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1.1.	  Schrödinger	  equa5on	  with	  cubic	  nonlinearity	  

u =
4⇡~2as

m
Coupling	  constant	  for	  the	  	  
two	  body	  contact	  interac%on:	

	  s-‐wave	  	  
sca;ering	  	  
length	  	

Gross-‐Pitaevskii	  
（GP）equa%on:	

The	  system	  of	  atomic	  weakly-‐interac5ng	  
BECs	  at	  T<<Tc	  is	  well	  described	  by	  this	  	  
simple	  equa%on	  of	  mo%on,	  such	  as	  	  
ground	  states,	  excited	  states,	  and	  	  
non-‐equilibrium	  dynamics.	  
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Bogoliubov	  spectrum.	  Rehovot:	  
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We report on the first realization of a single bosonic Josephson junction, implemented by two weakly
linked Bose-Einstein condensates in a double-well potential. In order to fully investigate the nonlinear
tunneling dynamics we measure the density distribution in situ and deduce the evolution of the relative
phase between the two condensates from interference fringes. Our results verify the predicted nonlinear
generalization of tunneling oscillations in superconducting and superfluid Josephson junctions.
Additionally, we confirm a novel nonlinear effect known as macroscopic quantum self-trapping, which
leads to the inhibition of large amplitude tunneling oscillations.

DOI: 10.1103/PhysRevLett.95.010402 PACS numbers: 74.50.+r, 03.75.Lm, 05.45.2a

Tunneling through a barrier is a paradigm of quantum
mechanics and usually takes place on a nanoscopic scale.
A well known phenomenon based on tunneling is the
Josephson effect [1] between two macroscopic phase co-
herent wave functions. This effect has been observed in
different systems such as two superconductors separated
by a thin insulator [2] and two reservoirs of superfluid
helium connected by nanoscopic apertures [3,4]. In this
Letter we report on the first successful implementation of a
bosonic Josephson junction consisting of two weakly
coupled Bose-Einstein condensates in a macroscopic
double-well potential.

In contrast to all hitherto realized Josephson junctions in
superconductors and superfluids, in this new system the
interaction between the tunneling particles plays a crucial
role. This nonlinearity gives rise to new dynamical re-
gimes. Anharmonic Josephson oscillations are predicted
[5–7] if the initial population imbalance of the two wells is
below a critical value. The dynamics changes drastically
for initial population differences above the threshold of
macroscopic quantum self-trapping [8–10] where large
amplitude Josephson oscillations are inhibited. The two
different dynamical regimes have been experimentally in-
vestigated in the context of Josephson junction arrays [11–
13]. However, the small periodicity of the optical lattice
does not allow to resolve individual wells and thus the
dynamics between neighboring sites. Our experimental
implementation of a single weak link makes it possible
for the first time to directly observe the density distribution
of the tunneling particles in situ. Furthermore we measure
the evolution of the relative quantum mechanical phase
between both condensates by means of interference [14].

The experimentally observed time evolution of the
atomic density distribution in a symmetric bosonic
Josephson junction is shown in Fig. 1 for two different
initial population imbalances (depicted in the top graphs).
In Fig. 1(a) the initial population difference between the
two wells is chosen to be well below the self-trapping

threshold. Clearly nonlinear Josephson oscillations are
observed; i.e., the atoms tunnel right and left over time.
The period of the observed oscillation is 40(2) ms which is
much shorter than the tunneling period of approximately

FIG. 1 (color). Observation of the tunneling dynamics of two
weakly linked Bose-Einstein condensates in a symmetric
double-well potential as indicated in the schematics. The time
evolution of the population of the left and right potential well is
directly visible in the absorption images (19:4 !m! 10:2 !m).
The distance between the two wave packets is increased to
6:7 !m for imaging (see text). (a) Josephson oscillations are
observed when the initial population difference is chosen to be
below the critical value zC. (b) In the case of an initial population
difference greater than the critical value the population in the
potential minima is nearly stationary. This phenomenon is
known as macroscopic quantum self-trapping.
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system considered in this work when q!0.5qB, the fre-
quency of some modes in the excitation spectrum develops a
nonzero imaginary part Im!"" !see Fig. 7", which is the dis-
tinctive feature of dynamical instability and corresponds to
the fact that, once excited, these modes will grow exponen-
tially in time. As is shown in Fig. 7, for a given value of q
there exists a range of such unstable wave vectors k, which is
more and more extended as q approaches the band edge.
Among all these unstable modes the one with the highest
growth rate plays a major role in the dynamics of the un-
stable condensate.

The unambiguous attribution of the observations to the
phenomenon of dynamical instability has been possible by
comparing the measured loss rates !inverse of the lifetime" to
the calculated growth rates of the most dynamically unstable
modes. The results of this comparison are shown in Fig. 8 for
a lattice with s=1.15. We point out that a full quantitative
comparison between theory and experiment cannot be per-
formed because the measurements occur outside the validity
of the linear analysis on which the theory is based. However,
the distinctive agreement between the theory and the experi-
ment indeed shows that the observed phenomenon is dy-
namical instability and that the mode which is most unstable
in the very initial stage of the dynamics !i.e., when linear
theory is correct" imprints its time scale on the following
dynamics.

For those quasimomenta for which dynamical instability
is more severe and thus lifetimes are shorter, we observed the
appearance of complex structures in the expanded density
profiles, shown in Fig. 9 for s=1.15 and q=0.55qB. These
can be the signature either of a density modulation or a phase
fragmentation that leads to the observed fringes through an
interferencelike effect #30$. As already stated in #13$ we have
observed the disappearance of the fringes as the condensate
reverts to its initial state if we let it evolve in the magnetic

potential alone, after switching off the lattice. This process,
however, takes place in a much longer time scale than the
one of dynamical instability !lifetime can be of the order of a
few milliseconds". In order to compare our observations with
the theory, we have simulated the actual experimental proce-
dure by solving the time-dependent 3D GP equation

i#
!

!t
$!x,t" = %−

#2

2m
"2 + V!x,t" + gN&$&2'$!x,t" ,

!10"

where V is the sum of the harmonic !2" and periodic poten-
tials !3". From the solution of Eq. !10" we extracted the axial
power spectrum, defined as !the tilde indicates the Fourier
transform along z" #20$

P!pz" ( 2%) r dr&$̃!r,pz"&2 !11"

which is shown in Fig. 10. The upper frame #Fig. 10!a"$
represents the momentum distribution at the end of the initial
ramp, and is characterized by sharp peaks localized at integer
multiples of 2qB as discussed above. Then, in accordance
with the prediction of the linear analysis, some modes of
complex frequency start growing as indicated by the arrow in

FIG. 9. !Color online" !a" Absorption images of the expanded
condensate after different interaction times with a lattice with s
=1.15 for two different values of quasimomentum. Note the sudden
change of time scale crossing the threshold of dynamical instability
at q=0.525qB and the appearance of structures in the density pro-
files for the unstable case !q=0.55qB". !b" Reabsorption of excita-
tions following 5 ms of interaction with the lattice and different
times of evolution in the pure harmonic potential after switching off
the lattice. In all these pictures the lattice moves from top to bottom.

FIG. 10. !Color online" Calculated axial momentum distribution
P!pz" of the condensate in the combined harmonic trap plus optical
lattice for t=12,33,48,51 ms #from !a" to !d"$ !logarithmic plot".
The simulation is performed with s=1.15 and vL=0.55vB. The ar-
row in !b" marks the appearance of the unstable modes.
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constant in time; we will come back to this point when dis-
cussing our experimental results.

In order to derive a simple expression for N as a function
of q and t one has to make some further assumptions on the
decay induced by energetic instability. We assume that for a
given q the number of atoms in the stable fraction !i.e.,
N0fq0

"q#$ is constant in time, while the number of atoms
initially in the unstable fraction "i.e., N0!1− fq0

"q#$# decays
with a time behavior b"t#. We thus obtain for N the following
expression:

N"q,t# = N0fq0
"q# + b"t#N0!1 − fq0

"q#$ . "9#

Note that N0b"t# can also be viewed as the number of atoms
remaining in the condensate after a time t, once it is entirely
unstable "fq0

=0# and N no longer depends on q. Note also
that we do not make any assumption on the explicit form of
b"t#, which, for a given time t, enters Eq. "9# only as a pa-
rameter. In principle one could think that, as atoms are re-
moved from the unstable fraction, some of the atoms in the
stable fraction are transferred to the unstable part in order to
refill the losses: this case would correspond to considering N0
as time dependent in Eq. "9#.

The lines shown in Fig. 3 are a fit of Eq. "9# to the ex-
perimental data taken for three different values of t with N0,
b, and q0 as free parameters. As one can see, our simple
model reproduces the experimental points very well within
the error bars, which are taken as the standard deviation of a
five-measurement average; in particular, as one can see look-
ing at the values of the fitted functions at q=0, N0 does not
significantly depend on time. In Fig. 4"a# we report the val-
ues of q0 obtained from the fits shown in Fig. 3 together with
the theoretical prediction obtained for a homogeneous cylin-
drical condensate. As expected, the measured values of q0 do
not exhibit a significant dependence on the BEC-lattice in-
teraction time t !see Fig. 4"a#$. Notice that throughout the
measurement the number of atoms is reduced at most by a
factor of 1.62 which corresponds to a change in the sound
velocity of around 20%. This is comparable with our uncer-

tainty in the measurement of the density and with the spread
of the values of q0 extracted from the fits. We can directly
compare these values with the theoretical prediction for the
threshold of energetic instability for a homogeneous cylindri-
cal condensate !21$. Given our uncertainty on the density of
the sample, which propagates into the theoretical calcula-
tions, the agreement between theory and experiment is good.
Furthermore one can extract an estimate for the characteristic
time of energetic instability by looking at the decay of the
number of atoms above threshold b"t#. Assuming for b an
exponential decay "i.e., b=b0e−t/!EI# the time scale for ener-
getic instability for the experimental condition of Fig. 3 is
!EI%400 ms, as shown in Fig. 4"b#. Due to the experimental
difficulties in controlling the thermal fraction of the initial
atomic cloud, we did not study the dependence of !EI on the
condensed fraction. This would be a very interesting mea-
surement since it could provide a further insight into the role
of the thermal fraction; by the same token a more accurate
determination of N0 and q0 could allow the investigation of
the transfer of atoms from the stable to the unstable fraction
which is ultimately responsible for the complete destruction
of the condensate. However, as we pointed out in the de-
scription of Fig. 2, as the condensed fraction increases the
number of atoms remaining in the condensate after a fixed t
increases as well.

These results demonstrate that a thermal fraction triggers
the dissipative mechanism connected with energetic instabil-
ity and therefore it is possible to strongly reduce this dissi-
pation using a radio-frequency shield in order to make the
measurement with no discernible thermal fraction. This is
particularly important if we want to separately address the
two regimes of energetic and dynamical instability. The re-
sults of this procedure are shown in Fig. 5 where we plot the
BEC lifetime as a function of quasimomentum for s=0.2
with and without rf shield. Without the use of a rf shield
"open circles# it is impossible to distinguish the onset of

FIG. 5. Lifetime of the condensate with and without rf shield as
a function of quasimomentum for the first Bloch band "logarithmic
plot#. The lattice height is s=0.2 and vertical lines are drawn in
correspondence of the calculated thresholds for a homogeneous cy-
lindrical condensate respectively for energetic "dotted# and dynami-
cal "dashed# instability !21$. Error bars are smaller than point size.

FIG. 6. "Color online# Measured loss rate of the BEC "reciprocal
of lifetime# as a function of quasimomentum in the first Bloch band
with s=0.2 and 1.15, respectively. The vertical lines correspond to
the theoretical values for the threshold of dynamical instability !21$.
The horizontal error bar is due to the presence of the confining
harmonic potential as explained in the Appendix.
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Cri%cal	  velocity	  in	  an	  op%cal	  laPce.	  
Florence:	  De	  Sarlo	  et	  al.,	  PRA	  (2005)	
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right directions, which removes the effects of the Doppler
shift resulting from any sloshing of the condensate in the
trap during the Bragg pulse.

Figure 3a shows the measured excitation spectrum,
which agrees well with (2). A linear phonon regime is
seen for low k, and a parabolic single-particle regime for
high k. The excitations seen to have the smallest value of
v!k are the phonons. Therefore, by the Landau criterion,
the superfluid velocity yc is bounded by v!k for the
phonons.

The inset of Fig. 3a shows the low k region of v"k#.
To extract the initial slope from the data, (2) is fit to the
points with k less than 3 mm21, with m taken as a fit
parameter. The fit is not shown in the figure. The result
gives the speed of sound for the condensate to be ceff !
2.0 6 0.1 mm sec21, which is also the measured upper

FIG. 3. (a) The measured excitation spectrum v"k# of a
trapped Bose-Einstein condensate. The solid line is the Bogo-
liubov spectrum with no free parameters, in the LDA for
m ! 1.91 kHz. The dashed line is the parabolic free-particle
spectrum. For most points, the error bars are not visible on the
scale of the figure. The inset shows the linear phonon regime.
(b) The difference between the excitation spectrum and the
free-particle spectrum. Error bars represent 1s statistical un-
certainty. The theoretical curve is the Bogoliubov spectrum in
the LDA for m ! 1.91 kHz, minus the free-particle spectrum.

bound for yc. This value is in good agreement with the
theoretical LDA value of 2.01 6 0.05 mm sec21. The line
at 2pR21 indicates the excitation whose wavelength is
equal to the Thomas-Fermi radius of the condensate in the
axial direction. The measured v"k# agrees with the LDA,
even for k values approaching this lower limit of the region
of validity. As k goes to zero, v"k# is seen to approach
zero, rather than exciting the lowest order radial mode,
the breathing mode, which is twice the radial trapping
frequency, 440 Hz [12,13].

In Fig. 3a, the measured v"k# is clearly above the
parabolic free-particle spectrum h̄k2!"2m#, reflecting the
interaction energy of the condensate. To emphasize the in-
teraction energy, v"k# is shown again in Fig. 3b, after
subtraction of the free-particle spectrum. This curve ap-
proaches a constant for large k, given by the second term
in (4).

For a constant rate of production of excitations, the in-
tegral of P"k, v# over v, equal to the integral of S"k,v#,
is related to S"k# by [25,26],

S"k# ! 2"pV2
RtB#21

Z

P"k, v# dv , (5)

where VR ! "G2!4D#
p

IAIB!Isat is the two-photon Rabi
frequency, G is the linewidth of the 5P3!2, F ! 3 ex-
cited state, D is the detuning, and Isat is the saturation
intensity. The closed circles in Fig. 4 are the measured
static structure factor S"k#, by (5). The values shown have
been increased by a factor of 2.3, giving rough agreement
with S"k# from Bogoliubov theory in the LDA (3). Equa-
tion (3) is indicated by a solid line. The required factor
of 2.3 probably reflects inaccuracies in the various val-
ues needed to compute VR . The open circles are com-
puted from (1), using the measured values of v"k# shown

ξπ

µ
FIG. 4. The filled circles are the measured static structure
factor, multiplied by an overall constant of 2.3. Error bars rep-
resent 1s statistical uncertainty, as well as the estimated uncer-
tainty in the two-photon Rabi frequency. The solid line is the
Bogoliubov structure factor, in the LDA for m ! 1.91 kHz. The
open circles are computed from the measured excitation spec-
trum of Fig. 3, and Feynman’s relation (1). For the open circles,
the error bars are not visible on the scale of the figure.
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1.2.	  Superfluid	  (SF)-‐MoL	  insulator	  (MI)	  transi5on	  of	  
	  	  	  	  	  	  	  Bose	  gases	  in	  op5cal	  la7ces	
Increase	  the	  laPce	  depth	 Transi%on	  to	  the	  Mo;	  insulator	

V0/ER = 0 3	 7	 10	

13	 14	 16	 20	

Shallow	  laPce	  →	  Superfluid	

Deep	  laPce	  →	  Mo;	  insulator	

Greiner	  et	  al.,	  Nature	  (2002)	

Par%cles	  are	  delocalized	  !!	

Par%cles	  are	  localized	  !!	
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Recoil	  energy:	
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LaPce	  shape:	  
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・ Superfluidity	  in	  a	  strongly	  	  
	  	  	  	  interac3ng	  regime	

・	  Quantum	  phase	  transi%ons	



1.3.	  Designing	  SF	  equa5ons	  of	  mo5on	  with	  op5cal	  la7ces	  
①	  Near	  the	  %ps	  of	  the	  Mo;	  lobes	  ●	
Klein-‐Gordon	  equa%on	  with	  cubic-‐nonlinearity:	

Ground-‐state	  phase	  diagram	  
of	  the	  Bose-‐Hubbard	  model	  
Fisher	  et	  al.,	  PRB	  (1989)	

zJ/U

µ/U

hopping:	
vacuum	

No%ce	  the	  difference	  from	  the	  Gross-‐Pitaevskii	  eq.	  !!!	

②	  Hardcore	  boson	  region	

Discrete	  Landau-‐Lifshitz	  equa%on	  with	  no	  damping:	
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Different	  solitary	  waves	  
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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The strong correlations in optical-lattice systems can be useful for  
designing SF equations of motion in various forms. 

