Thermodynamic properties and transport coefficients of a Fermi gas around unitarity

Aurel Bulgac University of Washington, Seattle

Collaborators:

Joaquín E. Drut (Seattle, Columbus, Los Alamos, Chapel Hill) Michael M. Forbes (Seattle, LANL, Seattle, Pullman) Piotr Magierski (Warsaw and Seattle) Wei Quan (Seattle (undergrad), moving to U. Chicago) Kenneth J. Roche (Seattle and PNNL) Gabriel Wlazłowski (Seattle and Warsaw)

Superconductivity and superfluidity in Fermi systems

- ✓ Dilute atomic Fermi gases
- ✓ Liquid ³He
- ✓ Metals, composite materials
- ✓ Nuclei, neutron stars
- QCD color superconductivity

 $\begin{array}{l} \mathsf{T_c} &\approx 10^{\text{-9}}\,\text{eV} \\ \mathsf{T_c} &\approx 10^{\text{-7}}\,\text{eV} \\ \mathsf{T_c} &\approx 10^{\text{-3}} - 10^{\text{-2}}\,\text{eV} \\ \mathsf{T_c} &\approx 10^5 - 10^6\,\text{eV} \\ \mathsf{T_c} &\approx 10^7 - 10^8\,\text{eV} \end{array}$

units (1 eV \approx 10⁴ K)

Why would one want to study cold Fermi gases?

One reason:

(for the nerds, I mean the hard-core theorists, not for the phenomenologists)

Bertsch's Many-Body X challenge, Seattle, 1999

What are the ground state properties of the many-body system composed of spin ½ fermions interacting via a zero-range, infinite scattering-length contact interaction?

Besides pure theoretical curiosity, this problem is relevant to neutron stars! ... and a few other systems!

Gezerlis and Carlson, Phys. Rev. C 77, 032801(R) (2008)

What are the scattering length and the effective range?

$$k \cot a \delta_{0} = -\frac{1}{a} + \frac{1}{2}r_{eff}k^{2} + \cdots$$
$$\sigma = \frac{4\pi}{k^{2}}\sin^{2}\delta_{0} + \cdots = 4\pi \frac{a^{2}}{1 + k^{2}a^{2}} + \cdots = 4\pi a^{2} + \cdots$$

If the energy is small only the s-wave is relevant.

Let me consider at first as an instructive example the hydrogen atom.

The ground state energy could only be a function of:

- ✓ Electron charge
- ✓ Electron mass
- Planck's constant

and then trivial dimensional arguments lead to

$$E_{gs} = \frac{e^4 m}{\hbar^2} \times \frac{1}{2}$$

Only the factor ½ requires some hard work (Quantum Mechanics).

Let me now turn to dilute fermion matter

The ground state energy is given by such a function:

$$E_{gs} = f(N, V, \hbar, m, a, r_0)$$

Taking the scattering length to infinity and the range of the interaction to zero, we are left with:

$$E_{gs} = F(N, V, \hbar, m) = \frac{3}{5} \varepsilon_F N \times \xi_F$$
$$\frac{N}{V} = \frac{k_F^3}{3\pi^2}, \qquad \varepsilon_F = \frac{\hbar^2 k_F^2}{2m}$$
Pure number

What George Bertsch essentially asked in 1999 is:

What is the value of ξ ?! Is it positive?

But he wished to know the properties of the system as well: *The system turned out to be superfluid* !

$$E_{gs} = \frac{3}{5} \varepsilon_F N \times \xi \qquad \Delta = \varepsilon_F \times \zeta$$
$$\xi = 0.372(5), \qquad \zeta = 0.45(5)$$

Now these results are a bit unexpected.

 ✓ The energy looks almost like that of <u>a non-interacting system</u>! (there are no other dimensional parameters in the problem)
 ✓ The system has <u>a huge pairing gap</u>!
 ✓ This system is a very strongly interacting one, since the <u>elementary cross section is huge</u>! The initial Bertsch's Many Body challenge has evolved over time and became the problem of <u>Fermions in the Unitary Regime</u>. (this is part of the BCS-BEC crossover problem)

In cold old gases one can control the strength of the interaction!

The system is very dilute, but strongly interacting!

