2} \right]\psi \\ \text{All the coefficients } K, W, m_{*}, r, \text{ u can be explicitly expressed by the original Bose-Hubbard parameters.} \\ \text{We set } \hbar = 1. \\ \hline \\ \text{When } K\text{=0 (dashed line), TDGL eq. is particle-hole (p-h) symmetric, i.e. symmetric w.r.t. } \psi \leftrightarrow \psi^{*}. \\ \hline \\ \text{Verture } J = \frac{1}{2} \int_{0}^{M_{1}} \frac{1}{2} \int_{0}^{M_{2}} \frac{1}{2} \int_{0}$$

2.3. Collective modes in a homogeneous system

When K=0,
$$iK \frac{\partial}{\partial t}\psi - W \frac{\partial^2}{\partial t^2}\psi = \left[-\frac{\nabla^2}{2m_*} + r + u|\psi|^2\right]\psi$$

 $\psi(\mathbf{x}, t) = \psi_0 + \mathcal{U}(\mathbf{x})e^{-i\omega t} + \mathcal{V}^*(\mathbf{x})e^{i\omega^* t}$
Static value Small fluctuations
Linearize the TDGL eq. w.r.t. the fluctuations.
Eq. for the static order parameter: $(r + u|\psi_0|^2)\psi_0 = 0$
Eq. for the NG phase mode: $\left(-\frac{\nabla^2}{2m_*} + r + u|\psi_0|^2\right)S(\mathbf{x}) = W\omega^2S(\mathbf{x})$
Eq. for the Higgs amplitude mode: $\left(-\frac{\nabla^2}{2m_*} + r + 3u|\psi_0|^2\right)T(\mathbf{x}) = W\omega^2T(\mathbf{x})$
where $S(\mathbf{x}) = \mathcal{U}(\mathbf{x}) - \mathcal{V}(\mathbf{x}) \propto \delta\theta(\mathbf{x}), T(\mathbf{x}) = \mathcal{U}(\mathbf{x}) + \mathcal{V}(\mathbf{x}) \propto \delta n(\mathbf{x}),$
 $|\psi_0|^2 = -r/u$, and assume the plain wave solutions $S(\mathbf{x}), T(\mathbf{x}) \sim e^{i\mathbf{k}\cdot\mathbf{x}}$
Dispersion of the NG mode: $\omega^2 = (ck)^2 + \Delta^2$
 $c = \sqrt{1/(2m_*W)}, \ \Delta = \sqrt{-2r/W}$ Note $r = 0$
at the Mott transition λ

2.4. Beliaev decay of the Higgs mode into NG modes

Decay rate of the Higgs mode: Altman & Auerbach, PRL (2002)

$$\frac{\Gamma}{\Delta} \sim |\bar{U}_{\rm c} - \bar{U}|^{\frac{D-3}{2}}$$

When D<3, the Higgs mode is overdamped near the critical point. Thus, it is naively expected that long-lived Higgs modes are not present in **2D**.

However, recent QMC simulations found the peak corresponding to 0.12 the Higgs mode in the response to the hopping vibration:

$$\hat{V}(t) = \frac{\hat{V}(t)}{-A_J \cos(\omega t) \sum_{\langle j,l \rangle} (\hat{b}_j^{\dagger} \hat{b}_l + \hat{b}_l^{\dagger} \hat{b}_j)} \begin{bmatrix} 0.08 \\ 0.06 \\ 0.04 \end{bmatrix}}$$

Pollet & Prokof'ev, PRL (2012)

10 ω/J 15

 $U_{
m c}/J$

5

0.1

0.08

0.04

0 0 See also, Podolsky et al., PRB (2011) Gazit et al., PRL (2013) Chen et al., PRL (2013) Rancon & Dupuis, PRA (2014)

In the following, we assume **3D** system, where Higgs modes are long-lived.

2.5. Effects of potential barriers

- Materials are much dirtier than the universe.
- A single potential barrier is one of the simplest disorder.
 - It can be created in cold-atom experiments in a well-controlled manner.

2.5. Effects of potential barriers

We consider potential barriers that are present only in the x direction. We assume that K=0 far from potential barriers.