Specifically, we study	

◇ Effects of potential barriers on the relativistic SF,  
     especially the Higgs modes 
 
 
 
 
 
 
◇ Solitary waves of SF obeying NLSE  
      with cubic and quintic nonlinearity	

1.4.	  What	  we	  do	  here	  
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1.40

FIG. 5: Energy of the Higgs bound states with even par-
ity (E+) and odd parity (E−) as functions of the potential
strength Vr. The red (blue) line shows E+ (E−). The verti-
cal and horizontal axes are in units of r0 and r0ξ, respectively.

as

T (−0) = T (+0), (27)

dT

dx

∣

∣

∣

∣

+0

−
dT

dx

∣

∣

∣

∣

−0

= 2VrT (0). (28)

Remarkably, the above equations have two solutions:
A = B and A = −B. If T (0) ̸= 0, Eq. (27) reduces
to A = B, while if T (0) = 0 Eq. (28) reduces to A = −B.
The former corresponds to an even parity solution and
the latter an odd parity one. We note that Eq. (17)
has no unstable bound state solutions with imaginary ω.
The difference between Eqs. (17) and (18) concerning
to existence of bound state solutions indeed derives from
the potential terms of static condensate proportional to
|ψ0|2. The deeper potential well in Eq. (18) than that in
Eq. (17) gives rise to the Higgs gap and accommodates
the localized bound states. The emergence of the bound
states of amplitude fluctuations in the TDGL equation
should be compared with the case of the GP equation
that has no bound states of amplitude as well as phase
fluctuations.
From Eqs. (27) and (28), the even parity bound state

fulfills the condition

c1 + Vrc2 = 0 , (29)

where

c1 = κ3t + 3ηκ2t + (6η2 − 4)κt + 6η(η2 − 1),

c2 = κ2t + 3ηκt + 3η2 − 1.
(30)

Equation (29) has a single bound state solution κ+. Fig-

ure 5 shows the binding energy E+ =
√

2− κ2+/2 as a

function of Vr. E+(Vr) becomes the Higgs gap E+ →
√
2

when Vr → 0. The bound state reduces to the odd par-
ity solution localized around a kink: E+ →

√

3/2 as

-6 -4 -2 0 2 4 6
-2

-1

0

1

2

FIG. 6: Wave functions of the Higgs bound states T (x) with
parity even (red) and odd (blue). We set Vr = 4 and A = 1.
The black line shows the static order parameter ψ0(x). The
vertical and horizontal axes are in units of

√

−r0/u0 and ξ,
respectively.

Vr → ∞. In this limit, the bound state can be also con-
sidered as an edge state that is localized at the boundary
where condensate vanishes.
The odd parity solution satisfies c2 = 0. We thus ob-

tain

κt =
1

2

(

−3η +
√

4− 3η2
)

≡ κ− . (31)

The energy of the odd parity solution is given by E− =
√

2− κ2−/2. The odd parity bound state appears if the

potential is large enough such that Vr > 2/
√
3. It also

reduces to the odd parity solution on a kink: E− →
√

3/2
as Vr → ∞. The odd parity bound state has higher
energy than the even parity one (E+ < E−) as shown in
Fig. 5.
Figure 6 shows the even and odd-parity bound states

of T (x). We propose the existence of such bound states
of amplitude fluctuations below the Higgs gap and call
them Higgs bound states. So far, the main focus of the
study of localized excitations in condensed matter sys-
tems have been on single-particle excitations including
Andreev bound states in superconductors [23] and edge
states in quantum Hall systems [51] and topological in-
sulators [52], or collective density modes such as rip-
plons [53] and Kelvin modes [54] in SF systems. Hith-
erto, Higgs bound states as localized amplitude modes
have never been found. Since the Higgs bound states
are low-lying excitations, they may play a major role in
various aspects of superfluid Bose gases in optical lat-
tices at low temperatures. Moreover, given the fact that
the presence of Higgs amplitude modes is a common fea-
ture among systems described effectively by a relativistic
O(N) field theory with N ≥ 2 [22], Higgs bound states
is also expected to exist in other various systems involv-
ing approximate particle-hole symmetry and spontaneous
breaking of a continuous symmetry, such as superconduc-
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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Experiments	  on	  Higgs	  modes:	
◇	  Quantum	  magnets;	  Rüegg	  et	  al.,	  PRL	  (2008)	  
	  

◇	  Superconductors;	  Matsunaga	  et	  al.,	  PRL	  (2013).	  
	  

◇	  Charge	  density	  wave	  materials;	
    Yusupov	  et	  al.,	  Nat.	  Phys.	  (2010).	  
	  

◇	  Superfluid	  3He-‐B;	  Colle;	  et	  al.,	  JLTP	  (2013)	  
	  

◇	  Superfluid	  Bose	  gases	  in	  op%cal	  laPces;	  
	  	  	  	  	  Endres	  et	  al.,	  Nature	  (2012).	  

2.1.	  Higgs	  modes	  in	  condensed	  maLer	  physics	
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・	  Ubiquitous	  collec%ve	  mode	  in	  systems	  with	  par%cle-‐	  
	  	  	  hole	  symmetry	  and	  breaking	  of	  con%nuous	  symmetry.	

・ Low-‐energy	  mode	  playing	  a	  crucial	  role	  	  
	  	  	  in	  the	  vicinity	  of	  quantum	  phase	  transi%ons.	

・ Analogous	  to	  the	  Higgs	  par%cle	  in	  high	  energy	  physics.	

Higgs	  modes	  are	  interes%ng	  because	  …	

expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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,50 experimental runs. Error bars, s.e.m.
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2.2.	  Bose	  gases	  in	  op5cal	  la7ces	

Ĥ = �J
X

hj,li

(b̂†j b̂l + b̂†l b̂j) +
U

2

X

j

n̂j(n̂j � 1)� µ
X

j

n̂j

Bose-‐Hubbard	  model:	
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2m⇤
+ r + u| |2
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We	  set	  	  	  	  	  	  	  	  	  	  	  	  .	~ = 1

zJ/U

µ/U

When	  K=0	  (dashed	  line),	  TDGL	  eq.	  	  
is	  par%cle-‐hole	  (p-‐h)	  symmetric,	  i.e.	  
symmetric	  w.r.t.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	

Time-‐dependent	  Ginzburg-‐Landau	  (TDGL)	  equa%on:	  
(See,	  e.g.	  Sachdev	  “Quantum	  Phase	  Transi%ons”)	

J:	  hopping,	  	  	  U:	  onsite	  interac%on,	  	  	  μ:	  chemical	  poten%al	
Near	  
SF-‐MI	  
transi%on	

 $  ⇤

All	  the	  coefficients	  K,	  W,	  m*,	  r,	  u	  can	  be	  explicitly	  	  
expressed	  by	  the	  original	  Bose-‐Hubbard	  parameters.	



2.3.	  Collec5ve	  modes	  in	  a	  homogeneous	  system	

When	  K=0,	iK
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 (x, t) =  0 + U(x)e�i!t + V⇤(x)ei!
⇤t

Sta%c	  value	 Small	  fluctua%ons	
Linearize	  the	  TDGL	  eq.	  w.r.t.	  the	  fluctua%ons.	

| 0|2 = �r/u, and	  assume	  the	  plain	  wave	  solu%ons	S(x), T (x) ⇠ eik·x

Eq.	  for	  the	  NG	  phase	  mode:	

(r + u| 0|2) 0 = 0Eq.	  for	  the	  sta%c	  order	  parameter:	

Eq.	  for	  the	  Higgs	  amplitude	  mode:	

T (x) = U(x) + V(x) / �n(x),S(x) = U(x)� V(x) / �✓(x),where	
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� r2

2m⇤
+ r + u| 0|2

◆
S(x) = W!2S(x)
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2m⇤
+ r + 3u| 0|2

◆
T (x) = W!2T (x)

Dispersion	  of	  the	  NG	  mode:	  	!2 = (ck)2
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2.4.	  Beliaev	  decay	  of	  the	  Higgs	  mode	  into	  NG	  modes	
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Decay	  rate	  of	  the	  Higgs	  mode:	

When	  D<3,	  the	  Higgs	  mode	  is	  overdamped	  
near	  the	  cri%cal	  point.	  Thus,	  it	  is	  naively	  	  
expected	  that	  long-‐lived	  Higgs	  modes	  are	  
not	  present	  in	  2D.	  

However,	  recent	  QMC	  simula%ons	  
found	  the	  peak	  corresponding	  to	  
the	  Higgs	  mode	  in	  the	  response	  to	  
the	  hopping	  vibra%on:	  	

V̂ (t) =

�AJ cos(!t)
X

hj,li

(

ˆb†j
ˆbl +ˆb†l

ˆbj)

Uc/J = 16.74

T ' 0.1J

momentum	

M
od

e	  
fr
eq

ue
nc
y	 Altman	  &	  Auerbach,	  PRL	  (2002)	

�

�
⇠ |Ūc � Ū |

D�3
2

Imaginary	  part	  of	  	  
the	  response	  func%on	

Pollet	  &	  Prokof’ev,	  PRL	  (2012)	

See	  also,	  
Podolsky	  et	  al.,	  PRB	  (2011)	  
Gazit	  et	  al.,	  PRL	  (2013)	  
Chen	  et	  al.,	  PRL	  (2013)	  
Rancon	  &	  Dupuis,	  PRA	  (2014)	

In	  the	  following,	  we	  assume	  
3D	  system,	  where	  Higgs	  modes	  
are	  long-‐lived.	



2.5.	  Effects	  of	  poten5al	  barriers	

・ Materials	  are	  much	  dir%er	  than	  the	  universe.	

・ A	  single	  poten%al	  barrier	  is	  one	  of	  the	  simplest	  disorder.	

・ It	  can	  be	  created	  in	  cold-‐atom	  experiments	  	  
	  	  	  in	  a	  well-‐controlled	  manner.	
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2.5.	  Effects	  of	  poten5al	  barriers	

µi
x

= µ0 � Vi
x

(a)	  Local	  modula%on	  of	  the	  chemical	  poten%al:	  

We	  consider	  poten%al	  barriers	  that	  are	  present	  only	  in	  the	  x	  direc%on.	  
We	  assume	  that	  K=0	  far	  from	  poten%al	  barriers.	

K(x) ' �2WV (x) ⌘ vK(x)
which	  breaks	  the	  p-‐h	  symmetry.	

TDGL eq. with the effects of the potential barriers: 
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FIG. 3: Schematic illustration of external potentials that cre-
ate the inhomogeneous chemical potential Vi1 (a) and hopping
amplitude J ′

i1
(b). Vopt(x) and Vbar(x) mean the homoge-

neous optical-lattice potential and the potential barrier.

assume that potential barriers are present only in the
x-direction and that the system is homogeneous in the
other directions except for the overall optical-lattice po-
tential. Let us show that external potentials can intro-
duce the local modulation of the chemical potential µi

and the hopping amplitude J (α)
i in the BH model (1).

Specifically, we propose imposing two different types of
potential barrier in addition to the overall optical-lattice
potential for controlling these parameters independently.
First, the shift of the lattice potential with little change
in the lattice height can be realized by an optical dipole
potential that leads to the shift of the chemical potential
µi = µ0 → µ0−Vi1 in Eq. (1). This situation is schemat-
ically illustrated in Fig. 3(a). Second, we consider an
additional lattice potential in the Gaussian profile with
the same lattice spacing as that of the overall lattice po-
tential as shown in Fig. 3(b). The potential of this type
can be created by focusing the optical-lattice laser into
a narrow spatial region [46] and spatially modulates the
height of the lattice potential, leading to the inhomoge-
neous hopping amplitude,

J (α)
i = J + J ′

i1δα,1 . (9)

Since we regard Vi1 and J ′
i1 as potential barriers, they

are anticipated to vanish at i1 → ±∞. Hence, µ0 and J
mean the equilibrium values far away from the potential
barriers.
The coefficients in the TDGL equation are modified by

the potential barriers. We show approximate expressions
of the coefficients in the lowest order of the perturbations
Vi1 and J ′

i1 , taking the continuum limit Vi1 → V (x) and
J ′
i1 → J ′(x). See Appendix A for a detailed derivation of

the expressions. We assume that K0 = 0 such that there
are independent NG and Higgs modes in the absence of
the barriers. Here K0, W0, r0, and u0 denote the val-
ues of coefficients of the first-order time derivative term
K, the second-order time derivative term W , the linear
term r, and the cubic nonlinear term u in the absence of
the barriers. In the case that K0 = 0, the shift of the

FIG. 4: Schematic picture of the effective 1D setting of tun-
neling NG mode through the delta-function potential barriers
vr(x) = Vrδ(x) and vK(x) = VKδ(x) combined with the di-
minishing condensate ψ0(x). The arrows mean plane waves
of NG mode incident to the barrier from the left (i), trans-
mitting through the barrier (t), and being reflected at the
barrier (r). The dashed line shows the profile T (x) of the
Higgs bound states localized around the barrier.

chemical potential yields the leading contribution to K
as

K ≃ −2W0V (x) ≡ vK(x). (10)

This term breaks the particle-hole symmetry and locally
couples phase and amplitude fluctuations. In contrast,
under the assumption that V (x) ≪ U one may ignore
the contribution of V (x) in W and u such that W ≃ W0

and u ≃ u0. On the other hand, the local modulation of
the hopping amplitude J ′(x) affects only r as

r ≃ r0 − 2J ′(x) ≡ r0 + vr(x). (11)

vr(x) acts as a usual potential term that does not break
particle-hole symmetry. The resulting TDGL equation
including the effects of the potential barriers is given by

ivK
∂ψ

∂t
−W0

∂2ψ

∂t2
=

(

−
∇2

2m∗
+ r0 + vr + u0|ψ|2

)

ψ. (12)

In order to simplify the notation, we represent the vari-
ables in a dimensionless form,

ψ̃ = ψ/(−r0/u0)
1/2, t̃ = t(−r0/W0)

1/2, x̃ = x/ξ,

ṽr = −vr/r0, ṽK = vK/(−r0W0)
1/2.

(13)

where ξ ≡ (−m∗r0)−1/2 is the healing length. Hereafter,
we omit the tilde and employ the following TDGL equa-
tion in the dimensionless form

ivK
∂ψ

∂t
−
∂2ψ

∂t2
=

(

−
∇2

2
− 1 + |ψ|2 + vr

)

ψ. (14)

IV. HIGGS BOUND STATES

Within the effective 1D setting depicted in Fig. 4,
we consider fluctuations of the order parameter ψ(x, t)
around a static condensate ψ0(x)

ψ(x, t) = ψ0(x) + U(x)e−iωt + V∗(x)eiω
∗t. (15)

Ji
x

= J + J 0
i
x

(b)	  Local	  modula%on	  of	  the	  hopping	  amplitude:	  

r(x) ' r0 � 2J 0(x) ⌘ r0 + vr(x)
which	  keeps	  the	  p-‐h	  symmetry.	
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FIG. 3: Schematic illustration of external potentials that cre-
ate the inhomogeneous chemical potential Vi1 (a) and hopping
amplitude J ′

i1
(b). Vopt(x) and Vbar(x) mean the homoge-

neous optical-lattice potential and the potential barrier.

assume that potential barriers are present only in the
x-direction and that the system is homogeneous in the
other directions except for the overall optical-lattice po-
tential. Let us show that external potentials can intro-
duce the local modulation of the chemical potential µi

and the hopping amplitude J (α)
i in the BH model (1).