Finite Temperatures Grand Canonical Path-Integral Monte Carlo

$$\hat{H} = \hat{T} + \hat{V} = \int d^3x \left[\psi_{\uparrow}^{\dagger}(\vec{x}) \left(-\frac{\hbar^2 \Delta}{2m} \right) \psi_{\uparrow}(\vec{x}) + \psi_{\downarrow}^{\dagger}(\vec{x}) \left(-\frac{\hbar^2 \Delta}{2m} \right) \psi_{\downarrow}(\vec{x}) \right] - g \int d^3x \ \hat{n}_{\uparrow}(\vec{x}) \hat{n}_{\downarrow}(\vec{x})$$
$$\hat{N} = \int d^3x \left[\hat{n}_{\uparrow}(\vec{x}) + \hat{n}_{\downarrow}(\vec{x}) \right], \qquad \hat{n}_s(\vec{x}) = \psi_s^{\dagger}(\vec{x}) \psi_s(\vec{x}), \qquad s = \uparrow, \downarrow$$

Trotter expansion

$$Z(\beta) = \operatorname{Tr} \exp\left[-\beta \left(\hat{H} - \mu \hat{N}\right)\right] = \operatorname{Tr} \left\{\exp\left[-\tau \left(\hat{H} - \mu \hat{N}\right)\right]\right\}^{N_{\tau}}, \qquad \beta = \frac{1}{T} = N_{\tau}\tau$$

$$E(T) = \frac{1}{Z(T)} \operatorname{Tr} \hat{H} \exp\left[-\beta \left(\hat{H} - \mu \hat{N}\right)\right]$$
$$N(T) = \frac{1}{Z(T)} \operatorname{Tr} \hat{N} \exp\left[-\beta \left(\hat{H} - \mu \hat{N}\right)\right]$$

No approximations so far, except for the fact that the interaction is not well defined!

Recast the propagator at each time slice and put the system on a 3D-spatial lattice, in a cubic box of side L=N_sl, with periodic boundary conditions

$$\exp\left[-\tau\left(\hat{H}-\mu\hat{N}\right)\right] \approx \exp\left[-\tau\left(\hat{T}-\mu\hat{N}\right)/2\right] \exp\left(-\tau\hat{V}\right) \exp\left[-\tau\left(\hat{T}-\mu\hat{N}\right)/2\right] + O(\tau^3)$$

Discrete Hubbard-Stratonovich transformation

$$\exp(-\tau \hat{V}) = \prod_{\vec{x}} \sum_{\sigma_{\pm}(\vec{x})=\pm 1} \frac{1}{2} \Big[1 + \sigma_{\pm}(\vec{x}) A \hat{n}_{\uparrow}(\vec{x}) \Big] \Big[1 + \sigma_{\pm}(\vec{x}) A \hat{n}_{\downarrow}(\vec{x}) \Big], \qquad A = \sqrt{\exp(\tau g) - 1}$$

 σ -fields fluctuate both in space and imaginary time

$$\frac{m}{4\pi\hbar^2 a} = -\frac{1}{g} + \frac{mk_c}{2\pi^2\hbar^2}, \qquad k_c < \frac{\pi}{l}. \qquad r_{eff} = \frac{4}{\pi k_c}$$

Running coupling constant g defined by lattice

 $\delta p >$

L

Momentum space

$$Z(T) = \int \prod_{\vec{x},\tau} D\sigma(\vec{x},\tau) \operatorname{Tr} \hat{U}(\{\sigma\})$$

$$\hat{U}(\{\sigma\}) = T_{\tau} \prod_{\tau} \exp\{-\tau[\hat{h}(\{\sigma\}) - \mu]\}$$

One-body evolution
operator in imaginary time

$$E(T) = \int \frac{\prod_{\vec{x},\tau} D\sigma(\vec{x},\tau) \operatorname{Tr} \hat{U}(\{\sigma\})}{Z(T)} \frac{\operatorname{Tr} \left[\hat{H} \hat{U}(\{\sigma\}) \right]}{\operatorname{Tr} \hat{U}(\{\sigma\})}$$

 $\operatorname{Tr} \hat{U}(\{\sigma\}) = \{\det[1 + \hat{U}(\{\sigma\})]\}^2 = \exp[-S(\{\sigma\})] > 0 \text{ No sign problem!}$

$$n_{\uparrow}(\vec{x}, \vec{y}) = n_{\downarrow}(\vec{x}, \vec{y}) = \sum_{k, l < k_c} \varphi_{\vec{k}}(\vec{x}) \left[\frac{\hat{U}(\{\sigma\})}{1 + \hat{U}(\{\sigma\})} \right]_{\vec{k} \ \vec{l}} \varphi_{\vec{l}}^*(\vec{y}), \quad \varphi_{\vec{k}}(\vec{x}) = \frac{\exp(i\vec{k} \cdot \vec{x})}{\sqrt{V}}$$

