Topological bands with Chern number C=2 using dipolar exchange interaction

Hans Peter Büchler

Institut für theoretische Physik III,

Universität Stuttgart, Germany

Collaboration

Norman Yao, Mikhail Lukin, Sebastian Huber

Research group:

David Peter, Nicolai Lang, Adam Bühler, Przemek Bienias Sebastian Weber

SFB TRR21: Tailored quantum matter

Outline

Topological band structures with dipolar interactions

- realized with polar molecules and Rydberg atoms
- Chern number C=2

Majorana Edge modes

- exact solvable system with fixed particle number
- double wire system

Dipolar interactions

Dipole-dipole interaction

- anisotropic interaction

$$
V_{dd} = \frac{\mathbf{d}_i \cdot \mathbf{d}_j - 3\left(\mathbf{d}_i \cdot \mathbf{n}_{ij}\right)\left(\mathbf{d}_i \cdot \mathbf{n}_{ij}\right)}{|\mathbf{r}_i - \mathbf{r}_j|^3}
$$

- coupling between orbital degree of freedom and internal degree of freedom

Observation in cold gases

- Einstein de Haas effect (Y. Kawaguchi et al, PRL 2006)
- demagnetization cooling (M. Fattori et al, Nature Phys 2006)
- pattern formation in spinor condensates (D. Stamper-Kurn, M. Ueda, RMP 2013).

Dipolar interactions

Exploit this spin orbit coupling for the generation of topological band structures

Requirements:

- particles in a 2D lattice

- internal "Spin" structure

- strong dipole-dipole interaction

- Systems:
- **polar molecules**
- Rydberg atoms
- NV centers
- atoms with large magnetic dipole moments

Polar molecules in an optical lattice

Internal Hamiltonian

- rigid rotor in an electric field

$$
H_{\rm rot}^{(i)} = B\mathbf{N}_i^2 - \mathbf{d}_i \mathbf{E}(t)
$$

- \mathbf{N}_i : angular momentum
- \mathbf{d}_i : dipole operator

External degree

- polar molecules in a 2D optical lattice

- one polar molecule per lattice site

are allowed

different geometries

- quenched dynamics

Polar molecules in an optical lattice

Internal Hamiltonian

- static external electric field
- select three internal states

: ground state $|-\rangle_i$ $|+\rangle_i$: two excited states $|0\rangle_i$

Mapping onto two hard-core bosons:

- bosonic creation operators for excitations

$$
|+\rangle_i = b^{\dagger}_{i,+} |0\rangle
$$

$$
|-\rangle_i = b^{\dagger}_{i,-} |0\rangle
$$

Dipolar exchange interactions

hopping of excitation

Dipolar exchange interactions

hopping with spin flip

Single excitation Hamiltonian

Hamiltonian

- single particle hoping with spin orbit interaction

$$
H = \sum_{i \neq j} \frac{a^3}{|\mathbf{r}_i - \mathbf{r}_j|^3} \psi_i^{\dagger} \begin{pmatrix} -t^+ & we^{i2\phi_{ij}} \\ e^{-i2\phi_{ij}} & -t^- \end{pmatrix}
$$

$$
\psi_i = \left(\begin{array}{c} b_{+,i} \\ b_{-,i} \end{array}\right)
$$

$$
\bigg)\,\psi_i
$$

Time-reversal symmetry breaking

- different hopping for excitations

$$
t^- \neq t^+
$$

- ac stark shift on levels

$$
\Delta H = \sum_i \psi_i^\dagger \left(\begin{array}{cc} \mu & 0 \\ 0 & -\mu \end{array} \right) \psi_i
$$

Single excitation Hamiltonian

Hamiltonian

 $H = \sum$

 $=$ \sum

k

- single particle hoping with spin orbit interaction

k

 $\psi^{\intercal}_{\mathbf{k}}$

ng with
\n
$$
\hat{\epsilon}_{\mathbf{k}} = \sum_{i \neq 0} \frac{1}{|\mathbf{r}_{i}|^{3}} e^{i\mathbf{k} \cdot \mathbf{r}_{i} + i2\phi_{i}}
$$
\n
$$
\begin{pmatrix}\n-t^{+} \epsilon_{\mathbf{k}} + \mu & w \hat{\epsilon}_{\mathbf{k}} \\
w \hat{\epsilon}_{\mathbf{k}}^{*} & -t^{-} \epsilon_{\mathbf{k}} + \mu\n\end{pmatrix} \psi_{\mathbf{k}}
$$
\n
$$
+ \mathbf{n}_{\mathbf{k}} \sigma \left] \psi_{\mathbf{k}} \qquad \qquad \epsilon_{\mathbf{k}} = \sum_{i \neq 0} \frac{1}{|\mathbf{r}_{i}|^{3}} e^{i\mathbf{k} \cdot \mathbf{r}_{i}}
$$