Specifically, we propose imposing two different types of
potential barrier in addition to the overall optical-lattice
potential for controlling these parameters independently.
First, the shift of the lattice potential with little change
in the lattice height can be realized by an optical dipole
potential that leads to the shift of the chemical potential
µi = µ0 → µ0−Vi1 in Eq. (1). This situation is schemat-
ically illustrated in Fig. 3(a). Second, we consider an
additional lattice potential in the Gaussian profile with
the same lattice spacing as that of the overall lattice po-
tential as shown in Fig. 3(b). The potential of this type
can be created by focusing the optical-lattice laser into
a narrow spatial region [46] and spatially modulates the
height of the lattice potential, leading to the inhomoge-
neous hopping amplitude,

J (α)
i = J + J ′

i1δα,1 . (9)

Since we regard Vi1 and J ′
i1 as potential barriers, they

are anticipated to vanish at i1 → ±∞. Hence, µ0 and J
mean the equilibrium values far away from the potential
barriers.
The coefficients in the TDGL equation are modified by

the potential barriers. We show approximate expressions
of the coefficients in the lowest order of the perturbations
Vi1 and J ′

i1 , taking the continuum limit Vi1 → V (x) and
J ′
i1 → J ′(x). See Appendix A for a detailed derivation of

the expressions. We assume that K0 = 0 such that there
are independent NG and Higgs modes in the absence of
the barriers. Here K0, W0, r0, and u0 denote the val-
ues of coefficients of the first-order time derivative term
K, the second-order time derivative term W , the linear
term r, and the cubic nonlinear term u in the absence of
the barriers. In the case that K0 = 0, the shift of the

FIG. 4: Schematic picture of the effective 1D setting of tun-
neling NG mode through the delta-function potential barriers
vr(x) = Vrδ(x) and vK(x) = VKδ(x) combined with the di-
minishing condensate ψ0(x). The arrows mean plane waves
of NG mode incident to the barrier from the left (i), trans-
mitting through the barrier (t), and being reflected at the
barrier (r). The dashed line shows the profile T (x) of the
Higgs bound states localized around the barrier.

chemical potential yields the leading contribution to K
as

K ≃ −2W0V (x) ≡ vK(x). (10)

This term breaks the particle-hole symmetry and locally
couples phase and amplitude fluctuations. In contrast,
under the assumption that V (x) ≪ U one may ignore
the contribution of V (x) in W and u such that W ≃ W0

and u ≃ u0. On the other hand, the local modulation of
the hopping amplitude J ′(x) affects only r as

r ≃ r0 − 2J ′(x) ≡ r0 + vr(x). (11)

vr(x) acts as a usual potential term that does not break
particle-hole symmetry. The resulting TDGL equation
including the effects of the potential barriers is given by

ivK
∂ψ

∂t
−W0

∂2ψ

∂t2
=

(

−
∇2

2m∗
+ r0 + vr + u0|ψ|2

)

ψ. (12)

In order to simplify the notation, we represent the vari-
ables in a dimensionless form,

ψ̃ = ψ/(−r0/u0)
1/2, t̃ = t(−r0/W0)

1/2, x̃ = x/ξ,

ṽr = −vr/r0, ṽK = vK/(−r0W0)
1/2.

(13)

where ξ ≡ (−m∗r0)−1/2 is the healing length. Hereafter,
we omit the tilde and employ the following TDGL equa-
tion in the dimensionless form

ivK
∂ψ

∂t
−
∂2ψ

∂t2
=

(

−
∇2

2
− 1 + |ψ|2 + vr

)

ψ. (14)

IV. HIGGS BOUND STATES

Within the effective 1D setting depicted in Fig. 4,
we consider fluctuations of the order parameter ψ(x, t)
around a static condensate ψ0(x)

ψ(x, t) = ψ0(x) + U(x)e−iωt + V∗(x)eiω
∗t. (15)

ivK(x)
@

@t

 �W

@

2

@t

2
 =


� r2

2m⇤
+ r0 + vr(x) + u| |2

�
 

type	  (a)	 type	  (b)	



2.6.	  Dimensionless	  form	

ivK(x)
@

@t

 �W

@

2

@t

2
 =


� r2

2m⇤
+ r0 + vr(x) + u| |2

�
 

iv̄K(x)
@

@ t̄

 ̄ � @

2

@ t̄

2
 ̄ =


�r̄2

2
� 1 + v̄r(x) + | ̄|2

�
 ̄

 ̄ =  (�u/r0)
1/2,

v̄r = vr/(�r0),

t̄ = t(�r0/W )1/2,

v̄K = vK/(�r0W )1/2,

x̄ = x/⇠,

⇠ = 1/(�m⇤r0)
1/2where	

Herea}er,	  we	  omit	  the	  bars	  for	  simplicity.	  	

Note	  that	  in	  this	  unit	

c = 1/
p
2,Sound	  speed:	 � =

p
2Higgs	  gap:	
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Sta%c	  order	  parameter	 Small	  fluctua%ons	

Sta%c	  GP-‐like	  eq.:	

Higgs	  mode:	

 (x, t) =  0(x) + U(x)e�i!t + V⇤(x)ei!
⇤t

✓
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d

2

dx

2
� 1 + | 0(x)|2 + vr(x)

◆
 0(x) = 0

The	  Higgs	  and	  NG	  modes	  are	  coupled	  via	  the	  poten%al	  barrier	  	  	  	  	  	  	  	  	  	  	  	  	  .	vK(x)

2.7.	  Set	  of	  equa5ons	

ivK(x)
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@t

 � @

2
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2
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@
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@x

2
� 1 + vr(x) + | |2

�
 

We	  assume	  that	  the	  order	  parameter	  is	  homogeneous	  in	  the	  y	  and	  z	  direc%ons.	

NG	  mode:	

Linearize	  the	  TDGL	  eq.	  w.r.t.	  the	  fluctua%ons.	

vK(x)
No	  effect	  of	  
	  	  	  	  	  	  	  	  	  	  	  	  	  term	
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FIG. 3: Schematic illustration of external potentials that cre-
ate the inhomogeneous chemical potential Vi1 (a) and hopping
amplitude J ′

i1
(b). Vopt(x) and Vbar(x) mean the homoge-

neous optical-lattice potential and the potential barrier.

assume that potential barriers are present only in the
x-direction and that the system is homogeneous in the
other directions except for the overall optical-lattice po-
tential. Let us show that external potentials can intro-
duce the local modulation of the chemical potential µi

and the hopping amplitude J (α)
i in the BH model (1).

Specifically, we propose imposing two different types of
potential barrier in addition to the overall optical-lattice
potential for controlling these parameters independently.
First, the shift of the lattice potential with little change
in the lattice height can be realized by an optical dipole
potential that leads to the shift of the chemical potential
µi = µ0 → µ0−Vi1 in Eq. (1). This situation is schemat-
ically illustrated in Fig. 3(a). Second, we consider an
additional lattice potential in the Gaussian profile with
the same lattice spacing as that of the overall lattice po-
tential as shown in Fig. 3(b). The potential of this type
can be created by focusing the optical-lattice laser into
a narrow spatial region [46] and spatially modulates the
height of the lattice potential, leading to the inhomoge-
neous hopping amplitude,

J (α)
i = J + J ′

i1δα,1 . (9)

Since we regard Vi1 and J ′
i1 as potential barriers, they

are anticipated to vanish at i1 → ±∞. Hence, µ0 and J
mean the equilibrium values far away from the potential
barriers.
The coefficients in the TDGL equation are modified by

the potential barriers. We show approximate expressions
of the coefficients in the lowest order of the perturbations
Vi1 and J ′

i1 , taking the continuum limit Vi1 → V (x) and
J ′
i1 → J ′(x). See Appendix A for a detailed derivation of

the expressions. We assume that K0 = 0 such that there
are independent NG and Higgs modes in the absence of
the barriers. Here K0, W0, r0, and u0 denote the val-
ues of coefficients of the first-order time derivative term
K, the second-order time derivative term W , the linear
term r, and the cubic nonlinear term u in the absence of
the barriers. In the case that K0 = 0, the shift of the

FIG. 4: Schematic picture of the effective 1D setting of tun-
neling NG mode through the delta-function potential barriers
vr(x) = Vrδ(x) and vK(x) = VKδ(x) combined with the di-
minishing condensate ψ0(x). The arrows mean plane waves
of NG mode incident to the barrier from the left (i), trans-
mitting through the barrier (t), and being reflected at the
barrier (r). The dashed line shows the profile T (x) of the
Higgs bound states localized around the barrier.

chemical potential yields the leading contribution to K
as

K ≃ −2W0V (x) ≡ vK(x). (10)

This term breaks the particle-hole symmetry and locally
couples phase and amplitude fluctuations. In contrast,
under the assumption that V (x) ≪ U one may ignore
the contribution of V (x) in W and u such that W ≃ W0

and u ≃ u0. On the other hand, the local modulation of
the hopping amplitude J ′(x) affects only r as

r ≃ r0 − 2J ′(x) ≡ r0 + vr(x). (11)

vr(x) acts as a usual potential term that does not break
particle-hole symmetry. The resulting TDGL equation
including the effects of the potential barriers is given by

ivK
∂ψ

∂t
−W0

∂2ψ

∂t2
=

(

−
∇2

2m∗
+ r0 + vr + u0|ψ|2

)

ψ. (12)

In order to simplify the notation, we represent the vari-
ables in a dimensionless form,

ψ̃ = ψ/(−r0/u0)
1/2, t̃ = t(−r0/W0)

1/2, x̃ = x/ξ,

ṽr = −vr/r0, ṽK = vK/(−r0W0)
1/2.

(13)

where ξ ≡ (−m∗r0)−1/2 is the healing length. Hereafter,
we omit the tilde and employ the following TDGL equa-
tion in the dimensionless form

ivK
∂ψ

∂t
−
∂2ψ

∂t2
=

(

−
∇2

2
− 1 + |ψ|2 + vr

)

ψ. (14)

IV. HIGGS BOUND STATES

Within the effective 1D setting depicted in Fig. 4,
we consider fluctuations of the order parameter ψ(x, t)
around a static condensate ψ0(x)

ψ(x, t) = ψ0(x) + U(x)e−iωt + V∗(x)eiω
∗t. (15)

2.8.	  Sta5c	  order	  parameter	
We	  consider	  poten%al	  barriers	  of	  	  
delta-‐func%on	  form:	

vr(x) = Vr�(x), vK(x) = VK�(x),

 0(x) = tanh(|x|+ x0)

Solu%on	  of	  the	  sta%c	  order	  parameter:	

The	  constant	  x0	  is	  determined	  by	  the	  boundary	  condi%on:	

Kovrizhin	  Phys.	  Le;.	  A	  (2001)	

 0
0(�0) + 2Vr 0(0) =  0

0(+0)

tanh(x0) =
�Vr +

p
V

2
r + 4

2
' 1

Vr
when Vr � 1



There	  are	  two	  bound	  state	  solu%ons	  of	  the	  Higgs	  mode:	

Boundary	  condi%ons:	

T (x) =

T 0(+0) = T 0(�0) + 2VrT (0)

A = B (even parity), A = �B (odd parity)

one	  bound-‐state	  solu%on	  respec%vely	  for	

2.9.	  Higgs	  bound	  states	
Let	  us	  consider	  the	  case	  that	VK = 0, Vr > 0.

The	  Higgs	  and	  NG	  modes	  	  
are	  decoupled,	

✓
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2
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◆
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2
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Higgs	  mode:	

NG	  mode:	

Note:	  There	  is	  no	  bound	  state	  of	  the	  NG	  mode.	

t =
p
4� 2!2where	

Bound-‐state	  energy:	  E+	  ,	  	  	  	  E-‐	

B

�
3[�(x)]2 + 3

t

�(x) + 

2
t

� 1
�
e

�tx
, x > 0

A

�
3[�(x)]2 + 3

t

�(x) + 

2
t

� 1
�
e

tx
, x < 0

�(x) = tanh(|x|+ x0),

T (+0) = T (�0),
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FIG. 5: Energy of the Higgs bound states with even par-
ity (E+) and odd parity (E−) as functions of the potential
strength Vr. The red (blue) line shows E+ (E−). The verti-
cal and horizontal axes are in units of r0 and r0ξ, respectively.

as

T (−0) = T (+0), (27)

dT

dx

∣

∣

∣

∣

+0

−
dT

dx

∣

∣

∣

∣

−0

= 2VrT (0). (28)

Remarkably, the above equations have two solutions:
A = B and A = −B. If T (0) ̸= 0, Eq. (27) reduces
to A = B, while if T (0) = 0 Eq. (28) reduces to A = −B.
The former corresponds to an even parity solution and
the latter an odd parity one. We note that Eq. (17)
has no unstable bound state solutions with imaginary ω.
The difference between Eqs. (17) and (18) concerning
to existence of bound state solutions indeed derives from
the potential terms of static condensate proportional to
|ψ0|2. The deeper potential well in Eq. (18) than that in
Eq. (17) gives rise to the Higgs gap and accommodates
the localized bound states. The emergence of the bound
states of amplitude fluctuations in the TDGL equation
should be compared with the case of the GP equation
that has no bound states of amplitude as well as phase
fluctuations.
From Eqs. (27) and (28), the even parity bound state

fulfills the condition

c1 + Vrc2 = 0 , (29)

where

c1 = κ3t + 3ηκ2t + (6η2 − 4)κt + 6η(η2 − 1),

c2 = κ2t + 3ηκt + 3η2 − 1.
(30)

Equation (29) has a single bound state solution κ+. Fig-

ure 5 shows the binding energy E+ =
√

2− κ2+/2 as a

function of Vr. E+(Vr) becomes the Higgs gap E+ →
√
2

when Vr → 0. The bound state reduces to the odd par-
ity solution localized around a kink: E+ →

√

3/2 as
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FIG. 6: Wave functions of the Higgs bound states T (x) with
parity even (red) and odd (blue). We set Vr = 4 and A = 1.
The black line shows the static order parameter ψ0(x). The
vertical and horizontal axes are in units of

√

−r0/u0 and ξ,
respectively.

Vr → ∞. In this limit, the bound state can be also con-
sidered as an edge state that is localized at the boundary
where condensate vanishes.
The odd parity solution satisfies c2 = 0. We thus ob-

tain

κt =
1

2

(

−3η +
√

4− 3η2
)

≡ κ− . (31)

The energy of the odd parity solution is given by E− =
√

2− κ2−/2. The odd parity bound state appears if the

potential is large enough such that Vr > 2/
√
3. It also

reduces to the odd parity solution on a kink: E− →
√

3/2
as Vr → ∞. The odd parity bound state has higher
energy than the even parity one (E+ < E−) as shown in
Fig. 5.
Figure 6 shows the even and odd-parity bound states

of T (x). We propose the existence of such bound states
of amplitude fluctuations below the Higgs gap and call
them Higgs bound states. So far, the main focus of the
study of localized excitations in condensed matter sys-
tems have been on single-particle excitations including
Andreev bound states in superconductors [23] and edge
states in quantum Hall systems [51] and topological in-
sulators [52], or collective density modes such as rip-
plons [53] and Kelvin modes [54] in SF systems. Hith-
erto, Higgs bound states as localized amplitude modes
have never been found. Since the Higgs bound states
are low-lying excitations, they may play a major role in
various aspects of superfluid Bose gases in optical lat-
tices at low temperatures. Moreover, given the fact that
the presence of Higgs amplitude modes is a common fea-
ture among systems described effectively by a relativistic
O(N) field theory with N ≥ 2 [22], Higgs bound states
is also expected to exist in other various systems involv-
ing approximate particle-hole symmetry and spontaneous
breaking of a continuous symmetry, such as superconduc-
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A = B and A = −B. If T (0) ̸= 0, Eq. (27) reduces
to A = B, while if T (0) = 0 Eq. (28) reduces to A = −B.
The former corresponds to an even parity solution and
the latter an odd parity one. We note that Eq. (17)
has no unstable bound state solutions with imaginary ω.
The difference between Eqs. (17) and (18) concerning
to existence of bound state solutions indeed derives from
the potential terms of static condensate proportional to
|ψ0|2. The deeper potential well in Eq. (18) than that in
Eq. (17) gives rise to the Higgs gap and accommodates
the localized bound states. The emergence of the bound
states of amplitude fluctuations in the TDGL equation
should be compared with the case of the GP equation
that has no bound states of amplitude as well as phase
fluctuations.
From Eqs. (27) and (28), the even parity bound state

fulfills the condition

c1 + Vrc2 = 0 , (29)

where

c1 = κ3t + 3ηκ2t + (6η2 − 4)κt + 6η(η2 − 1),
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Equation (29) has a single bound state solution κ+. Fig-

ure 5 shows the binding energy E+ =
√

2− κ2+/2 as a

function of Vr. E+(Vr) becomes the Higgs gap E+ →
√
2

when Vr → 0. The bound state reduces to the odd par-
ity solution localized around a kink: E+ →

√

3/2 as

-6 -4 -2 0 2 4 6
-2

-1

0

1

2

FIG. 6: Wave functions of the Higgs bound states T (x) with
parity even (red) and odd (blue). We set Vr = 4 and A = 1.
The black line shows the static order parameter ψ0(x). The
vertical and horizontal axes are in units of

√

−r0/u0 and ξ,
respectively.

Vr → ∞. In this limit, the bound state can be also con-
sidered as an edge state that is localized at the boundary
where condensate vanishes.
The odd parity solution satisfies c2 = 0. We thus ob-

tain

κt =
1

2

(

−3η +
√

4− 3η2
)

≡ κ− . (31)

The energy of the odd parity solution is given by E− =
√

2− κ2−/2. The odd parity bound state appears if the

potential is large enough such that Vr > 2/
√
3. It also

reduces to the odd parity solution on a kink: E− →
√

3/2
as Vr → ∞. The odd parity bound state has higher
energy than the even parity one (E+ < E−) as shown in
Fig. 5.
Figure 6 shows the even and odd-parity bound states

of T (x). We propose the existence of such bound states
of amplitude fluctuations below the Higgs gap and call
them Higgs bound states. So far, the main focus of the
study of localized excitations in condensed matter sys-
tems have been on single-particle excitations including
Andreev bound states in superconductors [23] and edge
states in quantum Hall systems [51] and topological in-
sulators [52], or collective density modes such as rip-
plons [53] and Kelvin modes [54] in SF systems. Hith-
erto, Higgs bound states as localized amplitude modes
have never been found. Since the Higgs bound states
are low-lying excitations, they may play a major role in
various aspects of superfluid Bose gases in optical lat-
tices at low temperatures. Moreover, given the fact that
the presence of Higgs amplitude modes is a common fea-
ture among systems described effectively by a relativistic
O(N) field theory with N ≥ 2 [22], Higgs bound states
is also expected to exist in other various systems involv-
ing approximate particle-hole symmetry and spontaneous
breaking of a continuous symmetry, such as superconduc-
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2.9.	  Higgs	  bound	  states	
Let	  us	  consider	  the	  case	  that	VK = 0, Vr > 0.