(a) Local modulation of the chemical potential:

$$\mu_{i_x} = \mu_0 - V_{i_x}$$
Homogeneous
lattice potential
lattice potential
Homogeneous
lattice potential
lattice potential
homogeneous
ho

2.6. Dimensionless form

$$iv_{K}(x)\frac{\partial}{\partial t}\psi - W\frac{\partial^{2}}{\partial t^{2}}\psi = \left[-\frac{\nabla^{2}}{2m_{*}} + r_{0} + v_{r}(x) + u|\psi|^{2}\right]\psi$$

$$\bar{t} = t(-r_{0}/W)^{1/2}, \ \bar{x} = x/\xi, \ \bar{\psi} = \psi(-u/r_{0})^{1/2},$$

$$\bar{v}_{K} = v_{K}/(-r_{0}W)^{1/2}, \ \bar{v}_{r} = v_{r}/(-r_{0}), \ \text{where} \ \xi = 1/(-m_{*}r_{0})^{1/2}$$

$$i\bar{v}_{K}(x)\frac{\partial}{\partial \bar{t}}\bar{\psi} - \frac{\partial^{2}}{\partial \bar{t}^{2}}\bar{\psi} = \left[-\frac{\bar{\nabla}^{2}}{2} - 1 + \bar{v}_{r}(x) + |\bar{\psi}|^{2}\right]\bar{\psi}$$

Hereafter, we omit the bars for simplicity.

Note that in this unit

Sound speed: $c = 1/\sqrt{2}$, Higgs gap: $\Delta = \sqrt{2}$

2.7. Set of equations

We assume that the order parameter is homogeneous in the y and z directions.

$$iv_{K}(x)\frac{\partial}{\partial t}\psi - \frac{\partial^{2}}{\partial t^{2}}\psi = \left[-\frac{1}{2}\frac{\partial^{2}}{\partial x^{2}} - 1 + v_{r}(x) + |\psi|^{2}\right]\psi$$

$$\psi(x,t) = \psi_{0}(x) + \mathcal{U}(x)e^{-i\omega t} + \mathcal{V}^{*}(x)e^{i\omega^{*}t}$$
Static order parameter Small fluctuations
Linearize the TDGL eq. w.r.t. the fluctuations.

Static GP-like eq.: $\left(-\frac{1}{2}\frac{d^{2}}{dx^{2}} - 1 + |\psi_{0}(x)|^{2} + v_{r}(x)\right)\psi_{0}(x) = 0$
No effect of $v_{K}(x)$ term

NG mode: $\left(-\frac{1}{2}\frac{d^{2}}{dx^{2}} - 1 + |\psi_{0}(x)|^{2} + v_{r}(x)\right)S(x) = \omega^{2}S(x) - \omega v_{K}(x)T(x)$

Higgs mode: $\left(-\frac{1}{2}\frac{d^{2}}{dx^{2}} - 1 + 3|\psi_{0}(x)|^{2} + v_{r}(x)\right)T(x) = \omega^{2}T(x) - \frac{\omega v_{K}(x)S(x)}{\omega v_{K}(x)S(x)}$

The Higgs and NG modes are coupled via the potential barrier $v_{K}(x)$.

2.8. Static order parameter

We consider potential barriers of delta-function form:

$$v_r(x) = V_r \delta(x), \ v_K(x) = V_K \delta(x),$$

Solution of the static order parameter:

 $\psi_0(x) = \tanh(|x| + x_0)$

The constant x_0 is determined by the boundary condition:

$$\psi_0'(-0) + 2V_r\psi_0(0) = \psi_0'(+0)$$

$$\tanh(x_0) = \frac{-V_r + \sqrt{V_r^2 + 4}}{2} \simeq \frac{1}{V_r} \text{ when } V_r \gg 1$$

2.9. Higgs bound states

Let us consider the case that $V_K = 0, V_r > 0.$ NG mode: $\left(-\frac{1}{2}\frac{d^2}{dx^2} - 1 + |\psi_0(x)|^2 + v_r(x)\right)S(x) = \omega^2 S(x) - \omega v_r$ Higgs mode: $\left(-\frac{1}{2}\frac{d^2}{dx^2} - 1 + 3|\psi_0(x)|^2 + v_r(x)\right)T(x) = \omega^2 T(x) - \omega v_r$