All traces can be expressed through these single-particle density matrices

One can thus determine as a function of T, V and chemical potential:

- ✓ Total Energy
- ✓ Particle number
- Entropy of the system
- ✓ Pressure

 Spectrum of fermionic elementary excitations (pairing gap, pseudogap, effective mass, self-energy)
 Long range order, condensate fraction (onset of phase transition, critical temperature)

е

Bulgac, Drut, and Magierski Phys. Rev. Lett. <u>96</u>, 090404 (2006)

Bogoliubov-Anderson phonons and quasiparticle contribution (dot-dashed line)

Bogoliubov-Anderson phonons contribution only

Quasi-particles contribution only (dashed line)

μ - chemical potential (circles)

$$E_{\text{phonons}}(T) = \frac{3}{5} \varepsilon_F N \frac{\sqrt{3}\pi^4}{16\xi_s^{3/2}} \left(\frac{T}{\varepsilon_F}\right)^4, \quad \xi_s \approx 0.44$$
$$E_{\text{quasi-particles}}(T) = \frac{3}{5} \varepsilon_F N \frac{5}{2} \sqrt{\frac{2\pi\Delta^3 T}{\varepsilon_F^4}} \exp\left(-\frac{\Delta}{T}\right)$$
$$\Delta = \left(\frac{2}{e}\right)^{7/3} \varepsilon_F \exp\left(\frac{\pi}{2k_F a}\right)$$

Experiment (about 100,000 atoms in a trap):

Measurement of the Entropy and Critical Temperature of a Strongly Interacting Fermi Gas,

Luo, Clancy, Joseph, Kinast, and Thomas, Phys. Rev. Lett. <u>98</u>, 080402 (2007)

Full *ab initio* theory (no free parameters) Bulgac, Drut, and Magierski, Phys. Rev. Lett. <u>99</u>, 120401 (2007)

PHYSICAL REVIEW A 85, 051601(R) (2012)

FIG. 2. (Color online) Energy $E/E_{\rm FG}$ (red dots), as obtained by Ku *et al.* [8]. Our AFQMC results extrapolated to infinite volume are shown by open black circles. The results for $N_x = 8$ (open blue squares) were obtained with the DMC algorithm in Ref. [9]. The green square shows the QMC result of Ref. [20] for ξ at T = 0. The inset shows the vicinity of the superfluid phase transition at $T_c/\epsilon_F \simeq 0.15$.

FIG. 4. (Color online) Density $n(\mu,T)$ of the UFG (red circles) as obtained by Ku *et al.* [8], normalized to the density $n_0(\mu,T)$ of a noninteracting Fermi gas. The notation for the AFQMC results is identical to Fig. 2. The diagrammatic MC results of Refs. [21,22] (solid up and down triangles) and the Bold Diagrammatic MC results of Ref. [23] are shown as well (solid squares). The inset shows the vicinity of the superfluid phase transition at $T_c/\epsilon_F \simeq 0.15$.

Long range order and condensate fraction

$$g_{2}(\vec{r}) = \left(\frac{2}{N}\right)^{2} \int d^{3}\vec{r_{1}} \int d^{3}\vec{r_{2}} \left\langle \psi^{\dagger}_{\uparrow}(\vec{r_{1}} + \vec{r})\psi^{\dagger}_{\downarrow}(\vec{r_{2}} + \vec{r})\psi_{\downarrow}(\vec{r_{2}})\psi_{\uparrow}(\vec{r_{2}}) \right\rangle$$
$$\alpha = \lim_{r \to \infty} \frac{N}{2} g_{2}(\vec{r}) - n(\vec{r})^{2}, \quad n(\vec{r}) = \frac{2}{N} \int d^{3}\vec{r_{1}} \left\langle \psi^{\dagger}_{\uparrow}(\vec{r_{1}} + \vec{r})\psi_{\uparrow}(\vec{r_{1}}) \right\rangle$$

Bulgac, Drut, and Magierski, Phys. Rev. A 78, 023625 (2008)

Critical temperature for superfluid to normal transition

Bulgac, Drut, and Magierski, Phys. Rev. A 78, 023625 (2008)

 Amherst-ETH:
 Burovski et al. Phys. Rev. Lett. <u>101</u>, 090402 (2008)

 Hard and soft bosons: Pilati et al. PRL <u>100</u>, 140405 (2008)

What is happening in spin imbalanced systems?