The	  Higgs	  and	  NG	  modes	  	  
are	  decoupled,	
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The	  diminishing	  order	  parameter	  combined	  with	  the	  poten%al	  barrier	  cons%tutes	  a	  double	  well	  
poten5al	  for	  collec%ve	  modes.	  It	  allows	  for	  forma%on	  of	  bound	  states	  of	  the	  Higgs	  mode.	  	
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FIG. 3: Schematic illustration of external potentials that cre-
ate the inhomogeneous chemical potential Vi1 (a) and hopping
amplitude J ′

i1
(b). Vopt(x) and Vbar(x) mean the homoge-

neous optical-lattice potential and the potential barrier.

assume that potential barriers are present only in the
x-direction and that the system is homogeneous in the
other directions except for the overall optical-lattice po-
tential. Let us show that external potentials can intro-
duce the local modulation of the chemical potential µi

and the hopping amplitude J (α)
i in the BH model (1).

Specifically, we propose imposing two different types of
potential barrier in addition to the overall optical-lattice
potential for controlling these parameters independently.
First, the shift of the lattice potential with little change
in the lattice height can be realized by an optical dipole
potential that leads to the shift of the chemical potential
µi = µ0 → µ0−Vi1 in Eq. (1). This situation is schemat-
ically illustrated in Fig. 3(a). Second, we consider an
additional lattice potential in the Gaussian profile with
the same lattice spacing as that of the overall lattice po-
tential as shown in Fig. 3(b). The potential of this type
can be created by focusing the optical-lattice laser into
a narrow spatial region [46] and spatially modulates the
height of the lattice potential, leading to the inhomoge-
neous hopping amplitude,

J (α)
i = J + J ′

i1δα,1 . (9)

Since we regard Vi1 and J ′
i1 as potential barriers, they

are anticipated to vanish at i1 → ±∞. Hence, µ0 and J
mean the equilibrium values far away from the potential
barriers.
The coefficients in the TDGL equation are modified by

the potential barriers. We show approximate expressions
of the coefficients in the lowest order of the perturbations
Vi1 and J ′

i1 , taking the continuum limit Vi1 → V (x) and
J ′
i1 → J ′(x). See Appendix A for a detailed derivation of

the expressions. We assume that K0 = 0 such that there
are independent NG and Higgs modes in the absence of
the barriers. Here K0, W0, r0, and u0 denote the val-
ues of coefficients of the first-order time derivative term
K, the second-order time derivative term W , the linear
term r, and the cubic nonlinear term u in the absence of
the barriers. In the case that K0 = 0, the shift of the

FIG. 4: Schematic picture of the effective 1D setting of tun-
neling NG mode through the delta-function potential barriers
vr(x) = Vrδ(x) and vK(x) = VKδ(x) combined with the di-
minishing condensate ψ0(x). The arrows mean plane waves
of NG mode incident to the barrier from the left (i), trans-
mitting through the barrier (t), and being reflected at the
barrier (r). The dashed line shows the profile T (x) of the
Higgs bound states localized around the barrier.

chemical potential yields the leading contribution to K
as

K ≃ −2W0V (x) ≡ vK(x). (10)

This term breaks the particle-hole symmetry and locally
couples phase and amplitude fluctuations. In contrast,
under the assumption that V (x) ≪ U one may ignore
the contribution of V (x) in W and u such that W ≃ W0

and u ≃ u0. On the other hand, the local modulation of
the hopping amplitude J ′(x) affects only r as

r ≃ r0 − 2J ′(x) ≡ r0 + vr(x). (11)

vr(x) acts as a usual potential term that does not break
particle-hole symmetry. The resulting TDGL equation
including the effects of the potential barriers is given by

ivK
∂ψ

∂t
−W0

∂2ψ

∂t2
=

(

−
∇2

2m∗
+ r0 + vr + u0|ψ|2

)

ψ. (12)

In order to simplify the notation, we represent the vari-
ables in a dimensionless form,

ψ̃ = ψ/(−r0/u0)
1/2, t̃ = t(−r0/W0)

1/2, x̃ = x/ξ,

ṽr = −vr/r0, ṽK = vK/(−r0W0)
1/2.

(13)

where ξ ≡ (−m∗r0)−1/2 is the healing length. Hereafter,
we omit the tilde and employ the following TDGL equa-
tion in the dimensionless form

ivK
∂ψ

∂t
−
∂2ψ

∂t2
=

(

−
∇2

2
− 1 + |ψ|2 + vr

)

ψ. (14)

IV. HIGGS BOUND STATES

Within the effective 1D setting depicted in Fig. 4,
we consider fluctuations of the order parameter ψ(x, t)
around a static condensate ψ0(x)

ψ(x, t) = ψ0(x) + U(x)e−iωt + V∗(x)eiω
∗t. (15)

We	  consider	  the	  sca;ering	  problem	  of	  	  
a	  NG	  mode	  incident	  to	  the	  poten%al	  barriers.	

Transmission probability:	

Fano resonance of  
the NG mode through  
the Higgs bound state	

2.10.	  Tunneling	  of	  the	  NG	  mode	
Let	  us	  assume	  that	

T (x) =
B

�
3[�(x)]2 + 3

t

�(x) + 

2
t

� 1
�
e

�tx
, x > 0

A

�
3[�(x)]2 + 3

t

�(x) + 

2
t

� 1
�
e

tx
, x < 0

where	  	

T (+0) = T (�0),
S(+0) = S(�0),

ks =
p

2!2 � 4Transmi;ed	

Reflected	Incident	

VK 6= 0, Vr > 0, and ! < �

S0(�0) + 2VrS(0) + 2EVKT (0) = S0(+0)
T 0(�0) + 2VrT (0) + 2EVKS(0) = T 0(+0)

Boundary	  condi%ons:	

All	  the	  coefficients,	  rng,	  tng,	  A,	  and	  B.	

NG:	

Higgs:	

breaks	  the	  p-‐h	  symmetry	
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FIG. 7: The transmission coefficient T as a function of E
for (Vr, VK) = (4, 2) (red) and (4, 4) (blue). The dotted and
dash-dotted lines represent the energy of the Higgs bound
states with parity even (E+) and odd (E−), respectively. The
horizontal axis is in unit of r0.

of E+ as E decreases below the gap. This asymmetric
peak is the main focus of the present paper.
Equation (40) shows that the interference between

scattered waves of NG mode in two processes, one di-
rectly scattered by the bare Vr and the other one by VK

as well as by Vr, renormalizes Vr giving the effective po-
tential Veff(E). Moreover, Eq. (41) shows that the second
process involves resonant excitation of the Higgs bound
state through the scattering amplitude f(E): Expansion
of the denominator in Eq. (41) around E+ gives

c1 + Vrc2 ≃ α(E+ − E), (42)

α =
2E+

κ+

[

3κ2+ + 2

(

2η +
1

η

)

κ+ + 3η2 − 1

]

,(43)

where κ+ =
√

4− 2E2
+. Thus, f(E) has a pole and di-

verges at E+, as shown in Fig. 8. If the interference
is destructive, Veff(E) vanishes and perfect transmission
of incident wave occurs when V 2

Kf(E) = 1. On the
other hand, precisely at the energy of the bound state
(E = E+), Veff diverges due to the resonance with the
Higgs bound state and therefore incident wave is per-
fectly reflected. Thus, such interference of scattered
waves of NG mode produces the asymmetric peak in
Fig. 7.
This phenomenon is a typical example of Fano reso-

nance [28], in which interference between a directly scat-
tered wave within continuum and a resonantly scattered
wave involving excitation of bound states produces asym-
metric peaks of scattering cross-section or transmission
probability. The Fano resonance of NG mode in the
present case exhibits interesting features. One remark-
able feature is that the Higgs bound state is resonantly
coupled with NG mode by the potential barrier of the
first-order time-derivative term that arises due to the bro-
ken particle-hole symmetry. This is quite different from
usual single-particle scatterings described by Schrödinger
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FIG. 8: Scattering amplitude of NG mode V 2
Kf(E) as a func-

tion of E. We set the potential barriers (Vr, VK) = (4, 2) (red)
and (4, 4) (blue). The horizontal axis is in unit of r0.

equation where scattering states and bound states are
coupled by proximity of wave functions through a poten-
tial barrier.

In Eq. (40), the effect of VK vanishes and the effective
potential Veff reduces to the bare potential Vr at E = E−,
because of c2(E−) = 0 and f(E−) = 0. Thus, in contrast
with the even-parity bound state at E+ that causes the
resonance (f(E+) = ±∞), the odd parity bound state
E− cancels the effect of the potential barrier VK , because
the wave function of the odd parity bound state has a
node at the position of the potential barrier x = 0.

If the odd parity bound state exists (Vr > 2/
√
3) and

furthermore VK is sufficiently large such that V 2
Kf(∆) >

1, another perfect transmission in the region E+ < E <
∆ occurs when V 2

Kf(E) = 1 in addition to the one in
0 < E < E+. Figure 8 shows the second perfect trans-
mission in E+ < E < ∆ for (Vr , VK) = (4, 4). The phase
diagram in Fig. 9 shows the parameter region where per-
fect transmission occurs twice in the Vr − VK plane.

The observability of Higgs modes is a central issue in
condensed matter systems [2, 63]. Observation of Higgs
modes as well as Higgs bound states is difficult with stan-
dard techniques since they are not directly coupled with
density or electromagnetic fields. Few exceptions include
observation in bosonic superfluids in optical lattices with
temporal modulation of the lattice potential [18], NbSe2,
which has coexisting CDW and superconducting order,
by Raman spectroscopy [3], and terahertz transmission
experiments in s-wave superconductors [6, 7]. Our results
indicate that studying transport properties of NG mode
could be a possible platform for observation of Higgs
bound states. We propose detection of Higgs bound
states in measuring the transmission probability of NG
mode excited by Bragg pulses [64, 65] through potential
barriers [56]. Since the asymmetric peak in the transmis-
sion probability of NG mode is characteristic to the Fano
resonance coupled with the Higgs bound states, detect-
ing it provides with strong evidence for the existence of

(4, 2)

(4, 4)
(Vr, VK) =

Anomalous  
tunneling [11]	

2.11.	  Transmission	  probability	
T (E) = |tng|2 =

1

1 + 2E2

(2E2+1)2Ve↵(E)2
, (E < �)

Perfect	  transmission	  at	  E=0,	  	  
which	  is	  known	  as	  	  
anomalous	  tunneling	  
of	  the	  NG	  mode	  
Kovrizhin,	  Phys.	  Le;	  A	  (2001)	  	

Asymmetric	  peak	  
structure	  emerges	  
around	  E+	  !!!	

Ve↵(E) =
�
1� V 2

Kf(E)
�
Vr

Fano	  resonance	



ing referred to as the entrance channel. The other po-
tential Vc!R", representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case !see Sec. VI.A". Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. !1995", for the s-wave scattering length a as a func-
tion of the magnetic field B,

a!B" = abg#1 −
!

B − B0
$ . !1"

Figure 2!a" shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg!R", represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg!R". The parameter B0
denotes the resonance position, where the scattering

length diverges !a→ ±"", and the parameter ! is the
resonance width. Note that both abg and ! can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+!. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2!b" relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by #$, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = %2/2$a2, !2"

where $ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer !see Sec. V.B.2".

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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FIG. 1. !Color online" Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
magnetic moments of the closed and open channels differ.
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FIG. 2. !Color online" Feshbach resonance properties. !a"
Scattering length a and !b" molecular state energy E near a
magnetically tuned Feshbach resonance. The binding energy is
defined to be positive, Eb=−E. The inset shows the universal
regime near the point of resonance where a is very large and
positive.
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2.12.	  Remember	  Feshbach	  resonance	  	

	  	  	  	  	  	  	  	  	  	  	  	  	  Energy	  of	  	  
the	  sca;ering	  state	  
in	  the	  open	  channel	

Figure	  is	  from	  the	  Pethick-‐Smith	  
textbook.	

Energy	  of	  the	  discrete	  state	  
in	  the	  closed	  channel	 Sca;ering	  length:	
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ing referred to as the entrance channel. The other po-
tential Vc!R", representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case !see Sec. VI.A". Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. !1995", for the s-wave scattering length a as a func-
tion of the magnetic field B,

a!B" = abg#1 −
!

B − B0
$ . !1"

Figure 2!a" shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg!R", represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg!R". The parameter B0
denotes the resonance position, where the scattering

length diverges !a→ ±"", and the parameter ! is the
resonance width. Note that both abg and ! can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+!. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2!b" relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by #$, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = %2/2$a2, !2"

where $ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer !see Sec. V.B.2".

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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FIG. 1. !Color online" Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
magnetic moments of the closed and open channels differ.
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The	  interference	  with	  the	  sca;ering	  
process	  through	  the	  discrete	  state	  
leads	  to	  the	  drama%c	  change	  of	  
the	  sca;ering	  length,	  namely	  
the	  Feshbach	  resonance.	  
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FIG. 7: The transmission coefficient T as a function of E
for (Vr, VK) = (4, 2) (red) and (4, 4) (blue). The dotted and
dash-dotted lines represent the energy of the Higgs bound
states with parity even (E+) and odd (E−), respectively. The
horizontal axis is in unit of r0.

of E+ as E decreases below the gap. This asymmetric
peak is the main focus of the present paper.
Equation (40) shows that the interference between

scattered waves of NG mode in two processes, one di-
rectly scattered by the bare Vr and the other one by VK

as well as by Vr, renormalizes Vr giving the effective po-
tential Veff(E). Moreover, Eq. (41) shows that the second
process involves resonant excitation of the Higgs bound
state through the scattering amplitude f(E): Expansion
of the denominator in Eq. (41) around E+ gives

c1 + Vrc2 ≃ α(E+ − E), (42)

α =
2E+

κ+

[

3κ2+ + 2

(

2η +
1

η

)

κ+ + 3η2 − 1

]

,(43)

where κ+ =
√

4− 2E2
+. Thus, f(E) has a pole and di-

verges at E+, as shown in Fig. 8. If the interference
is destructive, Veff(E) vanishes and perfect transmission
of incident wave occurs when V 2

Kf(E) = 1. On the
other hand, precisely at the energy of the bound state
(E = E+), Veff diverges due to the resonance with the
Higgs bound state and therefore incident wave is per-
fectly reflected. Thus, such interference of scattered
waves of NG mode produces the asymmetric peak in
Fig. 7.
This phenomenon is a typical example of Fano reso-

nance [28], in which interference between a directly scat-
tered wave within continuum and a resonantly scattered
wave involving excitation of bound states produces asym-
metric peaks of scattering cross-section or transmission
probability. The Fano resonance of NG mode in the
present case exhibits interesting features. One remark-
able feature is that the Higgs bound state is resonantly
coupled with NG mode by the potential barrier of the
first-order time-derivative term that arises due to the bro-
ken particle-hole symmetry. This is quite different from
usual single-particle scatterings described by Schrödinger
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FIG. 8: Scattering amplitude of NG mode V 2
Kf(E) as a func-

tion of E. We set the potential barriers (Vr, VK) = (4, 2) (red)
and (4, 4) (blue). The horizontal axis is in unit of r0.

equation where scattering states and bound states are
coupled by proximity of wave functions through a poten-
tial barrier.

In Eq. (40), the effect of VK vanishes and the effective
potential Veff reduces to the bare potential Vr at E = E−,
because of c2(E−) = 0 and f(E−) = 0. Thus, in contrast
with the even-parity bound state at E+ that causes the
resonance (f(E+) = ±∞), the odd parity bound state
E− cancels the effect of the potential barrier VK , because
the wave function of the odd parity bound state has a
node at the position of the potential barrier x = 0.

If the odd parity bound state exists (Vr > 2/
√
3) and

furthermore VK is sufficiently large such that V 2
Kf(∆) >

1, another perfect transmission in the region E+ < E <
∆ occurs when V 2

Kf(E) = 1 in addition to the one in
0 < E < E+. Figure 8 shows the second perfect trans-
mission in E+ < E < ∆ for (Vr , VK) = (4, 4). The phase
diagram in Fig. 9 shows the parameter region where per-
fect transmission occurs twice in the Vr − VK plane.