Topological character of band

 $\psi^{\intercal}_{\mathbf{k}}$

- characterized by a Chern number

$$
C = \int \frac{d\mathbf{k}}{v_0} \mathbf{n_k} \cdot \left(\frac{\partial \mathbf{n_k}}{\partial k_x} \wedge \frac{\partial \mathbf{n_k}}{\partial k_y} \right) \in \mathcal{Z}
$$

 $\left[n_{\mathbf{k}}^{0}+\mathbf{n}_{\mathbf{k}}\sigma\right]\psi_{\mathbf{k}}$

see also Syzranov *et al* Nat. Comm. 2014

Without time reversal symmetry

- optimal experimental parameters
- Chern number C=2

Finite system in y-direction

- bulk edge correspondence (Hatsugai PRL 1993)

edge states **C= 2 implies two edge states**

- exponential localization in presence of long-range hopping

Stability under disorder

Disorder

- missing molecules in the lattice
- stabilized by long-range hopping

Flat topological bands

Honeycomb lattice

- much flatter bands accessible
- very rich topological structure

 $C \in \{0, \pm 1, \pm 2, \pm 3, \pm 4\}$

- even richer for Kagame lattice

Outlook on topological bands

Dipolar interaction provides natural spin orbit coupling

- topological band structures with Chern number C=2

Robust to disorder

- topological nature is very robust to missing particles in the lattice

Towards bosonic fractional Chern insulators

- strongly interacting system
- is flatness high enough for topological phases
- candidate expected at 2/3 filling

Outline

Topological band structures with dipolar interactions

- realized with polar molecules and Rydberg atoms
- Chern number C=2

Majorana Edge modes

- exact solvable system with fixed particle number
- double wire system

Kitaev's Majorana chain

Kitaev's Majorana chain

Topological state

- robust ground state degeneracy
- non-local order parameter
- localized edge states

Why should we care \mathbf{I}

Topological invariant edge states

- ground state degeneracy is robust to local perturbations

robust quantum memory?

Non-abelian anyons

- localized edge modes obey non-abelian braiding statistics

- topological quantum computation
- Novel state of matter
- $\frac{1}{2}$ Topological prider - Toy model of a topological phase

Chemical potential μ

(Alicea et al Nat. Phys. 2011)

Beyond mean-field

with Majorana modes in one-dimension? icol
des exist a particle conserving theory

Beyond mean-field

The Richardson-Gaudin-Kitaev chain.

Short-range interacting Theory **Here:** Sort-range interacting theory **Exact ground state** Majorana edge modes **Here:**

Microscopic model

Hamiltonian

- double wire system

$$
H = H_a + H_b + H_{ab}
$$

- intra-chain contribution

$$
H_a = \sum_i A_i^a \left(1 + A_i^a \right)
$$

- inter-chain contribution

$$
H_{ab} = \sum_{i} B_i \left(1 + B_i \right)
$$

Symmetries

- total number of particles *N*
- time reversal symmetry *T*
- sub-chain parity *P*

Microscopic model

Inter-chain Hamiltonian $\frac{1}{2}$

 \mathbf{F} (chpanded) Inter-chain Hamiltonian (expanded)

$$
H_i^a = a_i a_{i+1}^{\dagger} + a_{i+1} a_i^{\dagger} + n_i^a (1 - n_{i+1}^a) + n_{i+1}^a (1 - n_i^a)
$$