Induced P-wave superfluidity (*even though fermions interact in s-wave only*) Two new superfluid phases where before they were not expected

One Bose superfluid coexisting with one P-wave Fermi superfluid

Two coexisting P-wave Fermi superfluids

Bulgac, Forbes, and Schwenk, Phys. Rev. Lett. <u>97</u>, 020402 (2006)

Going beyond the naïve BCS approximation

Full momentum and frequency dependence of the selfconsistent equations (red)

Bulgac and Yoon, Phys. Rev. A 79, 053625 (2009)

Dimensional arguments and Legendre transform for unitary Fermi gas

$$P(\mu_{\uparrow},\mu_{\downarrow}) = \mu_{\uparrow}n_{\uparrow} + \mu_{\downarrow}n_{\downarrow} - \varepsilon(n_{\uparrow},n_{\downarrow}) = \frac{2}{3}\varepsilon(n_{\uparrow},n_{\downarrow})$$

$$P(\mu_{\uparrow},\mu_{\downarrow}) = \frac{2}{5}\beta \left[\mu_{\uparrow}h\left(\frac{\mu_{\downarrow}}{\mu_{\uparrow}}\right)\right]^{5/2}, \quad \beta = \frac{1}{6\pi^{2}} \left[\frac{2m}{\hbar^{2}}\right]^{3/2}$$

$$\varepsilon(n_{\uparrow},n_{\downarrow}) = \frac{3}{5}\alpha \left[n_{\uparrow}g\left(\frac{n_{\downarrow}}{n_{\uparrow}}\right)\right]^{5/3}, \quad \alpha = \frac{(6\pi^{2})^{2/3}\hbar^{2}}{2m}$$

$$h(y) = \begin{cases} 1, \quad y \leq y_{0} < 0 \\ \frac{1+y}{(2\xi)^{3/5}}, \quad y_{1} \leq y \leq 1 \\ n^{"}(y) \geq 0 \end{cases}$$

$$g'(0) \leq Y_{0}, \quad g'(x) \in g(1) \left[\frac{Y_{1}}{1+Y_{1}}, \frac{1}{2}\right]$$

particle in a see of spin-ups

FIG. 2. (Color online) Example of a function h(y) and the corresponding function g(x) shown as thick lines. Maxwell's construction for phase coexistence leads to a linear g(x) for $x \in (0.5, 1.0)$, interpolating between the two pure phases shown with lighter lines. This corresponds to the kink and/or first-order phase transition at $y=y_1$ in h(y). Various other sample functions are lightly sketched within the allowed (dotted) triangular region.