The observability of Higgs modes is a central issue in
condensed matter systems [2, 63]. Observation of Higgs
modes as well as Higgs bound states is difficult with stan-
dard techniques since they are not directly coupled with
density or electromagnetic fields. Few exceptions include
observation in bosonic superfluids in optical lattices with
temporal modulation of the lattice potential [18], NbSe2,
which has coexisting CDW and superconducting order,
by Raman spectroscopy [3], and terahertz transmission
experiments in s-wave superconductors [6, 7]. Our results
indicate that studying transport properties of NG mode
could be a possible platform for observation of Higgs
bound states. We propose detection of Higgs bound
states in measuring the transmission probability of NG
mode excited by Bragg pulses [64, 65] through potential
barriers [56]. Since the asymmetric peak in the transmis-
sion probability of NG mode is characteristic to the Fano
resonance coupled with the Higgs bound states, detect-
ing it provides with strong evidence for the existence of

(4, 2)

(4, 4)
(Vr, VK) =

2.13.	  Fano	  resonance	
T (E) = |tng|2 =

1

1 + 2E2

(2E2+1)2Ve↵(E)2
, (E < �)

Ve↵(E) =
�
1� V 2

Kf(E)
�
Vr
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FIG. 7: The transmission coefficient T as a function of E
for (Vr, VK) = (4, 2) (red) and (4, 4) (blue). The dotted and
dash-dotted lines represent the energy of the Higgs bound
states with parity even (E+) and odd (E−), respectively. The
horizontal axis is in unit of r0.

of E+ as E decreases below the gap. This asymmetric
peak is the main focus of the present paper.
Equation (40) shows that the interference between

scattered waves of NG mode in two processes, one di-
rectly scattered by the bare Vr and the other one by VK

as well as by Vr, renormalizes Vr giving the effective po-
tential Veff(E). Moreover, Eq. (41) shows that the second
process involves resonant excitation of the Higgs bound
state through the scattering amplitude f(E): Expansion
of the denominator in Eq. (41) around E+ gives

c1 + Vrc2 ≃ α(E+ − E), (42)

α =
2E+

κ+

[

3κ2+ + 2

(

2η +
1

η

)

κ+ + 3η2 − 1

]

,(43)

where κ+ =
√

4− 2E2
+. Thus, f(E) has a pole and di-

verges at E+, as shown in Fig. 8. If the interference
is destructive, Veff(E) vanishes and perfect transmission
of incident wave occurs when V 2

Kf(E) = 1. On the
other hand, precisely at the energy of the bound state
(E = E+), Veff diverges due to the resonance with the
Higgs bound state and therefore incident wave is per-
fectly reflected. Thus, such interference of scattered
waves of NG mode produces the asymmetric peak in
Fig. 7.
This phenomenon is a typical example of Fano reso-

nance [28], in which interference between a directly scat-
tered wave within continuum and a resonantly scattered
wave involving excitation of bound states produces asym-
metric peaks of scattering cross-section or transmission
probability. The Fano resonance of NG mode in the
present case exhibits interesting features. One remark-
able feature is that the Higgs bound state is resonantly
coupled with NG mode by the potential barrier of the
first-order time-derivative term that arises due to the bro-
ken particle-hole symmetry. This is quite different from
usual single-particle scatterings described by Schrödinger
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FIG. 8: Scattering amplitude of NG mode V 2
Kf(E) as a func-

tion of E. We set the potential barriers (Vr, VK) = (4, 2) (red)
and (4, 4) (blue). The horizontal axis is in unit of r0.

equation where scattering states and bound states are
coupled by proximity of wave functions through a poten-
tial barrier.

In Eq. (40), the effect of VK vanishes and the effective
potential Veff reduces to the bare potential Vr at E = E−,
because of c2(E−) = 0 and f(E−) = 0. Thus, in contrast
with the even-parity bound state at E+ that causes the
resonance (f(E+) = ±∞), the odd parity bound state
E− cancels the effect of the potential barrier VK , because
the wave function of the odd parity bound state has a
node at the position of the potential barrier x = 0.

If the odd parity bound state exists (Vr > 2/
√
3) and

furthermore VK is sufficiently large such that V 2
Kf(∆) >

1, another perfect transmission in the region E+ < E <
∆ occurs when V 2

Kf(E) = 1 in addition to the one in
0 < E < E+. Figure 8 shows the second perfect trans-
mission in E+ < E < ∆ for (Vr , VK) = (4, 4). The phase
diagram in Fig. 9 shows the parameter region where per-
fect transmission occurs twice in the Vr − VK plane.

The observability of Higgs modes is a central issue in
condensed matter systems [2, 63]. Observation of Higgs
modes as well as Higgs bound states is difficult with stan-
dard techniques since they are not directly coupled with
density or electromagnetic fields. Few exceptions include
observation in bosonic superfluids in optical lattices with
temporal modulation of the lattice potential [18], NbSe2,
which has coexisting CDW and superconducting order,
by Raman spectroscopy [3], and terahertz transmission
experiments in s-wave superconductors [6, 7]. Our results
indicate that studying transport properties of NG mode
could be a possible platform for observation of Higgs
bound states. We propose detection of Higgs bound
states in measuring the transmission probability of NG
mode excited by Bragg pulses [64, 65] through potential
barriers [56]. Since the asymmetric peak in the transmis-
sion probability of NG mode is characteristic to the Fano
resonance coupled with the Higgs bound states, detect-
ing it provides with strong evidence for the existence of

(4, 4)

(4, 2)

(Vr, VK) =

' Vr �
↵V 2

K

E � E+
Vr.

Direct scattering	 Scattering through the  
even Higgs bound state.	

The	  asymmetric	  peak	  is	  manifesta%on	  of	  the	  Fano	  resonance	  of	  the	  NG	  mode	  
(open	  channel)	  mediated	  by	  the	  even	  Higgs	  bound	  state	  (closed	  channel).	  	

|E � E+| ⌧ 1for	



2.14.	  Summary	  of	  this	  part	

・	  We	  derived	  the	  %me-‐dependent	  Ginzburg-‐Landau	  equa%on	  including	  effects	  of	  
	  	  	  poten%al	  barriers.	

・ Higgs	  bound	  states	  are	  present	  under	  the	  barrier	  poten%al	  that	  does	  not	  	  
	  	  	  break	  the	  par%cle-‐hole	  symmetry.	

・ Response	  of	  the	  Higgs	  bound	  states	  	  
	  	  	  	  to	  the	  laPce	  amplitude	  modula%on.	

・ Fano	  resonance	  of	  the	  NG	  mode	  mediated	  by	  the	  Higgs	  bound	  state	

Outlook:	

・ 2D	

・ Other	  condensed	  ma;er	  systems	  
	  	  	  Especially	  disordered	  superconductors,	  	  
	  	  	  Sherman	  et	  al.,	  Nat.	  Phys.	  (2015).	
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Figure 2 | Tunnelling versus optical spectroscopy. a,b, Experimental results on low-disorder NbN samples. a, Measured tunnelling conductance
normalized to the normal state conductance G/Gn (green triangles) alongside a fit to BCS (black line) with a Dynes broadening parameter, � . b, Real part
of the dynamical conductivity, �1, versus frequency (energy) at temperatures below and above Tc =9.5 K. The low-temperature curve is fitted (green line)
to Mattis–Bardeen theory using the energy gap value obtained in the corresponding tunnelling result, �t. c, Summary of the quasiparticle tunnelling gap, �t
(green symbols), measured by planar tunnelling junctions or scanning tunnelling microscopy (STM), versus ⌦ , the frequency at which �1(!) is minimal
(blue symbols), obtained from optical spectroscopy for several superconducting NbN and InO films spanning the di�erent degrees of disorder. Whereas
the quasiparticle gap, �t, remains fairly unchanged with increasing disorder, and basically falls on the BCS strong coupling limit ratio, ⌦ is significantly
suppressed. According to Mattis–Bardeen theory, for ideal superconductors �1 is minimal at a frequency ⌦ that corresponds to 2�. The discrepancy
between both spectroscopic probes increases towards the highly disordered limit, signalling the presence of additional modes superimposed on the
quasiparticle response. The solid red line corresponds to the analytical prediction of mH close to a QPT calculated by Podolsky and colleagues12.
d,e, Experimental results on highly disordered NbN samples. d, Measured tunnelling conductance normalized to the normal state conductance G/Gn
(green triangles) together with a fit to BCS (black line) with a Dynes broadening parameter, � . e, Real part of the dynamical conductivity, �1, versus
frequency (energy) at temperatures below and above Tc =4.2 K. The low-temperature curve is fitted (green line) to Mattis–Bardeen theory using the
energy gap value obtained in the corresponding tunnelling result. Unlike the case of the low-disorder sample, these two curves di�er. The excess spectral
weight, marked in yellow and defined as the di�erence between the curves, is attributed to the Higgs contribution, � H

1 (see text). The error bars for �1 in the
graphs are determined by the distortion of the Fabry–Perot oscillations due to parasitic radiation, standing waves and electronic noise.

towards low frequencies is not at all captured by BCS theory (green
curve). In fact, using �t extracted from corresponding tunnelling
experiments, as seen in Fig. 2d, yields a curve which is significantly
below �

exp
1 (!). With increasing disorder, both the discrepancy

between 2�t and ⌦ and the insu�ciency of Mattis–Bardeen
fits become progressively worse. This trend is demonstrated in
Fig. 2c, where we compare results from both techniques on a
large number of NbN and InO samples spanning the various
degrees of disorder (measured in terms of the normalized critical
temperature, T̃c =Tc/T clean

c ). For small disorder, T̃c ' 1, tunnelling
and THz spectroscopy yield the same value for the superconducting
energy gap. On increasing disorder (decreasing T̃c) the discrepancy
becomes more and more pronounced. For the most-disordered
samples, we find about one order of magnitude di�erence between
corresponding values. We assign these di�erences to an absorption
process stemming from the Higgs mode that becomes progressively
prominent as the systemapproaches the quantumcritical point. This
explains the discrepancy in the sense that ⌦ in the strong-disorder
limit no longer equals 2� as a consequence of the additional
conductivity �H

1 (!) of the emergent Higgs mode. The previously
prominent spectral feature marking the gap frequency is now
hidden in the shoulder at higher frequencies. Although a distinct
experimental determination of⌦ becomes progressively di�cult as
it is pushed to low frequencies, we note the resemblance between
⌦ and the theoretical prediction ofmH in the vicinity of the critical
point12, as seen in Fig. 2c.

We now explore the evolution of the observed additional excess
weight associated with the Higgs conductivity, �H

1 (!), as defined
in equation (2), and compare these measured results with recent
numerical simulations detailed in ref. 25 and sketched in Fig. 1b.
Figure 3a shows the measured �H

1 (!) for three disordered NbN
films with di�erent critical temperatures Tc =6.7, 5 and 4.2 K and
the theoretical calculation for corresponding values of disorder
p=0.075, 0.1 and 0.125. We note that one cannot expect a perfect
quantitative agreement since the theory assumes that 2� is much
larger than the Higgs mode energy, whereas experimentally they
are of the same order of magnitude. Nevertheless, the overall
behaviour—and even quantitative trends—is shared by theory
and experiment: There is a pronounced peak of �H(!), which
shifts towards smaller frequencies and becomes sharper with
increasing disorder.

The appearance of the Higgs mode must go along with a
redistribution of the spectral weight, as this quantity is strictly
conserved; it measures the total charge carrier density N in the
system26. In accordance with the bosonic model of the SIT sketched
above, the strength of the �-peak—that is, the superfluid density
⇢s—dwindles to zero in the vicinity of the quantum critical point.
Figure 3b shows ⇢s for disordered NbN films extracted from the
imaginary part of the conductivity, using equation (3), and N in
the normal state obtained from Hall measurements. While ⇢s is
reduced by about two orders or magnitude with increasing disorder,
N is much less a�ected. According to the Ferrell–Tinkham–Glover
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less than 40 !G=cm from hyperfine Ramsey measure-
ments.

We first demonstrate a state-dependent transition from
the superfluid to the Mott regime, keeping the final trans-
verse lattice depth constant at 12E?

R (E?
R ¼ @2k2?=2m,

k? ¼ 2"=#?) and ramping up and down the z-lattice
depth. The transverse lattice depth is slightly below the
superfluid-to-Mott insulator transition in an isotropic 3D
cubic lattice (at a tunneling-to-interaction ratio t=U "
1=36 [22]), and sufficiently large for unwanted four-wave
mixing effects in TOF [21] to be negligible. Figure 1 shows
TOF images for the case Va ¼ 4Vb and a ramp of Va up to
15ER (ER ¼ @2k2z=2m, kz ¼ 2"=#z). The jai atoms
undergo a reversible transition into the Mott regime, while
the jbi component remains superfluid.

To characterize the many-body states of the two compo-
nents, we analyze the visibility [23] and peak width [24] of
their TOF diffraction patterns. As our optical lattice is
anisotropic (transverse and vertical axes) in both lattice
constant and depth, we employ a single-axis visibility
measure along the state-dependent vertical axis. A
600 !s gravitational "-phase shift [22,25] between adja-
cent vertical lattice sites produces a symmetric diffraction
pattern with two vertical peaks separated by 2@kz (in con-
trast to the patterns of Fig. 1 without a shift). This is
accomplished by turning off the ODT while keeping on
the z lattice. The visibility is then defined as $ ¼ N#=Nþ,
where N%¼Nþ1þN#1%2N0 are the sum and difference

of the atom numbers in the diffraction peaks (Nþ1, N#1)
and intermediate region (N0), as shown in Fig. 2(a) (I). To
determine the peak width % (1=e half-width), we sum over
a vertical strip and fit the projection with two Gaussian
peaks on top of a broad Gaussian background.
In the following, we examine how the coherence prop-

erties of a given superfluid component depend on the
presence of a background of either a lighter (in terms of
the band mass m&

z) superfluid, or heavier ‘‘impurity’’
atoms. This is implemented by a halving (I) and doubling
(II) of the maximum z-lattice depths as compared to Fig. 1.
In the first case (I) the background medium is formed by
jbi atoms in a 2ER deep potential, and in the second case
(II) by jai atoms in a potential with 31ER depth. In both
cases, the foreground component [jai atoms in (I), jbi
atoms in (II)] experiences an 8ER deep lattice, for which
the visibility displays a strong differential dependence on
lattice depth and tunneling (at the chosen transverse lattice
depth of 12E?

R ). In both cases, we vary the relative pop-
ulations fa and fb ¼ 1# fa of the two components while
keeping the total atom number constant, which allows for
separating out effects of interspecies coupling from simple
overall density effects.

(C)
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(B)
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z

Vb Va
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= /4
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80 ms 30 mslx
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FIG. 1 (color online). State-dependent transition from the su-
perfluid to the Mott regime. (a) Surfaces of equal probability
density (1=e2) for (noninteracting) atoms of type jai (red [dark
grey]) and jbi (blue [medium grey]) in a three-dimensional
lattice with depths of 12E?

R in the transverse directions (x, y),
and 15ð3:8ÞER along z for jai (jbi) atoms. (b) Time-of-flight
(TOF) absorption image after release of a balanced mixture
(fa " fb). The aspect ratio lz=lx is given by kz=k?. (c) TOF
images after Stern-Gerlach separation. The jai component (red
[medium grey]) enters the Mott regime (ta=Uaa " 1=39,
t?=Uaa " 1=38), whereas the jbi component (blue [dark
grey]) remains superfluid. The bottom graph illustrates the
state-dependent z-lattice ramp. The transverse lattice ramp (not
shown) follows a 115 ms long sigmoid curve and reaches its full
depth of 12E?

R as the z lattice reaches half of its maximum depth.

FIG. 2 (color online). Effects of a background medium on
superfluid coherence. (I; left column) jai atoms (Va ¼ 8:3ER)
in contact with superfluid jbi atoms (Vb ¼ 2:1ER) and (II; right
column) jbi atoms (Vb ¼ 7:8ER) in contact with localized jai
atoms (Vb ¼ 31ER). (a) Stern-Gerlach separated TOF images
(for fa " fb) after a gravitational phase shift. The circles in (I)
denote apertures used to determine visibility. (b) Dependence of
the visibility and peak width on the relative population of the
background medium, with constant total atom number 1:7ð1Þ )
105; the insets show corresponding data for the background
medium. Open circles denote reference measurements without
background medium, in which the atom numbers are varied
correspondingly. Ramp shapes are as in Fig. 1, with V? ¼ 12E?

R .
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less than 40 !G=cm from hyperfine Ramsey measure-
ments.

We first demonstrate a state-dependent transition from
the superfluid to the Mott regime, keeping the final trans-
verse lattice depth constant at 12E?

R (E?
R ¼ @2k2?=2m,

k? ¼ 2"=#?) and ramping up and down the z-lattice
depth. The transverse lattice depth is slightly below the
superfluid-to-Mott insulator transition in an isotropic 3D
cubic lattice (at a tunneling-to-interaction ratio t=U "
1=36 [22]), and sufficiently large for unwanted four-wave
mixing effects in TOF [21] to be negligible. Figure 1 shows
TOF images for the case Va ¼ 4Vb and a ramp of Va up to
15ER (ER ¼ @2k2z=2m, kz ¼ 2"=#z). The jai atoms
undergo a reversible transition into the Mott regime, while
the jbi component remains superfluid.