There are two bound state solutions of the Higgs mode:

$$T(x) = \begin{cases} A \left(3[\gamma(x)]^2 + 3\kappa_t \gamma(x) + \kappa_t^2 - 1 \right) e^{\kappa_t x}, & x < 0 \\ B \left(3[\gamma(x)]^2 + 3\kappa_t \gamma(x) + \kappa_t^2 - 1 \right) e^{-\kappa_t x}, & x > 0 \\ & \text{where } \gamma(x) = \tanh(|x| + x_0), \ \kappa_t = \sqrt{4 - 2\omega^2} \end{cases}$$

Boundary conditions: $T(+0) = T(-0), T'(+0) = T'(-0) + 2V_rT(0)$

one bound-state solution respectively for

A = B (even parity), A = -B (odd parity)

Bound-state energy: E_+ , E_-

Note: There is no bound state of the NG mode.

2.9. Higgs bound states

The diminishing order parameter combined with the potential barrier constitutes a **double well potential** for collective modes. It allows for formation of **bound states of the Higgs mode**.

 $T(+0) = T(-0), T'(-0) + 2V_r T(0) + 2EV_K S(0) = T'(+0)$

All the coefficients, r_{ng} , t_{ng} , A, and B.

2.11. Transmission probability

2.12. Remember Feshbach resonance

Energy

Figure is from the Pethick-Smith textbook.

The interference with the scattering process through the discrete state leads to the dramatic change of the scattering length, namely the Feshbach resonance.

2.13. Fano resonance $\mathcal{T}(E) = |t_{\rm ng}|^2 = \frac{1}{1 + \frac{2E^2}{(2E^2 + 1)^2} V_{\rm eff}(E)^2}, \ (E < \Delta)$ $V_{\text{eff}}(E) = \left(1 - V_K^2 f(E)\right) V_r \simeq V_r - \frac{\alpha V_K^2}{E - E_+} V_r. \quad \text{for } |E - E_+| \ll 1$ Direct scattering Scattering through the even Higgs bound state. $\sqrt{(V_r, V_K)} =$ (4, 4)0.8- $_{3}(V_{r},V_{K}) = (4,4)$ $V_K^2 f(E)$ 0.6 H0.4 0.2 -5 0.6 0.8 0.2 0.4 1.0 $\widetilde{E_{\perp}}$ $\widetilde{E_{\perp}}$ Δ 0.8 1.0 $E_+ E_- \Delta$ 0 0.2 0.4 0.6 EE

The asymmetric peak is manifestation of the Fano resonance of the NG mode (open channel) mediated by the even Higgs bound state (closed channel).

2.14. Summary of this part

- We derived the time-dependent Ginzburg-Landau equation including effects of potential barriers.
- Higgs bound states are present under the barrier potential that does not break the particle-hole symmetry.
- Fano resonance of the NG mode mediated by the Higgs bound state

T. Nakayama, I. Danshita, T. Nikuni, & S. Tsuchiya, arXiv:1503.01516 (2015)

Outlook:

- Response of the Higgs bound states to the lattice amplitude modulation.
- 2D
- Other condensed matter systems
 Especially disordered superconductors,
 Sherman et al., Nat. Phys. (2015).

1. Introduction:

Strongly correlated superfluids in optical lattices

- **2. Higgs bound states in a single-component Bose gas** T. Nakayama, I. Danshita, T. Nikuni, & S. Tsuchiya, arXiv:1503.01516 (2015)
- **3. Heavy solitary waves in a two-component Bose gas** Y. Kato, D. Yamamoto, & I. Danshita, Phys. Rev. Lett. 112, 055301 (2014) I. Danshita, D. Yamamoto, & Y. Kato, Phys. Rev. A 91, 013630 (2015)

Yasuyuki Kato RIKEN → Univ. Tokyo

Daisuke Yamamoto WIAS, Waseda Univ.

3.1. Bose-Bose mixture in optical lattices

A simple extension, but rich physics

 New quantum phases have been predicted, such as phase separation,

pair- and counterflow- superfluids, checkerboard solid,

supersolid (checkerboard + superfluid).

Kuklov & Svistunov, PRL (2003) Altman et al., NJP (2003) Paredes & Cirac, PRL (2003) Mishra et al., PRA (2007) Capogrosso-Sansone et al., PRA (2008) etc.