Unpolarized SF

Asymmetric Superfluid Local Density Approximation

$$\begin{split} \Omega &= -\int d^3r \Big[\varepsilon(\vec{r}) - \mu_{\uparrow} n_{\uparrow}(\vec{r}) - \mu_{\downarrow} n_{\downarrow}(\vec{r}) - V_{ext}(\vec{r}) n_{\uparrow}(\vec{r}) - V_{ext}(\vec{r}) n_{\downarrow}(\vec{r}) \Big] \\ \varepsilon(\vec{r}) &= \frac{\hbar^2}{2m} \Big[\alpha_{\uparrow}(\vec{r}) \tau_{\uparrow}(\vec{r}) + \alpha_{\downarrow}(\vec{r}) \tau_{\downarrow}(\vec{r}) \Big] + \frac{3 \Big(3\pi^2 \Big)^{2/3} \hbar^2}{10m} \Big[n_{\uparrow}(\vec{r}) + n_{\downarrow}(\vec{r}) \Big]^{5/3} \beta(\vec{r}) + g_{eff}(\vec{r}) |\upsilon(\vec{r})|^2 \\ n_{\uparrow}(\vec{r}) &= \sum_{E_n < 0} \Big| u_n(\vec{r}) \Big|^2, \quad n_{\downarrow}(\vec{r}) = \sum_{E_n < 0} \Big| v_n(\vec{r}) \Big|^2, \quad \upsilon(\vec{r}) = \frac{1}{2} \sum_{E_n} \operatorname{sgn}(E_n) u_n(\vec{r}) v_n^*(\vec{r}), \\ \tau_{\uparrow}(\vec{r}) &= \sum_{E_n < 0} \Big| \vec{\nabla} u_n(\vec{r}) \Big|^2, \quad \tau_{\downarrow}(\vec{r}) = \sum_{E_n < 0} \Big| \vec{\nabla} v_n(\vec{r}) \Big|^2, \\ \alpha_{\uparrow}(\vec{r}) &= \alpha \Big[\frac{n_{\downarrow}(\vec{r})}{n_{\uparrow}(\vec{r})} \Big], \quad \alpha_{\downarrow}(\vec{r}) = \alpha \Big[\frac{n_{\uparrow}(\vec{r})}{n_{\downarrow}(\vec{r})} \Big], \quad \beta(\vec{r}) = \beta \Big[\frac{n_{\downarrow}(\vec{r})}{n_{\uparrow}(\vec{r})} \Big] = \beta \Big[\frac{n_{\uparrow}(\vec{r})}{n_{\downarrow}(\vec{r})} \Big], \\ \left(\begin{array}{c} T_{\uparrow}(\vec{r}) + U_{\uparrow}(\vec{r}) - \mu_{\uparrow} & \Delta(\vec{r}) \\ \Delta^*(\vec{r}) && -T_{\downarrow}(\vec{r}) - U_{\downarrow}(\vec{r}) + \mu_{\downarrow} \end{array} \right) \left(\begin{array}{c} u_n(\vec{r}) \\ v_n(\vec{r}) \end{array} \right) = E_n \left(\begin{array}{c} u_n(\vec{r}) \\ v_n(\vec{r}) \end{array} \right) \end{split}$$

Normal State			Superfluid State			
$(N_a, N_b) E_{FNDMC}$	E _{ASLDA}	(error)	(N_a, N_b)	E _{FNDMC}	E _{ASLDA}	(error)
(3,1) 6.6±0.01	6.687	1.3%	(1,1)	$2.002\pm\!0$	2.302	15%
$(4,1)$ 8.93 \pm 0.01	8.962	0.36%	(2,2)	5.051 ± 0.009	5.405	7%
$(5,1)$ 12.1 \pm 0.1	12.22	0.97%	(3,3)	8.639 ± 0.03	8.939	3.5%
(5,2) 13.3±0.1	13.54	1.8%	(4,4)	12.573 ± 0.03	12.63	0.48%
(6,1) 15.8±0.1	15.65	0.93%	(5,5)	16.806 ± 0.04	16.19	3.7%
$(7,2)$ 19.9 \pm 0.1	20.11	1.1%	(6,6)	21.278 ± 0.05	21.13	0.69%
$(7,3)$ 20.8 \pm 0.1	21.23	2.1%	(7,7)	25.923 ± 0.05	25.31	2.4%
$(7,4)$ 21.9 \pm 0.1	22.42	2.4%	(8,8)	30.876 ± 0.06	30.49	1.2%
$(8,1)$ 22.5 ± 0.1	22.53	0.14%	(9,9)	35.971 ± 0.07	34.87	3.1%
$(9,1)$ 25.9 ± 0.1	25.97	0.27%	(10,10)	41.302 ± 0.08	40.54	1.8%
(9,2) 26.6±0.1	26.73	0.5%	(11, 11)	46.889 ± 0.09	45	4%
$(9,3)$ 27.2 ± 0.1	27.55	1.3%	(12, 12)	52.624 ± 0.2	51.23	2.7%
$(9,5) 30 \pm 0.1$	30.77	2.6%	(13, 13)	58.545 ± 0.18	56.25	3.9%
$(10,1)$ 29.4 \pm 0.1	29.41	0.034%	(14, 14)	64.388 ± 0.31	62.52	2.9%
$(10,2)$ 29.9 \pm 0.1	30.05	0.52%	(15, 15)	70.927 ± 0.3	68.72	3.1%
$(10, 6)$ 35 ± 0.1	35.93	2.7%	(1,0)	1.5 ± 0.0	1.5	0%
(20,1) 73.78±0.01	73.83	0.061%	(2,1)	4.281 ± 0.004	4.417	3.2%
(20,4) 73.79±0.01	74.01	0.3%	(3,2)	7.61 ± 0.01	7.602	0.1%
$(20, 10)$ 81.7 \pm 0.1	82.57	1.1%	(4,3)	11.362 ± 0.02	11.31	0.49%
(20,20) 109.7±0.1	113.8	3.7%	(7,6)	24.787 ± 0.09	24.04	3%
(35,4) 154±0.1	154.1	0.078%	(11,10)	45.474 ± 0.15	43.98	3.3%
(35,10) 158.2±0.1	158.6	0.27%	(15, 14)	69.126 ± 0.31	62.55	9.5%
$(35,20)$ 178.6 \pm 0.1	180.4	1%				