To characterize the many-body states of the two compo-
nents, we analyze the visibility [23] and peak width [24] of
their TOF diffraction patterns. As our optical lattice is
anisotropic (transverse and vertical axes) in both lattice
constant and depth, we employ a single-axis visibility
measure along the state-dependent vertical axis. A
600 !s gravitational "-phase shift [22,25] between adja-
cent vertical lattice sites produces a symmetric diffraction
pattern with two vertical peaks separated by 2@kz (in con-
trast to the patterns of Fig. 1 without a shift). This is
accomplished by turning off the ODT while keeping on
the z lattice. The visibility is then defined as $ ¼ N#=Nþ,
where N%¼Nþ1þN#1%2N0 are the sum and difference

of the atom numbers in the diffraction peaks (Nþ1, N#1)
and intermediate region (N0), as shown in Fig. 2(a) (I). To
determine the peak width % (1=e half-width), we sum over
a vertical strip and fit the projection with two Gaussian
peaks on top of a broad Gaussian background.
In the following, we examine how the coherence prop-

erties of a given superfluid component depend on the
presence of a background of either a lighter (in terms of
the band mass m&

z) superfluid, or heavier ‘‘impurity’’
atoms. This is implemented by a halving (I) and doubling
(II) of the maximum z-lattice depths as compared to Fig. 1.
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depth of 12E?

R ). In both cases, we vary the relative pop-
ulations fa and fb ¼ 1# fa of the two components while
keeping the total atom number constant, which allows for
separating out effects of interspecies coupling from simple
overall density effects.
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in contact with superfluid jbi atoms (Vb ¼ 2:1ER) and (II; right
column) jbi atoms (Vb ¼ 7:8ER) in contact with localized jai
atoms (Vb ¼ 31ER). (a) Stern-Gerlach separated TOF images
(for fa " fb) after a gravitational phase shift. The circles in (I)
denote apertures used to determine visibility. (b) Dependence of
the visibility and peak width on the relative population of the
background medium, with constant total atom number 1:7ð1Þ )
105; the insets show corresponding data for the background
medium. Open circles denote reference measurements without
background medium, in which the atom numbers are varied
correspondingly. Ramp shapes are as in Fig. 1, with V? ¼ 12E?
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FIG. 2. (Color online) Expansion of condensate after release from
the trap. The radii of the condensate show asymmetry between the
horizontal (circle) and vertical (square) direction. The solid lines are
the fits using Castin-Dum model. The error bars are standard error.

production of the Bose-Bose mixture of 174Yb-176Yb below
Tc [13]. However, due to the negative scattering length of
176Yb, a condensate above the critical atom number (typically
a few hundred) gets unstable. Among the possible quantum
degenerate Bose-Bose mixtures of Yb isotope, 168Yb-174Yb
and 168Yb-170Yb are the only candidates to realize a stable
BEC mixture. Here, we report on the production of the stable
168Yb-174Yb Bose-Bose mixture.

The procedure to produce this mixture is basically the
same as that described above. To collect two isotopes in
the MOT, we apply a two-color MOT beam. Due to the
large difference in the atomic beam flux, which originates
from the large difference in the natural abundance of about a
factor of 230, we load 168Yb for 100 s and then load 174Yb
for 0.5 s by subsequently turning on the Zeeman slower
beam. Since the interspecies scattering length between the
two species is as small as 0.13(18) nm, both species are
almost independently evaporatively cooled to the quantum
degenerate regime. Figure 3 shows the absorption images of
the dual condensate. The number of atoms in each condensate
is 9 × 103. The advantage of working with the Yb isotope
mixture is the fact that trap parameters, such as trap depth,
trap frequency, and gravitational sag, are almost the same for
the different isotopes. This enables us to focus on the role of
interaction. Such a feature is already seen in the behavior of
the expanding condensate in Fig. 3, where 168Yb is expanding
much faster than 174Yb. As the interspecies interaction is
small, the difference in the size can be explained by the
mean-field energy of each condensate, which is converted into
kinetic energy during the expansion. The expansion energy is
conserved to 2µ/7, which is proportional to (NaM )2/5 in the
Thomas-Fermi approximation, where N is the atom number
in the condensate, µ is the chemical potential, and aM is

(a) (b)168Yb 174Yb

144 µ  441m µm

FIG. 3. (Color online) Stable Bose-Bose mixture of 168Yb-174Yb.
Absorption images of (a) almost pure 168Yb BEC of 9 × 103 and (b)
almost pure 174Yb BEC of 9 × 103. Both images are taken after the
TOF time of 18 ms in a separate experimental run. The larger cloud
size of 168Yb compared with 174Yb manifests the larger mean-field
energy of the condensate of 168Yb compared with 174Yb.

the scattering length with mass number M . The expansion
velocity normalized by N1/5 of 168Yb condensate is evaluated
to be 1.20(4) times faster than 174Yb from the TOF image
of each condensate. This is in good agreement with the ratio
of scattering lengths (a168/a174)1/5 = 1.19. The ratio of each
number of atoms can be easily tuned by changing the loading
time to the MOT. We can so far prepare an almost pure
Bose-Bose mixture with 174Yb up to 7 × 104. Although the
s-wave interspecies scattering length is small, optical Feshbach
resonance will enable tuning of interspecies interaction, which
is demonstrated for the BEC of 174Yb [40] and thermal gases of
172Yb and 176Yb [41]. The study of quantum quench dynamics
and nonequilibrium dynamics [42] in a binary condensate
system will also be accessible.

In conclusion, we have produced a BEC of the rare atomic
species of 168Yb containing 1.0 × 104 atoms. With this
achievement, all the possible isotopes of Yb have been cooled
to quantum degeneracy. Despite its low natural abundance of
0.13%, 168Yb is efficiently collected and cooled down to BEC.
Our demonstration encourages researchers that a radioactive
isotope is a realistic candidate for a BEC. Moreover, 168Yb
BEC is produced together with 174Yb BEC as a stable
binary BEC. This mixture, which has very small interspecies
scattering length, will be a prime candidate for studying a
binary BEC, including the possible use of optical Feshbach
resonances.

This work is supported by the Grant-in-Aid for Scientific
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Physics, Spun from Universality and Emergence” from MEXT
of Japan, and World- Leading Innovative R&D on Science and
Technology (FIRST). S.S. and S.T. acknowledge support from
JSPS.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science 269, 198 (1995).

011610-3

than 1 /60 that of the condensate. For this reason, we will
throughout neglect the 41K thermal fraction in the following.

The clouds are only partially overlapped: due to differen-
tial gravity sag, the 87Rb condensate lies 3.2 !m below 41K.
Also, numerical integration of the 3D Gross-Pitaevskii equa-
tion !GPE" shows that both density distributions are de-
formed and almost completely phase separated, due to the
strong K-Rb repulsion #16$. Indeed, the interspecies scatter-
ing length aK-Rb=163a0 #17$ is much larger than both
aRb=99a0 #18$ and aK=65a0 #19$, with a0 the Bohr radius.

Once double BEC is achieved, we ramp three retrore-
flected optical lattice beams at "L=1064 nm, with frequen-
cies differing by tens of megahertz, propagating along the x,
y, and z axes and focusing at the center of the MMT with
waists equal to !90,180,160" !m. The lattice strength is
calibrated by means of Bragg oscillations and Raman-Nath
diffraction #20$, yielding a systematic uncertainty of 10%,
which must be added to the statistic uncertainties quoted
hereafter. We choose the duration and time constant of the
exponential turn-on profile, 50 and 20 ms, respectively, by
maximizing the visibility of the 87Rb interference pattern. We
wait for 5 ms with the optical lattice at full power and
abruptly switch off the lattice beams !#1 !s" and the MMT
current !%100 !s". We image both species after a typical
time of flight of 15 to 20 ms with resonant absorption: the
interference peaks of 87Rb are progressively smeared as the
lattice strength is ramped at higher values.

We measure the width of the central peak and the
visibility v of the interference pattern, defined as #22$
v= !Np−Nd" / !Np+Nd", where Np and Nd denote, respec-
tively, the summed weights of the first lateral peaks and of
equivalent regions at the same distance from the central peak
along the diagonals #see Fig. 2!e"$. At our lattice wavelength,
the optical potential is the same within 10% for 87Rb and
41K. However, due to the their larger mass and scattering
length, 87Rb atoms tunnel less and repel each other more: the
combined effect is that 87Rb loses phase coherence at lower
lattice power than 41K.

The main experimental result of this work is the observa-
tion that the lattice strength at which the 87Rb interference
pattern starts washing out is greatly shifted not only by a
minor admixture of 41K atoms, but also with a marginal spa-
tial overlap. These findings, displayed in Fig. 1, augment
those of similar experiments carried out with the mutually
attractive 40K-87Rb Fermi-Bose mixture #3,4$.

To quantify the shift of the transition point, we plot the
visibility and the width of the central peak versus the lattice
strength in units of the 87Rb recoil energy s #21$. We com-
pare data taken with 41K and when 41K was not even loaded
in the MMT !Fig. 2". We fit the visibility with a phenomeno-
logical Fermi function v=v0 / &1+exp#$!s−sc"$', which has
the expected flat behavior below the critical lattice strength
sc and decreases exponentially for s%sc. From the fit, we
find that, for NRb=3&104, the critical s value is
sc=16.8'0.4 for 87Rb only, but sc=12.4'0.3 with
NK= !2'1"&103.

Using the formula (=0.696s−0.1 exp!2.07(s"!a /"L" #22$,
we relate s with the ratio of interaction to tunneling matrix
elements, (=U / !6J", in terms of the lattice wavelength "L

and the scattering length a. From the fit values, we derive
both the critical value (c and the exponents of the visibility
decay for s%sc, v%(−): without 41K we find (c=12.3−4.3

+6.2

and )=2.3−0.4
+0.6, while with 41K we have (c=3.9−1.2

+1.6 and
)=3.4−0.5

+0.8 !error bars are dominated by the calibration uncer-
tainty of the lattice strength".

The width of the central peak measures the inverse corre-
lation length: it signals the transition with a stark climb at
s)10 in the presence of 41K and s)14 in the absence
thereof #see Figs. 2!c" and 2!d"$. After the transition, the
width increase is steeper in the presence of 41K even for null
overlap #Fig. 2!d"$: this behavior is unexpected and so far
unexplained. While the transition points detected by the
width and the visibility are different, the shift is the same,
*sc)4.

Such a shift is surprising, given the little overlap between
the two species. Numerical integration of the 3D GPE with
an s=11 vertical lattice shows that the overlap is restricted to
one lattice site out of 11 !see Fig. 3". Generalizing to a 3D
lattice, we expect that approximately only 10% of sites are
simultaneously filled with both 87Rb and 41K atoms. In order
to check that the shift is genuinely related to the interspecies
interaction, we repeat the experiment with larger differential
sag of the two samples. Once the double-species BEC is
achieved, we relax the MMT harmonic frequencies to
+! =2,& !9.2,108,108" Hz, thereby increasing the vertical
separation to 11 !m, so that the overlap is totally negligible
even for any undetected 41K thermal cloud !1 /e2 radius
=7.7 !m". Figures 2!b" and 2!d" show that, although the
visibility is slightly lower in the presence of 41K, the transi-
tion point is the same within our error bars: sc=15.8!0.5".

As a further test, we investigate the effect of the lattice

FIG. 2. !Color online" Visibility and width of the central peak of
the 87Rb interference pattern, for partial !a",!c" and zero !b",!d"
overlap with the 41K condensate. In each panel we compare data
and fit !dashed lines" with 41K atoms #red !gray"$ and without
!black", i.e., with NK=2!1"&103 and 0. The insets show how vis-
ibility of 87Rb is extracted from images !e" and the interference
pattern of 41K visible for s=20 !f".
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than 1 /60 that of the condensate. For this reason, we will
throughout neglect the 41K thermal fraction in the following.

The clouds are only partially overlapped: due to differen-
tial gravity sag, the 87Rb condensate lies 3.2 !m below 41K.
Also, numerical integration of the 3D Gross-Pitaevskii equa-
tion !GPE" shows that both density distributions are de-
formed and almost completely phase separated, due to the
strong K-Rb repulsion #16$. Indeed, the interspecies scatter-
ing length aK-Rb=163a0 #17$ is much larger than both
aRb=99a0 #18$ and aK=65a0 #19$, with a0 the Bohr radius.

Once double BEC is achieved, we ramp three retrore-
flected optical lattice beams at "L=1064 nm, with frequen-
cies differing by tens of megahertz, propagating along the x,
y, and z axes and focusing at the center of the MMT with
waists equal to !90,180,160" !m. The lattice strength is
calibrated by means of Bragg oscillations and Raman-Nath
diffraction #20$, yielding a systematic uncertainty of 10%,
which must be added to the statistic uncertainties quoted
hereafter. We choose the duration and time constant of the
exponential turn-on profile, 50 and 20 ms, respectively, by
maximizing the visibility of the 87Rb interference pattern. We
wait for 5 ms with the optical lattice at full power and
abruptly switch off the lattice beams !#1 !s" and the MMT
current !%100 !s". We image both species after a typical
time of flight of 15 to 20 ms with resonant absorption: the
interference peaks of 87Rb are progressively smeared as the
lattice strength is ramped at higher values.

We measure the width of the central peak and the
visibility v of the interference pattern, defined as #22$
v= !Np−Nd" / !Np+Nd", where Np and Nd denote, respec-
tively, the summed weights of the first lateral peaks and of
equivalent regions at the same distance from the central peak
along the diagonals #see Fig. 2!e"$. At our lattice wavelength,
the optical potential is the same within 10% for 87Rb and
41K. However, due to the their larger mass and scattering
length, 87Rb atoms tunnel less and repel each other more: the
combined effect is that 87Rb loses phase coherence at lower
lattice power than 41K.

The main experimental result of this work is the observa-
tion that the lattice strength at which the 87Rb interference
pattern starts washing out is greatly shifted not only by a
minor admixture of 41K atoms, but also with a marginal spa-
tial overlap. These findings, displayed in Fig. 1, augment
those of similar experiments carried out with the mutually
attractive 40K-87Rb Fermi-Bose mixture #3,4$.

To quantify the shift of the transition point, we plot the
visibility and the width of the central peak versus the lattice
strength in units of the 87Rb recoil energy s #21$. We com-
pare data taken with 41K and when 41K was not even loaded
in the MMT !Fig. 2". We fit the visibility with a phenomeno-
logical Fermi function v=v0 / &1+exp#$!s−sc"$', which has
the expected flat behavior below the critical lattice strength
sc and decreases exponentially for s%sc. From the fit, we
find that, for NRb=3&104, the critical s value is
sc=16.8'0.4 for 87Rb only, but sc=12.4'0.3 with
NK= !2'1"&103.

Using the formula (=0.696s−0.1 exp!2.07(s"!a /"L" #22$,
we relate s with the ratio of interaction to tunneling matrix
elements, (=U / !6J", in terms of the lattice wavelength "L

and the scattering length a. From the fit values, we derive
both the critical value (c and the exponents of the visibility
decay for s%sc, v%(−): without 41K we find (c=12.3−4.3

+6.2

and )=2.3−0.4
+0.6, while with 41K we have (c=3.9−1.2

+1.6 and
)=3.4−0.5

+0.8 !error bars are dominated by the calibration uncer-
tainty of the lattice strength".

The width of the central peak measures the inverse corre-
lation length: it signals the transition with a stark climb at
s)10 in the presence of 41K and s)14 in the absence
thereof #see Figs. 2!c" and 2!d"$. After the transition, the
width increase is steeper in the presence of 41K even for null
overlap #Fig. 2!d"$: this behavior is unexpected and so far
unexplained. While the transition points detected by the
width and the visibility are different, the shift is the same,
*sc)4.

Such a shift is surprising, given the little overlap between
the two species. Numerical integration of the 3D GPE with
an s=11 vertical lattice shows that the overlap is restricted to
one lattice site out of 11 !see Fig. 3". Generalizing to a 3D
lattice, we expect that approximately only 10% of sites are
simultaneously filled with both 87Rb and 41K atoms. In order
to check that the shift is genuinely related to the interspecies
interaction, we repeat the experiment with larger differential
sag of the two samples. Once the double-species BEC is
achieved, we relax the MMT harmonic frequencies to
+! =2,& !9.2,108,108" Hz, thereby increasing the vertical
separation to 11 !m, so that the overlap is totally negligible
even for any undetected 41K thermal cloud !1 /e2 radius
=7.7 !m". Figures 2!b" and 2!d" show that, although the
visibility is slightly lower in the presence of 41K, the transi-
tion point is the same within our error bars: sc=15.8!0.5".

As a further test, we investigate the effect of the lattice

FIG. 2. !Color online" Visibility and width of the central peak of
the 87Rb interference pattern, for partial !a",!c" and zero !b",!d"
overlap with the 41K condensate. In each panel we compare data
and fit !dashed lines" with 41K atoms #red !gray"$ and without
!black", i.e., with NK=2!1"&103 and 0. The insets show how vis-
ibility of 87Rb is extracted from images !e" and the interference
pattern of 41K visible for s=20 !f".
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41K	
87Rb	

3.1.	  Bose-‐Bose	  mixture	  in	  op5cal	  la7ces 

A	  simple	  extension,	  but	  rich	  physics	
・	  New	  quantum	  phases	  have	  been	  predicted,	  	  
	  	  	  such	  as	  phase	  separa%on,	  	  
	  	  	  pair-‐	  and	  counterflow-‐	  superfluids,	  	  
	  	  	  checkerboard	  solid,	  	  
	  	  	  supersolid	  (checkerboard	  +	  superfluid).	  
	  