Microscopic model

Intra-chain Hamiltonian

$$
H_{ab} = \sum_{i} B_i (1 + B_i)
$$

$$
B_i = a_i^{\dagger} a_{i+1}^{\dagger} b_i b_{i+1} + b_i^{\dagger} b_{i+1}^{\dagger} a_i a_{i+1}
$$

pair-hopping between chains

- positive Hamiltonian and the Pair-density interactions of the Pair-density interactions - zero-energy state is ground state fixed total number

$$
|\psi\rangle=\sum_n |n\rangle|N-n\rangle
$$

 of particles equal weight superposition of all possible distribution of N fermions between the two wires

Intra-chain Hamiltonian (expanded)

 $H^i_{ab} = a^{\dagger}_i a^{\dagger}_{i+1} b_i b_{i+1} + b^{\dagger}_i b^{\dagger}_{i+1} a_i a_{i+1} + n^a_i n^a_{i+1} (1-n^b_i) (1-n^b_{i+1}) + n^b_i n^b_{i+1} (1-n^a_i) (1-n^a_{i+1})$

Ground state degeneracy \log total particle number \mathcal{L} particle number \mathcal{L}

even

odd

odd

Two-open chains

- two-fold ground state degeneracy

$$
|\psi_{\text{even}}\rangle = \sum_{n \in \text{even}} |n\rangle |N - n\rangle
$$

\n
$$
|\psi_{\text{odd}}\rangle = \sum_{n \in \text{odd}} |n\rangle |N - n\rangle
$$

\nOOOOOOO
\nOdd
\nOdd total number of
\nOOOOOOO
\nOdd total number of
\nOOOOO

- only one zero energy state for total even number of particles **EXACCO**

Even total number of particles and the control of \sim

Wire networks GS = Equal-weight superposition with fixed GS = Equation with superposition with fixed superposition with fixed superposition with fixed superposition with fixed superposition with the superposition with the superposition with the superposition with the superpositi total particle number \mathcal{S}

Networks of wires

- exact ground states for arbitrary networks
- degeneracy consistent with majorana modes at edges

total particle number \mathcal{L} particle number \mathcal{L} particle number \mathcal{L} particle number \mathcal{L}

Do the math ...

 $2^{E/2-1}$

number of edges

Ground state properties

Density-density correlations

- independent on ground state

$$
\langle n_i^{\sigma} n_j^{\sigma'} \rangle = \rho^2 \qquad i \neq j
$$

Superfluid correlations

$$
\langle a^\dagger_i a^\dagger_{i+l} a_j a_{j+l}\rangle = \rho(1-\rho)
$$

- long-range order with infinity correlation length

Ground state properties

Stability of ground state degeneracy of edge states

- stable under all local perturbations
- splitting decays exponentially

Stability of ground state degeneracy for open wires

- Protected by either time-reversal symmetry or subchain parity

 $a_i^{\dagger}b_i + b_i^{\dagger}a_i$

: stable under time reversal hopping

 $ia_i^{\dagger}b_i - ib_i^{\dagger}$

ⁱ aⁱ : finite overlap between two ground states

Excitation spectrum

Low-energy excitations

- Goldstone mode due to broken U(1) symmetry
- exact wave function for single phase kink excitation

$$
|k, \psi\rangle = \sum_{j} e^{ikj} \left[(-1)^{n_j^a} + (-1)^{n_j^b} \right] |\psi\rangle
$$

- quadratic excitation spectrum

$$
\epsilon_k = 4\sin^2 k/2 \sim k^2
$$

System is in a critical state

- vanishing compressibility
- Goldstone mode with quadratic dispersion

$rac{1}{2}$ Non-abelian Braiding statistics

Setup for braiding of two edge states

- wire network with two edges
- restriction to the low energy sector Braid edge-modes on subchains by adiabatic deformation of Hamiltonian of Hamiltonian of Hamiltonian of Hamiltonian of Hamiltonian subchains and the Hamiltonian of Hamiltonian subchains and the Hamiltonian subchains of Hami
	- very weak coupling terms: adiabatic switching between them
	- 8 relevant states
	- Negative total parity enaracterized by
subchain parity - characterized by

Non-abelian Braiding statistics \blacksquare

Adiabatic switching of coupling

- transformation of the ground state according to the non-abelian statistic of Majorana modes

Conclusion

Topological band structure with dipolar exchange interactions

- spin-orbit coupling natural present in dipolar system
- existence of topological band structures

Majorana Edge modes

- exact solvable system with fixed particle number
- analytical demonstration of Majorana edge modes