First-order superfluid-Mott insulator transition

Hereafter, we assume $t_A = t_B \equiv t$, $U_A = U_B \equiv U > 0$, and $\mu_A = \mu_B \equiv \mu$.

This condition can be nearly satisfied in a gas of ⁸⁷Rb binary mixtures with $|F=2,m_F=-1>$ and $|F=1,m_F=1>$ (or |2,-2> & |1,-1>) states, which are confined in optical lattices by many groups, such as Max Planck, Stony Brook, MIT, NIST.

3.3. Mean-field phase diagram at T=0

T. Ozaki et al., arXiv:1210.1370 (2012); D. Yamamoto et al., PRA 88, 033624 (2013)

Is the 1st order transition real ??

SCF: Super-counter flow *Z*: Coordination number

3.4. QMC phase diagram at 2D and $U_{AB}/U=0.9$

3.5. How to derive the effective action

Euclidian action for the two-comp. BHM: $S[b_A, b_A^*, b_B, b_B^*] = S_A + S_B + S_{AB}$, $S_{\alpha} = \int_{-\frac{\hbar\beta}{2}}^{\frac{\hbar\beta}{2}} d\tau \left| \sum_{j} b_{\alpha,j}^{*} \left(\hbar \frac{\partial}{\partial \tau} - \mu_{\alpha} + \frac{U_{\alpha\alpha}}{2} b_{\alpha,j}^{*} b_{\alpha,j} \right) b_{\alpha,j} - \sum_{\langle j,l \rangle} t_{\alpha} \left(b_{\alpha,j}^{*} b_{\alpha,l} + c.c. \right) \right|,$ $S_{AB} = \int_{-\frac{\hbar\beta}{2}}^{\frac{n\beta}{2}} d\tau \sum_{i} U_{AB} \, b_{A,j}^* b_{A,j} b_{B,j}^* b_{B,j}.$ • Stratonovich-Hubbard transformation to introduce ψ_{lpha} fields M. P. A. Fisher et al., • Integrate out b_{α} fields Superfluid order parameter PRB (1989) for the • Cumulant expansion up to the sixth order w.r.t. the field ψ_{lpha} single-component BHM • Take the continuum limit $S^{\text{eff}}[\psi_A, \psi_A^*, \psi_B, \psi_B^*] = \hbar\beta V f_0 + S_A^{\text{eff}} + S_B^{\text{eff}} + S_{AB}^{\text{eff}},$ Effective action: where $S_{\alpha}^{\text{eff}} = \int d\tau \int d^d x \left[\hbar K_{\alpha} \psi_{\alpha}^* \frac{\partial \psi_{\alpha}}{\partial \tau} + \hbar^2 J_{\alpha} \left| \frac{\partial \psi_{\alpha}}{\partial \tau} \right|^2 + \frac{\hbar^2}{2m_{\alpha}} |\nabla \psi_{\alpha}|^2 \right]$ $-r_{\alpha}|\psi_{\alpha}|^{2}+\frac{u_{\alpha}}{2}|\psi_{\alpha}|^{4}+\frac{w_{\alpha}}{2}|\psi_{\alpha}|^{6}],$ $S_{AB}^{\text{eff}} = \int d\tau \int d^d x \left[u_{AB} |\psi_A|^2 |\psi_B|^2 + w_{AB} |\psi_A|^4 |\psi_B|^2 + w_{BA} |\psi_A|^2 |\psi_B|^4 \right].$ All the coefficients $K_{\alpha}, J_{\alpha}, m_{\alpha}, r_{\alpha}, u_{\alpha}, u_{AB}, w_{\alpha}, w_{AB(BA)}$ can be explicitly expressed as functions of the original Hubbard parameters.

 $\psi_lpha \propto \langle \hat{b}_j
angle$ such that it plays a role of the superfluid order parameter.