・	  First-‐order	  superfluid-‐Mo;	  insulator	  transi%on	

Kuklov	  &	  Svistunov,	  PRL	  (2003)	  
Altman	  et	  al.,	  NJP	  (2003)	  
Paredes	  &	  Cirac,	  PRL	  (2003)	  
Mishra	  et	  al.,	  PRA	  (2007)	  
Capogrosso-‐Sansone	  et	  al.,	  PRA	  (2008)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  etc.	



3.2.	  Two-‐component	  Bose-‐Hubbard	  Model 

Herea}er,	  we	  assume	  tA=tB≡t,	  UA=UB≡U>0,	  and	  μA=μB≡μ.	
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This	  condi%on	  can	  be	  nearly	  sa%sfied	  in	  a	  gas	  of	  87Rb	  binary	  mixtures	  with	  |F=2,mF=-‐1>	  	  
and	  |F=1,mF=1>	  (or	  |2,-‐2>	  &	  |1,-‐1>)	  states,	  which	  are	  confined	  in	  op%cal	  laPces	  by	  	  
many	  groups,	  such	  as	  Max	  Planck,	  Stony	  Brook,	  MIT,	  NIST.	

Hopping	 Chemical	  
poten%al	

Intra-‐component	  
repulsion	

See	  e.g.	  Jaksch	  et	  al.,	  PRL	  (1998)	



3.3.	  Mean-‐field	  phase	  diagram	  at	  T=0 

(SCF	  order)	

(SCF	  order)	

SCF:	  Super-‐counter	  flow	  
Z:	  Coordina%on	  number	

When	  UAB	  <	  U	  but	  〜U,	  the	  SF-‐MI	  	  
transi%on	  at	  even	  filling	  is	  first	  order	  	  
(thick	  lines)	  near	  the	  %p	  of	  the	  Mo;	  lobe.	  

T.	  Ozaki	  et	  al.,	  arXiv:1210.1370	  (2012);	  D.	  Yamamoto	  et	  al.,	  PRA	  88,	  033624	  (2013)	

The	  associated	  quantum	  TCPs	  !!!	

UAB/U=0.9	

Zt/U	

Phase	  diagram	  obtained	  by	  the	  
Gutzwiller	  mean-‐field	  approxima%on	

Is	  the	  1st	  order	  transi%on	  real	  ??	

	  or	

	  or	

Classical	  analog:	  A.	  Kuklov	  et	  al.,	  PRL	  (2004)	  
	  Spin-‐1	  case:	  T.	  Kimura	  et	  al.,	  PRL	  (2005)	  	



Zt/U	

µ/
U
	

Second order QPT	

MI: n=2	

µ/U	

n A
+

n B
	

Spinodal	

Zt/U = 0.16 
βt    = L	

SF	

First order 

QPT	TCP	

3.4.	  QMC	  phase	  diagram	  at	  2D	  and	  UAB/U=0.9	  



・ Stratonovich-‐Hubbard	  transforma%on	  to	  introduce	  	  	  	  	  	  	  	  	  fields	  
・	  Integrate	  out	  	  	  	  	  	  	  	  	  fields	  
・ Cumulant	  expansion	  up	  to	  the	  sixth	  order	  w.r.t.	  the	  field	  	  	  	  	  	  	  	  	  	
・	  Take	  the	  con%nuum	  limit	  

S[bA, b
⇤
A, bB , b

⇤
B ] = SA + SB + SAB ,

SAB =

Z ~�
2

� ~�
2

d⌧
X

j

UAB b⇤A,jbA,jb
⇤
B,jbB,j .

3.5.	  How	  to	  derive	  the	  effec5ve	  ac5on 
Euclidian	  ac%on	  for	  the	  two-‐comp.	  BHM:	

M.	  P.	  A.	  Fisher	  et	  al.,	  	  
PRB	  (1989)	  for	  the	  
single-‐component	  
BHM	

 ↵
Superfluid	  order	  parameter	b↵

 ↵

Se↵ [ A, 
⇤
A, B , 

⇤
B ] = ~�V f0 + Se↵

A + Se↵
B + Se↵

AB ,

S

e↵
↵ =

Z
d⌧

Z
d

d
x

"
~K↵ 

⇤
↵
@ ↵

@⌧

+ ~2J↵
����
@ ↵

@⌧

����
2

+
~2
2m↵

|r ↵|2

�r↵| ↵|2 +
u↵

2
| ↵|4 +

w↵

3
| ↵|6

i
,

where	

S

e↵
AB =

Z
d⌧

Z
d

d
x

⇥
uAB | A|2| B |2 + wAB | A|4| B |2 + wBA| A|2| B |4

⇤
.

All	  the	  coefficients	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  can	  be	  explicitly	  expressed	  
as	  func%ons	  of	  the	  original	  Hubbard	  parameters.	

K↵, J↵,m↵, r↵, u↵, uAB , w↵, wAB(BA)

Effec%ve	  ac%on:	

 ↵ / hb̂ji	  such	  that	  it	  plays	  a	  role	  of	  the	  superfluid	  order	  parameter.	

S↵ =

Z ~�
2

� ~�
2

d⌧

2

4
X

j

b⇤↵,j

✓
~ @

@⌧
� µ↵ +

U↵↵

2
b⇤↵,jb↵,j

◆
b↵,j �

X

hj,li

t↵
�
b⇤↵,jb↵,l + c.c.

�
3

5 ,



3.6.	  Mechanism	  for	  the	  first	  order	  transi5on 

Se↵ = ~�V f with	

u+ > 0	

r < 0	

r > 0	

φ	

f	

φ	

f	

Second	  order	  phase	  transi%on	

u+ < 0	

φ	

f	

φ	

f	

First	  order	  phase	  transi%on	

u+ = 0	

Tricri%cal	  point	

≡	  u+	 ≡	  w+	  
Assuming	  w+	  >	  0	

 A(x, ⌧) =  B(x, ⌧) = �Mean-‐field	  approxima%on:	



3.6.	  Mechanism	  for	  the	  first	  order	  transi5on 

n=2, UAB /U=0.9	

Zt/U	

Upper TCP	Lower TCP	

Zt/U	

u+uAB=0	  @	  TCP	  (uAB<0)	  
Effec%ve	  a;rac%on	  	  

between	  |ψA|2	  and	  |ψB|2	

Lower	  edge	  of	  Lobe	 Upper	  edge	  of	  Lobe	

0.00 0.05 0.10 0.15

1.0

1.2

1.4

1.6

1.8

䃜= 2 MI 
SF

(a) U   = 0.9 UABMF	  phase	  diagram	

TCP	

TCP	



3.7.	  Why	  aLrac5ve? 

If	  U〜UAB	  ,	  these	  terms	  are	  	  
strongly	  enhanced.	

Assuming	  the	  Mo;	  insula%ng	  state	  is	  described	  as	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  we	  obtain	|nA, nBi = |g, gi

uAB = adZ4t2At
2
B

" 
g + 1

E(+)
A � Eg,g

+
g

E(�)
A � Eg,g

! 
g + 1

(E(+)
B � Eg,g)2

+
g

(E(�)
B � Eg,g)2

!

+

 
g + 1

E(+)
B � Eg,g

+
g

E(�)
B � Eg,g

! 
g + 1

(E(+)
A � Eg,g)2

+
g

(E(�)
A � Eg,g)2

!

�
 

1

E(+)
A � Eg,g

+
1

E(+)
B � Eg,g

!2
(g + 1)2

E(++)
AB � Eg,g

�
 

1

E(+)
A � Eg,g

+
1

E(�)
B � Eg,g

!2
g(g + 1)

E(+�)
AB � Eg,g

�
 

1

E(�)
A � Eg,g

+
1

E(+)
B � Eg,g

!2
g(g + 1)

E(�+)
AB � Eg,g

�
 

1

E(�)
A � Eg,g

+
1

E(�)
B � Eg,g

!2
g2

E(��)
AB � Eg,g

3

5 ,



3.7.	  Why	  aLrac5ve? 

These	  terms	  correspond	  to	  the	  fourth	  order	  perturba%on	  processes,	  such	  as	

|1, 1i

|1, 2i

UAB-‐2μ	

U+2UAB-‐3μ	

|0, 2i U-‐2μ	

|1, 2i
U+2UAB-‐3μ	

|1, 1i
UAB-‐2μ	

Since	  these	  two	  states	  have	  nearly	  equal	  energy	  when	  U〜UAB,	  	  
this	  process	  gives	  a	  large	  nega%ve	  contribu%on	  to	  uAB.	

Indeed,	  the	  first-‐order	  transi%on	  emerges	  only	  when	  U〜UAB	  
(more	  precisely,	  when	  0.68<U/UAB<1	  according	  to	  the	  Gutzwiller	  analysis)	

Such	  processes	  do	  not	  exist	  in	  the	  single-‐component	  case.	

� Bb
†
B � ⇤

AbA � Ab
†
A � ⇤

BbB

�
 

1

E(+)
A � Eg,g

+
1

E(�)
B � Eg,g

!2
g(g + 1)

E(+�)
AB � Eg,g

�
 

1

E(�)
A � Eg,g

+
1

E(+)
B � Eg,g

!2
g(g + 1)

E(�+)
AB � Eg,g

Reminiscent	  of	  the	  Feshbach	  resonance	



3.8.	  Superfluid	  equa5on	  of	  mo5on	
�Se↵

� ↵
= 0

Minimize	  the	  ac%on	  by	  the	  condi%on:	  	

Mean-‐field	  equa%on	  of	  mo%on:	
Two-‐comp.	  NLSE	  with	  cubic-‐quin5c	  nonlinearity	  !!!	

Sta%onary	  solu%on:	 ↵(x, ⌧) = �↵(x)

i~@ A

@⌧
=


� ~2
2m

r2 + V (x)� r + u| A|2 + uAB | B |2 + w| A|4 + wAB(2| A|2| B |2 + | B |4)
�
 A

i~@ B

@⌧
=


� ~2
2m

r2 + V (x)� r + u| B |2 + uAB | A|2 + w| B |4 + wAB(2| A|2| B |2 + | A|4)
�
 B


� ~2
2m

r2 + V (x)� r + u|�B |2 + uAB |�A|2 + w|�B |4 + wAB(2|�A|2|�B |2 + |�A|4)
�
�B = 0


� ~2
2m

r2 + V (x)� r + u|�A|2 + uAB |�B |2 + w|�A|4 + wAB(2|�A|2|�B |2 + |�B |4)
�
�A = 0

�A = �B ⌘ �

� ~2
2m

r2 + V (x)� r + u+|�|2 + w+|�|4
�
� = 0 where	

u+ ⌘ u+ uAB

w+ ⌘ w + 3wAB

We	  analy%cally	  solve	  this	  equa%on.	

⌧ ! �i⌧,	
Im	  %me	 Re	  %me	

Maimistov	  et	  al.,	  Phys.	  Le;.A	  (1999)	



3.9.	  Sta5onary	  solu5on	  and	  first	  order	  transi5on	  	

� ~2
2m

r2 + V (x)� r + u+|�|2 + w+|�|4
�
� = 0

�(x) =
p
n0

r = u+n0 + w+n
2
0

We	  want	  to	  determine	  the	  first	  order	  transi%on	  point.	

Free	  energy	  density:	 fSF = �2rn0 + u+n
2
0 +

2

3
w+n

3
0

fMI = 0

fSF = fMI

1st	  order	  	  
transi5on	  point	  !!!	

In	  a	  similar	  way,	  one	  can	  determine	  
the	  metastability	  limits	  of	  SF	  	

-‐4/3	-‐2	

1st	  order	  	  
transi5on	  point	  	

Metastability	  	  
limit	  of	  SF	  	

Ground	  state	Metastable	

V (x) = 0,

ū ⌘ u+

w+n0
ū = �4

3

ū

ū = �2

where	

Unstable	

Fig.	  	  
State	  diagram	  of	  SF	



3.10.	  Solu5on	  of	  a	  moving	  dark	  solitary	  wave	


� ~2
2m

d

2

dx

2
� r + u+�

2 + w+�
4

�
� = 0

Boundary	  condi%ons:	

Problem:	
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,	

�(x) =
p
n0A(x)eiS(x) Separate	  the	  amplitude	  A(x)	  	  

and	  the	  phase	  S(x)	

lim
x!±1

A(x) = 1, lim
x!±1

S(x) = qx± '

2
,

✓
� ~2
2m

d

2

dx

2
+

~2q2
2m

A

�4 � r + u+n0A
2 + w+n

2
0A

4

◆
A = 0, A

2 dS

dx

= q

A(x)
S(x)

Amplitude:	 Phase:	



3.10.	  Solu5on	  of	  a	  moving	  dark	  solitary	  wave	

⌘(x) ⌘ tanh(x/⇠),

Solu%on:	

� = 2 + 3ū/2,

where	

Standing	  solitary	  wave	  in	  a	  flowing	  condensate	  as	  background	

⇠ ⌘ ~/
p

m(un+ 2wn2)� ~2q2

�(x)
p
n0

= Ae

iS =

p
↵+ + i sgn(q)

p
↵�⌘(x)q

�+ � �� [⌘(x)]2
e

iq(x�xs)

Galilean	  transforma%on	

Moving	  solitary	  wave	  in	  a	  sta%c	  condensate	

�± = ±(�� + 3q̄2) +
�

�2 + 6q̄2

�± = 2 + � ±
�

�2 + 6q̄2

Barashenkov	  &	  
Makhankov,	  
Phys.	  Le;.	  A	  (1988)	

q̄ = q�/
�

mwn2
0



3.11.	  Case	  of	  u+>	  -‐4/3	  (SF	  state	  is	  the	  ground	  state)	

・	  π-‐phase	  kink	  
・	  Dynamically	  stable	  in	  1D	  

�(x) =
p
n0 ⇥

p
�⌘(x)

p
1 + � � [⌘(x)]2

where	 ⌘(x) ⌘ tanh(x/⇠),
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sol

ū = �1.3

� ⌘ 2 +
3

2
ū,

-‐4/3	-‐2	
We	  are	  here	  !!	

1st	  order	  	  
transi5on	  point	  	Metastability	  	  

limit	  of	  SF	  	 Ground	  	  
state	Metastable	Unstable	

⇠ ⌘ ~/
q
m(u+n0 + 2w+n2

0)

Standing	  solitary	  wave	  (q=0):	
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3.12.	  Case	  of	  -‐2<	  u+<-‐4/3	  (SF	  state	  is	  metastable)	

�(x) =
p
n0 ⇥

p
��p

1� (1 + �)[⌘(x)]2

⌘(x) ⌘ tanh(x/⇠),

⇠ ⌘ ~/
q
m(u+n0 + 2w+n2

0)
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0

x/⇠

・	  No	  phase	  kink	  →	  Bubble-‐like	  dark	  soliton	  !!!	  

ū = �1.467

where	� ⌘ 2 +
3

2
ū,

l
sol

-‐4/3	-‐2	

Ground	  	  
state	Metastable	Unstable	

1st	  order	  	  
transi5on	  point	  	Metastability	  	  

limit	  of	  SF	  	

Standing	  solitary	  wave	  (q=0):	
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・	  New	  inflec%on	  points	  when	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

3.13.	  Divergence	  of	  the	  soliton	  size	

ū < �1

・	  Logarithmic	  divergence	  at	  	

ūt = �4/3

ū = ūt

Cri5cality	  at	  the	  first	  order	  transi5on	  !!	

Closely	  related	  to	  surface	  cri%cality	

ū

⇠ � ln |ū� ūt|

Lipowsky	  and	  Gompper,	  PRB	  (1984)	
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Z
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	  where	  	  	  	  	  	  	  is	  the	  soliton	  velocity	

and	  the	  soliton	  energy	  is	  given	  by	

3.14.	  Soliton	  mass	  across	  the	  first	  order	  transi5on	

�E ⌘ E
sol

� E
gs

Effec%ve	  mass:	 v

!2.0 !1.5 !1.0 !0.5 0.0 0.5 1.0
!8

!6

!4

!2

0

2

4

u!"w n#

m
so
l!"mn

Ξ#

⇠ � 1
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Divergence	  of	  the	  mass	  is	  stronger	  !!!	  



3.15.	  Heavy	  soliton	  ??	  in	  unitary	  Fermi	  gases	  @	  MIT	

inertial mass of the soliton M*, this force causes an acceleration

€z~{
M

M!
v2

z z. Because we observe oscillations, M* must be negative

as well, implying that the soliton is an effective particle that decreases
its kinetic energy as it speeds up. One obtains a direct relation26

between the relative effective mass M*/M and the normalized soliton
period Ts/Tz:

M!