Bulgac, Forbes, and Magierski, Lecture Notes in Physics (2012)

EOS for spin polarized systems

Red line: Larkin-Ovchinnikov phase (unitary Fermi supersolid)

Black line:normal part of the energy densityBlue points:DMC calculations for normal state, Lobo et al, PRL <u>97, 200403 (2006)</u>Gray crosses:experimental EOS due to Shin, Phys. Rev. A 77, 041603(R) (2008)

$$E(n_a, n_b) = \frac{3}{5} \frac{(6\pi^2)^{2/3} \hbar^2}{2m} \left[n_a g\left(\frac{n_b}{n_a}\right) \right]^{5/3}$$

Bulgac and Forbes, Phys. Rev. Lett. <u>101</u>, 215301 (2008)

A Unitary Fermi Supersolid: the Larkin-Ovchinnikov phase

Bulgac and Forbes Phys. Rev. Lett. <u>101</u>, 215301 (2008)

NB This is a gas system at the same time!

$$P[\mu_a,\mu_b] = \frac{2}{30\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \left[\mu_a h\left(\frac{\mu_b}{\mu_a}\right)\right]^{5/2}$$

Observations: Inconclusive

•Need detailed structure or novel signature

MIT Experimental data from Shin et. al (2008)

Courtesy of M.M. Forbes

The temperature dependence of the spectral weight function

Spectral function – BCS case

From a talk given by Wlazlowski at INT, Seattle, Spring 2011

Matsubara propagator, spectral function and linear response

$$G(\vec{p},\tau) = \frac{1}{Z} \operatorname{Tr} \left\{ \exp\left[-\left(\beta - \tau\right)\left(H - \mu N\right)\right] \psi^{\dagger}(\vec{p}) \exp\left[-\tau\left(H - \mu N\right)\right] \psi(\vec{p}) \right\}$$
$$= -\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega A(\omega, \vec{p}) \frac{\exp(-\omega\tau)}{1 + \exp(-\omega\beta)}$$
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega A(\omega, \vec{p}) = 1,$$
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega A(\omega, \vec{p}) \frac{1}{1 + \cos(-\omega\beta)} = n(\vec{p}),$$

$$\frac{1}{2\pi}\int_{-\infty}^{1} d\omega A(\omega, \vec{p}) \frac{1}{1 + \exp(\omega\beta)} = n(\vec{p})$$

 $A(\omega, \vec{p}) \ge 0$

Response of the two-component Fermi gas in the unitary regime

Bulgac, Drut, and Magierski, arXiv:0801:1504v3, PRL ,in press (2009)

$$\chi(\vec{p}) = -T \frac{d}{dg} \frac{\text{Tr}\{\exp[-\beta(\text{H}-\mu\text{N}+g\psi(\vec{p}))]\psi^{\dagger}(\vec{p})\}}{\text{Tr}\{\exp[-\beta(\text{H}-\mu\text{N}+g\psi(\vec{p}))]\}} \bigg|_{g=0}$$

$$= -\int_{0}^{p} d\tau \mathbf{G}(\vec{p},\tau)$$

One-body temperature (Matsubara) Green's function

Singular value decomposition (SVD) and maximum entropy method (MEM) reconstruction of the spectral function

Chen et al, Low Temp. Phys. 32, 406 (2006)

$$G(p,\tau) = \frac{1}{Z} \operatorname{Tr} \left\{ \exp\left[-\left(\beta - \tau\right) \left(H - \mu N\right) \right] \psi^{\dagger}(p) \exp\left[-\tau \left(H - \mu N\right) \right] \psi(p) \right\}$$
$$= -\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega A(p,\omega) \frac{\exp(-\omega\tau)}{1 + \exp(-\omega\beta)}$$