3.6. Mechanism for the first order transition

Mean-field approximation:
$$\psi_A(\mathbf{x}, \tau) = \psi_B(\mathbf{x}, \tau) = \phi$$

 $S^{\text{eff}} = \hbar\beta V f \text{ with } f = f_0 - 2r\phi^2 + (\underline{u + u_{AB}})\phi^4 + \frac{2}{3}(\underline{w + 3w_{AB}})\phi^6, = u_+$

Assuming $w_+ > 0$

3.7. Why attractive?

Assuming the Mott insulating state is described as $\ket{n_A,n_B}=\ket{g,g}$, we obtain

$$\begin{split} u_{AB} &= a^{d}Z^{4}t_{A}^{2}t_{B}^{2}\left[\left(\frac{g+1}{E_{A}^{(+)}-E_{g,g}g}+\frac{g}{E_{A}^{(-)}-E_{g,g}g}\right)\left(\frac{g+1}{(E_{B}^{(+)}-E_{g,g})^{2}}+\frac{g}{(E_{B}^{(-)}-E_{g,g})^{2}}\right)\right.\\ &+\left(\frac{g+1}{E_{B}^{(+)}-E_{g,g}g}+\frac{g}{E_{B}^{(-)}-E_{g,g}g}\right)\left(\frac{g+1}{(E_{A}^{(+)}-E_{g,g})^{2}}+\frac{g}{(E_{A}^{(-)}-E_{g,g})^{2}}\right)\right.\\ &-\left(\frac{1}{E_{A}^{(+)}-E_{g,g}g}+\frac{1}{E_{B}^{(+)}-E_{g,g}g}\right)^{2}\frac{(g+1)^{2}}{E_{AB}^{(++)}-E_{g,g}g}}\\ &-\left(\frac{1}{E_{A}^{(-)}-E_{g,g}g}+\frac{1}{E_{B}^{(-)}-E_{g,g}g}\right)^{2}\frac{g(g+1)}{E_{AB}^{(+)}-E_{g,g}g}}\\ &-\left(\frac{1}{E_{A}^{(-)}-E_{g,g}g}+\frac{1}{E_{B}^{(-)}-E_{g,g}g}\right)^{2}\frac{g(g+1)}{E_{AB}^{(-)}-E_{g,g}g}}\right], \end{split}$$

3.7. Why attractive?

Since these two states have nearly equal energy when $U \sim U_{AB}$, this process gives a large negative contribution to u_{AB} .

Reminiscent of the Feshbach resonance

Such processes do not exist in the single-component case.

Indeed, the first-order transition emerges only when $U \sim U_{AB}$ (more precisely, when 0.68< U/U_{AB} <1 according to the Gutzwiller analysis)

3.8. Superfluid equation of motion

We analytically solve this equation.

3.9. Stationary solution and first order transition

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{x}) - r + u_+ |\phi|^2 + w_+ |\phi|^4 \end{bmatrix} \phi = 0$$

$$\bigvee V(\mathbf{x}) = 0, \ \phi(\mathbf{x}) = \sqrt{n_0}$$

$$r = u_+ n_0 + w_+ n_0^2$$

We want to determine the first order transition point.

Free energy density:
$$\begin{aligned} f_{\rm SF} &= -2rn_0 + u_+ n_0^2 + \frac{2}{3}w_+ n_0^3 \\ f_{\rm MI} &= 0 \\ \hline f_{\rm SF} &= f_{\rm MI} \\ \hline \bar{u} &= -\frac{4}{3} \\ f_{\rm SF} &= f_{\rm MI} \\ \hline \bar{u} &= -\frac{4}{3} \\ \hline f_{\rm SF} &= n_{\rm MI} \\ \hline f_{\rm SF} &= n_{\rm MI} \\ \hline \bar{u} &= -\frac{4}{3} \\ \hline f_{\rm SF} &= n_{\rm MI} \\ \hline f_{\rm SF} &= n_{\rm MI} \\ \hline \bar{u} &= -\frac{4}{3} \\ \hline f_{\rm SF} &= n_{\rm MI} \\ \hline f_{\rm SF} &= n_{\rm MI$$

In a similar way, one can determine the metastability limits of SF $\ensuremath{\bar{u}}=-2$

3.10. Solution of a moving dark solitary wave

Problem:

$$\begin{bmatrix} -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} - r + u_+\phi^2 + w_+\phi^4 \end{bmatrix} \phi = 0 ,$$

$$\oint \phi(x) = \sqrt{n_0}A(x)e^{iS(x)} \quad \text{Separate the amplitude A(x)} \\ \text{and the phase S(x)} \\ \left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{\hbar^2q^2}{2m}A^{-4} - r + u_+n_0A^2 + w_+n_0^2A^4 \right)A = 0, \quad A^2\frac{dS}{dx} = q$$

$$\text{Boundary conditions:} \quad \lim_{x \to \pm \infty}A(x) = 1, \quad \lim_{x \to \pm \infty}S(x) = qx \pm \frac{\varphi}{2},$$