M
~

Ts

Tz

! "2

ð2Þ

The observed soliton period of oscillation Ts is about one order of
magnitude longer than the trapping period Tz for single atoms. This
directly indicates an extreme enhancement of the relative effective
mass. In general, the difference between the effective mass M* and
the bare mass M of the soliton arises from the phase slip Dw across the
soliton, which implies a superfluid counterflow26. For the soliton to
move, an entire sheet of atoms thus has to flow past it. The difference
M 2 M* is the mass of that sheet, given by the mass density multiplied
by the entire soliton volume. In contrast, the soliton’s bare mass M is
only due to the mass deficit of jNsj atoms and can become much
smaller in magnitude than M* when the soliton is filled. For weakly
interacting BECs, where solitons are devoid of particles, the effective
mass is still of the same order of the bare mass, (M*/M)BEC 5 2. This
leads to an oscillation period that is only

ffiffiffi
2
p

times longer than Tz
(refs 20, 35), as has been observed in experiments14,17. In the BCS limit,
where only a minute fraction D0/EF of the gas contributes to Cooper
pairing, jNsj / D0/EF / exp[2p/(2kFjaj)] and thus the soliton’s rela-
tive effective mass can be expected to become exponentially large.

Indeed, as shown in Fig. 2, we find that the soliton period, and hence
the relative effective mass, increases dramatically as the interactions
are tuned from the limit of Bose–Einstein condensation (Fig. 2a)
towards the BCS limit. At 700 G, where 1/kFa 5 2.6(2), the system repre-
sents a strongly interacting Bose gas of molecules7. The soliton period
is Ts 5 4.4(5)Tz, already three times longer than in the case of a weakly
interacting BEC. At the Feshbach resonance (Fig. 2d), we measure a
soliton period of Ts 5 14(2)Tz, corresponding to a relative effective
mass of M*/M 5 200(50). This is more than 50 times larger than the

result of mean-field BdG theory in three dimensions26,36 that predicts
M*/M 5 3. Note that the superfluid is fully three-dimensional: on
resonance, the chemical potential m < 35BvH, where vH is the radial
trapping frequency. Still, for very elongated traps, one expects to reach a
universal quasi-one-dimensional regime where the tight radial confine-
ment is irrelevant for propagation along the long axis37. This prompted
us to study the dependence of the soliton period on the aspect ratio of
our trap.

Figure 3 summarizes our measurements for the soliton period and
the relative effective mass as a function of the interaction parameter
1/kFa throughout the BEC–BCS crossover, for aspect ratios l 5 3.3,
6.2 and 15. The strong increase of M*/M towards the BCS regime is
observed for all trap geometries. The normalized soliton period Ts/Tz
appears to converge to a limiting value for the most elongated trap: the
normalized period changes by only 15% as the aspect ratio is increased
by more than a factor of two from 6.2 to 15. This indicates that the
soliton dynamics approach a universal quasi-one-dimensional limit.
Even in a much less elongated trap with l 5 3.3(1), the soliton period
is only slightly increased by about 30% compared to l 5 6.2, accom-
panied by an increased susceptibility of the soliton towards bending or
‘snaking’10,13,15 (for examples, see Supplementary Information).

We attribute the large relative effective mass M*/M in the strongly
interacting regime to the filling of the soliton with uncondensed fer-
mion pairs resulting from strong quantum fluctuations. Similar filling
with uncondensed particles has been predicted for solitons in strongly
interacting Bose condensates10,22–25,33. A substantial filling of the soli-
ton will reduce the number jNsj of atoms missing inside the soliton,
therefore considerably weaken the restoring harmonic force from the
trap and strongly increase M*/M. At the Feshbach resonance, our in
situ density profiles provide a lower bound on the soliton filling of
90%, compared to the expected 20% from mean-field theory (see
Supplementary Information). Mean-field theory for the BEC–BCS
crossover heavily underestimates the role of quantum fluctuations
already on the BEC side, where it predicts a fraction of uncondensed
bosons that scales as na3 instead of the correct

ffiffiffiffiffiffiffi
na3
p

scaling7. Our
experiment thus directly reveals the importance of beyond mean-field
effects for the dynamics of strongly interacting fermionic superfluids.
Significant soliton filling was found theoretically in a strongly inter-
acting relativistic superfluid using methods from string theory38–40.
For the resonantly interacting Fermi gas, a theoretical study based on a
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Figure 2 | Soliton oscillations in the BEC–BCS crossover. Shown are soliton
oscillations in a trapped fermionic superfluid for various magnetic fields B
around the Feshbach resonance. a–d, The soliton period is observed to
markedly increase as the system is tuned from the BEC regime (a) to the
Feshbach resonance (d). The measured period (Ts/Tz), magnetic field (B in G)
and interaction parameter at the cloud centre 1/kFa were respectively: a, 4.4(5),
700, 2.6(2); b, 7.5(9), 760, 1.4(1); c, 12(2), 815, 0.30(2); d, 14(2), 832, 0. The
initial atom number per spin state (N0), its decay rate (t in s) and Thomas-
Fermi radius after time of flight (RTF in mm) range respectively from: 1.1 3 105,
1.2(2), 135 at B 5 700 G to 2.3 3 105, 12(1) and 200 on resonance. The aspect
ratio is l 5 6.2(7). Note that at B 5 700 G, the superfluid is short lived due to
enhanced three-body loss. At 760 G (b), the soliton survived for more than 6 s,
comparable to the lifetime of the superfluid at that field.
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Figure 3 | Soliton period and effective mass versus interaction strength in
the BEC–BCS crossover. The normalized soliton period Ts/Tz is shown as a
function of the interaction parameter 1/kFa in the cloud centre, for three
different trap aspect ratios: l 5 15(1) (black circles), 6.2(7) (red diamonds) and
3.3(1) (orange squares). The error bars correspond to the typical spread over
five measurements, and the solid lines are guides to the eye. The soliton period
strongly increases from the BEC regime towards the Feshbach resonance
(vertical dotted line), where Ts/Tz 5 12(2) for l 5 15(1), and to the BCS side.
This directly reflects an extreme enhancement of the relative effective mass
M!=M~T2

s

$
T2

z , which we attribute to strong quantum fluctuations and filling
of Andreev bound states. The result for a weakly interacting BEC, Ts=Tz~

ffiffiffi
2
p

,
is shown as the dashed line. The star marks the mean-field prediction26 at
unitarity M!=M~T2

s

$
T2

z ~3.
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BEC	  side	
BCS	  	  
side	

Finding	  of	  anomalously	  
heavy	  solitons	  ?????	

Eventually,	  it	  has	  	  
been	  concluded	  	  
that	  it	  is	  not	  a	  soliton	  	  
but	  a	  vortex	  line	  !!!!!	

experiment. Thus, M!=M ∝ R2
⊥=ξ

2=L2, which can easily
approach 200 for our experimental parameters, thus
explaining the experimental findings in Ref. [1].
We create fermionic superfluids using a balanced mix-

ture of the two lowest hyperfine states of 6Li, j1i and j2i.
A Feshbach resonance allows us to tune the interparticle
interactions from the limit of Bose-Einstein condensation
of tightly bound molecules towards the regime of BCS
superfluidity [1,21]. The atom cloud contains 1–10 × 105

atoms per spin state and is cigar shaped due to a tight radial
confinement from an optical dipole trapping beam propa-
gating along the (horizontal) z direction, in combination
with a weaker, harmonic confinement along z provided
by a magnetic field curvature. The radial and axial
trapping frequencies are varied in the range of ω⊥=2π ≈
55–75 Hz and ωz=2π ¼ 5–23 Hz. Gravity slightly weak-
ens the trapping potential along the vertical y direction,
causing a residual anharmonicity and an anisotropy
ωy=ωx − 1 ≈ −5%.
The solitary wave is created as in Refs. [1,11,12,18] via

phase imprinting, whereby one half of the superfluid is
exposed to a blue-detuned laser beam for a duration that

causes a phase shift of the order parameter close to π.
To observe the magnitude of the superfluid wave function,
we employ a rapid ramp to the BEC side of the Feshbach
resonance during time of flight [1,21,22]. In addition to
emptying out defects such as vortex cores [22], the ramp
effectively increases the healing length ξ of the superfluid
to observable values (typically ∼20 μm). The observed
width of the defect after the rapid ramp and time of flight
thus does not reflect the in-trap width, which is expected to
be on the order of one interparticle spacing ∼1 μm [23].
Absorption images are taken along the vertical direction
[see Fig. 1(b)].
In order to lift the ambiguity on the nature of the

observed excitation, we employ a tomographic technique
whereby only a chosen slice of the full atom cloud is
imaged after time of flight [see Fig. 1(b)]. This method
gives direct access to the local density of the 3D cloud.
Tomography is achieved by optically pumping within 10 μs
all atoms outside the desired slice into hyperfine states that
are off resonant with the imaging transition for state j1i,
predominantly state j6i. The slice is selected by masking
part of the optical pumping light with a thin wire, and
projecting the wire’s shadow onto the atom cloud. The slice
thickness is measured to be 23ð1Þ μm (¼ 2σ of a Gaussian
fit), comparable to the width of the observed solitary wave
after time of flight, and about one sixth of the transverse
cloud diameter after expansion. Since the imaging pro-
cedure is destructive, each run of the experiment provides a
single slice at a given time of the defect’s motion. Thanks
to the high degree of stability of our experiment, reliable
tomography can be built up from many repetitions of the
experiment.
Representative tomographic images for the unitary

fermionic superfluid are shown in Fig. 1(c), taken 1.6 s
after the phase imprint. A line of depletion with about 40%
contrast cuts across the entire cloud in one particular slice.
This immediately demonstrates that the solitary wave is not
a vortex ring. On average, only a specific one of the six
slices imaged features the depletion. The strong depletion is
thus not a planar soliton, as we interpreted in our previous
paper [1] . Instead, our observation is consistent with a
single, solitonic vortex. For the present experimental
conditions we observe the vortex to be horizontal in every
single repetition of the experiment. Due to the slight
anisotropy of the trap, the vortex can minimize its energy
by aligning along the short axis, while orientation along the
longer, intermediate axis is unstable [19,24,25]. Slight tilts
of the vortex into the vertical direction cause partial vortex
lines to be detected in a given slice, as seen for slice
position y ¼ −39 μm in Fig. 1(c).
In a fully 3D setting where the radial cloud size R⊥ is

much larger than the vortex core size ξ, an off-center
transverse vortex will undergo precessional motion along
equipotential lines [26,27]. Tomographic imaging enables a
measurement of the vortex position in the z-y plane [see
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FIG. 1 (color online). (a) Examples of solitary waves in 3D
Bose-Einstein condensates. Shown are simulated column density
profiles in the (z-x) plane (upper row), the local density of the
cloud in a central layer in the (z-y) plane (middle row), and
the phase (lower row) for a soliton (left), a solitonic vortex
(center), and a vortex ring (right). The images correspond to
μ=ℏω⊥ ¼ 7.31, 7.14, and 10.66. (b) Schematic of the exper-
imental tomographic imaging technique. A partially masked
optical pumping beam propagating along z (not shown) selects
a 23 μm thick slice within the expanded atom cloud for
absorption imaging along the vertical y direction. (c) Tomography
of a unitary fermionic superfluid of 6Li atoms containing a
solitary wave. Shown are density distributions of horizontal slices
selected at different y positions. Tomography reveals a single
solitonic vortex.
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:	  Soliton	  mass	

Our	  solitary	  wave	  serves	  
as	  the	  first	  example	  of	  
such	  a	  heavy	  soliton	  !!!	

Can	  there	  be	  such	  	  
a	  heavy	  soliton??	



・	  Binary	  Bose	  mixtures	  in	  op%cal	  laPces	  near	  the	  first	  order	  Mo;	  transi%on	  are	  	  
	  	  	  described	  by	  the	  NLSE	  with	  cubic-‐quin%c	  nonlinearity.	

・	  The	  soliton	  size	  and	  the	  soliton	  mass	  diverge	  at	  the	  first	  order	  transi%on	  point.	

m
sol

⇠ � 1

ū� ūc
l
sol

⇠ � ln |ū� ūc|, A	  sort	  of	  cri5cality	  
	  in	  the	  first	  order	  transi5on	  !!!	

・	  There	  are	  two	  types	  of	  single	  solitary	  wave	  in	  the	  cubic-‐quin%c	  NLSE:	  	  
	  	  	  	  the	  standard	  one	  with	  π	  phase	  kink	  and	  the	  bubble-‐like	  one	

Outlook:	
There	  are	  many	  other	  interes%ng	  proper%es	  in	  the	  cubic-‐quin%c	  	  
NLSE,	  which	  are	  qualita%vely	  different	  from	  the	  GP	  equa%on.	

3.16.	  Conclusions	  of	  part	  2 

Y.	  Kato,	  D.	  Yamamoto,	  &	  I.	  Danshita,	  Phys.	  Rev.	  Le;.	  112,	  055301	  (2014)	  
I.	  Danshita,	  D.	  Yamamoto,	  &	  Y.	  Kato,	  Phys.	  Rev.	  A	  91,	  013630	  (2015)	  

・	  The	  first	  order	  Mo;	  transi%on	  of	  a	  binary	  Bose	  mixture	  in	  2D	  was	  confirmed	  
　by	  the	  quantum	  Monte	  Carlo	  simula%ons.	



・	  Stability	  of	  solitary	  waves	

ū
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・	  Dynamically	  unstable	  even	  in	  1D	  (but	  life%me	  can	  be	  long	  enough)	  
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FIG. 11: (color online) Imaginary part of the frequency of the most dominant unstable mode in the dark solitary-wave solutions
as a function of ḡ+. In (b), data are shown in a log-log scale.

When the SF state is metastable (ḡ+,SF < ḡ+ < ḡ+,t),

v

c+
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

cos2 ϕ+γ±cosϕ
√

cos2 ϕ+2γ+γ2

2(1+γ) , if 0 < ϕ < ϕmax

−
√

cos2 ϕ+γ±cosϕ
√

cos2 ϕ+2γ+γ2

2(1+γ) , if − ϕmax < ϕ < 0

, (66)

where ϕmax = arcsin(1 + γ). In Fig. 10, we plot v as a function of ϕ for several values of ḡ+. When ḡ+ > ḡ+,t, v is a
one-valued function of ϕ. As ḡ+ decreases towards the transition point, the value of v in the region of π/2 < |ϕ| < π
is significantly suppressed, which is indicated by the dashed and thin-solid lines in Fig. 10. When the transition point
is crossed, v abruptly changes to a two-valued function of ϕ and the domain of ϕ is shrunk to 0 < |ϕ| < ϕmax (see
the dotted and thick-solid line in Fig. 10).
Differentiating Eq. (63) with respect to v leads to

dϕ

dv
= −

−2(γ + γ2 + 3q̄2)
√
1 + γ

c+(γ2 + 6q̄2)
√

1 + γ − 3
2q

2
, (67)

and taking the limit of v → 0, one obtains

dϕ

dv
= −

2

c+

(

1 +
1

γ

)

. (68)

Thus, the quantity dϕ
dv exhibits the divergence of the form that dϕ

dv ∼ (ḡ+,t − ḡ+)−1, reflecting the divergence of the
inertial mass. Hence, the divergence of the inertial mass may be observed through the measurement of the relation
between v and ϕ.

C. Stability analysis

For experimental observation of the dark solitary waves, it is important to be aware of whether or not the solitary
waves are dynamically stable, and if not, whether or not its lifetime is long enough for measurement of the solitary
waves. To answer these questions, we perform a linear stability analysis by numerically solving the Bogoliubov
equations (8) with the solitary wave solutions of Eqs. (50) and (51) at q = 0. Unfortunately, we find that the solitary
waves are dynamically unstable at any values of ḡ+ and g−/(f−n1D), where g− = g−gAB and f− = f−fAB. In Fig. 11,
we plot the imaginary part of the frequency Im[ω] of the most dominant unstable mode, whose inverse corresponds
to the lifetime of the solitary wave. In the bubble-like solitary wave of a metastable SF state (ḡ+,SF < ḡ+ < ḡ+,t),
the unstable mode is an in-phase mode, and the lifetime does not depend on g−/(f−n1D). Notice that the dynamical
instability of a bubble-like solitary wave has been pointed out in previous studies [35, 36]. On the other hand, in the
standard dark-soliton of a ground-state SF (ḡ+ > ḡ+,t), the unstable mode is an out-of-phase mode, which is specific
to the two-component system, and the lifetime is longer for smaller g−/(f−n1D). In both cases, when the first-order
transition point (ḡ+ = ḡ+,t) is approached, Im[ω] decreases towards zero, meaning that the lifetime becomes infinitely
long. Thus, the lifetime of the solitary wave can be sufficiently long for experimental realization near the transition
point.

u�/(g�n0) = �4



system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
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experimental uncertainty in the lattice depth, and predicts the energy
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Figure 4 | Scaling of the low-frequency response. The low-frequency
response in the superfluid regime shows a scaling compatible with the
prediction (1 2 j/jc)

22n3 (Methods). Shown is the temperature response
rescaled with (1 2 j/jc)

2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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Appendix:	  Max-‐Planck	  Experiment	  
Endres	  et	  al.,	  Nature	  (2012).	  