ε(p)/ε_F

Using photoemission spectroscopy to probe a strongly interacting Fermi gas Stewart, Gaebler, and Jin, Nature, <u>454</u>, 744 (2008)

$$\begin{split} G_{\Pi}(\vec{q},\tau) &= \frac{1}{V} \left\langle \Pi_{\vec{q}}^{(xy)}(\tau) \Pi_{-\vec{q}}^{(xy)}(0) \right\rangle \\ \Pi_{0}^{(xy)} &= \sum_{\vec{p},\sigma} p_{x} p_{y} a_{\sigma}^{\dagger}(\vec{p}) a_{\sigma}(\vec{p}) \\ \Pi_{\vec{q}}^{(xy)}(\tau) &= e^{-\tau(H-\mu N)} \Pi_{\vec{q}}^{(xy)} e^{\tau(H-\mu N)} \\ G_{\Pi}(0,\tau) &= \frac{1}{\pi} \int_{0}^{\infty} d\omega \ \eta(\omega) \omega \frac{\cosh\left[\omega\left(\tau - \beta/2\right)\right]}{\sinh\left(\omega\beta/2\right)} \\ &\int_{0}^{\infty} d\omega \left[\eta(\omega) - \frac{C}{15\pi\sqrt{\omega}} \right] = \frac{\varepsilon}{3} - \frac{C}{12\pi a}, \ \eta(\omega) \ge 0 \\ n(p) &\approx \frac{C}{p^{4}} \text{ when } p \to \infty \\ E &= TS - pV + \mu N \\ \frac{S(x,y)}{N} &= \frac{\xi(x,y) - \zeta(x,y) + \frac{C(x,y)y}{6\pi Nk_{F}}}{6\pi Nk_{F}}, \\ \text{where } x &= \frac{T}{\varepsilon_{F}}, \ y = \frac{1}{k_{F}a}, \ E = \frac{3}{5} \varepsilon_{F} \xi(x,y), \ \mu = \varepsilon_{F} \zeta(x,y) \end{split}$$

$$\chi_s = \lim_{p \to 0} \frac{1}{V} \int_0^\beta d\tau \left\langle s_z(\vec{p}, \tau) s_z(-\vec{p}, 0) \right\rangle, \qquad s_z(\vec{p}, \tau) = n_{\uparrow}(\vec{p}, \tau) - n_{\downarrow}(\vec{p}, \tau)$$

Spin susceptibility

$$\vec{j}_{s} = \vec{j}_{\uparrow} - \vec{j}_{\downarrow} = \sigma_{s}\vec{F}$$

$$\Gamma_{sd} = \frac{n}{\sigma_{s}}, \ \sigma_{s} \ge 0$$

$$G_{s}^{jj}(\vec{q},\tau) = \frac{1}{V} \left\langle \left[j_{q\uparrow}^{z}(\tau) - j_{q\downarrow}^{z}(\tau) \right] \left[j_{q\uparrow}^{z}(0) - j_{q\downarrow}^{z}(0) \right] \right\rangle$$

$$\vec{j}_{s} = -D_{s}\vec{\nabla} \left(n_{\uparrow} - n_{\downarrow} \right)$$

$$D_{s} = \frac{\sigma_{s}}{\chi_{s}} \quad \text{(Einstein relation)}$$

$$D_{s} \approx v\lambda \sim 1 \quad \text{(kinetic theory)}$$

KSS conjecture

[Kovtun, Son, Starinets, PRL (2005)]

Bound has been proposed on the basis of string theory.

Valid for large class of (string) theories

He near λ–transitior

QGP

String theory

Saturated for the case of strongly coupled theory.

Shear viscosity of a unitary Fermi gas (the only complete ab initio calculation in a Fermi system)

FIG. 3: (Color online) The ratio of the shear viscosity to the entropy density η/s as a function of dimensionless temperature for 8³-lattice (red) squares and 10³-lattice (blue) circles. The error bars only presents the stability of the combined (SVD and MEM) analytic continuation procedure with respect to the change of algorithm parameters, and do not include systematic errors of the entropy determination. By (red) dotted line conservative estimation for the upper bound is depicted. Result of the T-matrix theory are plotted by open (purple) circles [15]. In the high and low temperatures regime known asymptotics are depicted: for $T > 0.3\varepsilon_F$ by (green) line prediction of the kinetic theory and for $T < 0.2\varepsilon_F$ by (brown) line contribution from phonon excitations [13]. By dashed (black) line the KSS bound is plotted.