3.10. Solution of a moving dark solitary wave

Barashenkov & Makhankov, Phys. Lett. A (1988)

Solution

$$\begin{array}{ll} : & \frac{\phi(x)}{\sqrt{n_0}} = Ae^{iS} = \frac{\sqrt{\alpha_+} + i\operatorname{sgn}(q)\sqrt{\alpha_-}\eta(x)}{\sqrt{\beta_+} - \beta_- \left[\eta(x)\right]^2} e^{iq(x-x_s)} \\ & \text{where} \quad \eta(x) \equiv \tanh(x/\xi), \\ & \xi \equiv \hbar/\sqrt{m(un+2wn^2) - \hbar^2 q^2} \\ & \alpha_{\pm} = \pm (-\gamma + 3\bar{q}^2) + \sqrt{\gamma^2 + 6\bar{q}^2} \\ & \beta_{\pm} = 2 + \gamma \pm \sqrt{\gamma^2 + 6\bar{q}^2} \\ & \gamma = 2 + 3\bar{u}/2, \\ & \bar{q} = q\hbar/\sqrt{mwn_0^2} \end{array}$$

Standing solitary wave in a flowing condensate as background

Galilean transformation

Moving solitary wave in a static condensate

3.11. Case of $u_+>-4/3$ (SF state is the ground state)

- π-phase kink
- Dynamically stable in 1D

3.12. Case of $-2 < u_{+} < -4/3$ (SF state is metastable)

Standing solitary wave (q=0):

No phase kink → Bubble-like dark soliton !!!

3.13. Divergence of the soliton size

3.14. Soliton mass across the first order transition

Effective mass: $m_{
m sol}\equiv 2rac{\partial}{\partial(v^2)}\Delta E~~$ where v~ is the soliton velocity $\Delta E \equiv E_{
m sol} - E_{
m gs}~~$ and the soliton energy is given by $E = \int dx \left[\sum_{\alpha} \psi_{\alpha}^* \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} - r + \frac{u}{2} |\psi_{\alpha}|^2 + \frac{w}{3} |\psi_{\alpha}|^4 \right) \psi_{\alpha} \right]$ $+u_{AB}|\psi_{A}|^{2}|\psi_{B}|^{2}+w_{AB}(|\psi_{A}|^{2}|\psi_{B}|^{4}+|\psi_{A}|^{4}|\psi_{B}|^{2})$ $\bar{u} + \bar{u}_c$ Positive mass $m_{
m sol}/(8mn_0\xi_0)$ $\bar{u}_c = -4/3$ Divergence of the mass is stronger !!! -1 -6 Mass diverges!! -8-1.5-1.0-0.50.0 0.5 -2.01.0 \overline{u}

3.15. Heavy soliton ?? in unitary Fermi gases @ MIT

Eventually, it has been concluded that it is not a soliton but a vortex line !!!!!

Ku et al., PRL (2014)

Can there be such a heavy soliton??

Our solitary wave serves as the first example of such a heavy soliton !!!

3.16. Conclusions of part 2

- The first order Mott transition of a binary Bose mixture in 2D was confirmed by the quantum Monte Carlo simulations.
- Binary Bose mixtures in optical lattices near the first order Mott transition are described by the NLSE with cubic-quintic nonlinearity.
- There are two types of single solitary wave in the cubic-quintic NLSE: the standard one with π phase kink and the bubble-like one
- The soliton size and the soliton mass diverge at the first order transition point.

$$l_{
m sol} \sim -\ln|\bar{u} - \bar{u}_c|, \ m_{
m sol} \sim -\frac{1}{\bar{u} - \bar{u}_c}$$
 A sort of criticality
in the first order transition !!!

Y. Kato, D. Yamamoto, & I. Danshita, Phys. Rev. Lett. 112, 055301 (2014) I. Danshita, D. Yamamoto, & Y. Kato, Phys. Rev. A 91, 013630 (2015)

Outlook:

There are many other interesting properties in the cubic-quintic NLSE, which are qualitatively different from the GP equation.

Stability of solitary waves

Dynamically unstable even in 1D (but lifetime can be long enough)