Lower limit for "perfect liquid"

Fig. 11 Trap average $\langle \alpha_s \rangle = \langle \eta / s \rangle$ extracted from the damping of the radial breathing mode. The data points were obtained using equ. (1) to analyze the data published by Kinast et al. (2). The thermodynamic quantities (S/N) and E_0/E_F were taken from [22]. The solid red and blue lines show the expected low and high temperature limits. Both theory curves include relaxation time effects. The blue dashed curve is a phenomenological two-component model explained in the text.

Schaefer and Chafin, chapter in *BCS-BEC* crossover and Unitary Fermi Gas, Lect. Notes in Phys. ed. Zwerger, Springer (2012)

Wlazlowski, Magierski, and Drut, Phys. Rev. Lett. <u>109</u>, 020406 (2012) Enss, Haussmann, and Zwerger, Ann. Phys. <u>326</u>, 770 (2011) Kovtun, Son, and Starinets (KSS), Phys. Rev. Lett. <u>94</u>, 111601 (2005)

Elliott, Joseph, and Thomas Phys. Rev. Lett. 113, 020406 (2014)

$$\eta = \alpha \hbar n$$

Joseph, Elliott, and Thomas, arXix:1410.4835

High temperature kinetic theory

Bluhm and Schäfer, Phys. Rev. A 90, 063615 (2014)

$$t = \frac{T}{\varepsilon_F}, x = \frac{1}{k_F a}$$
$$z = \frac{n\lambda^3}{2} \text{ (fugacity)}$$

Expansion to order
$$O\left(\left(\frac{\lambda}{a}\right)^2\right)$$
 and $O\left(z\frac{\lambda}{a}\right)$

References (QMC only):	
• The evolution of the shear viscosity away from unitarity	
G. Wlazlowski, W. Quan, and A. Bulgac	(to be submitted soon)
• The temperature evolution of the shear viscosity in a unitary Fern	ıi gas,
G. Wlazlowski, P. Magierski, A. Bulgac, and K.J. Roche,	Phys. Rev. A 88, 013639 (2013)
• Cooper pairing above the critical temperature in a unitary Fermi	gas,
G. Wlazlowski, P. Magierski, J.E. Drut, A. Bulgac, and K.J. Roche,	Phys. Rev. Lett. 110, 090401 (2013)
• Shear Viscosity of a unitary Fermi gas,	
G. Wlazlowski, P. Magierski, and J.E. Drut,	Phys. Rev. Lett. 109, 020406 (2012)
• Equation of state of the unitary Fermi gas: an update on lattice ca	llculations,
J.E. Drut, T.A. Lahde, G. Wlazlowski, and P. Magierski,	Phys. Rev. A 85, 051601(R) (2012)
• Onset of a pseudogap regime in ultracold Fermi gases,	
P. Magierski, G. Wlazlowski, and A. Bulgac,	Phys. Rev. Lett. 107, 145304 (2011)
• Momentum distribution and contact of the unitary Fermi gas,	
J.E. Drut, T.A. Lahde, and T. Ten,	Phys. Rev. Lett. 106, 205302 (2011)
• Quantum Monte Carlo study of dilute neutron matter at finite tem	peratures,
G. Wlazlowski and P. Magierski,	Phys. Rev. C 83, 012801(R) (2011)
• Finite-temperature pairing gap of a unitary Fermi gas by quantu	m Monte Carlo calculations,
P. Magierski, G. Wlazlowski, A. Bulgac, and J.E. Drut,	Phys. Rev. Lett. 103, 210403 (2009)
• Quantum Monte Carlo simulations of the BCS-BEC crossover at	finite temperatures,
A. Bulgac, J.E. Drut, and P. Magierski,	Phys. Rev. A 78, 023625 (2008)
• Thermodynamics of a trapped unitary Fermi gas,	
A. Bulgac, J.E. Drut, and P. Magierski,	Phys. Rev. Lett. 99, 120401 (2007)
• Spin ½ fermions in the unitary regime: a superfluid of a new type,	n
A. Bulgac, J.E. Drut, and P. Magierski,	Phys. Rev. Lett. 96, 090404 (2006)