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* “Traditionally”: Loss measurements of large cold samples
provide insights into two-, three- and higher-body processes.
Important work on three-body Efimov effect.

* Recent advances: Few-body systems can be prepared in an
isolated environment and probed (single atom detection).

Cold molecular beam experiment: Ultracold fermions in
Imaging of quantum mechanical microtrap (Selim
density of Efimov helium trimer. Jochim’s group):
Deterministic state

THREE-BODY PHYSICS Science 348, 551 (2015) || preparation.
Observation of the Efimov state of the Radio-frequency

o . spectroscopy.
helium trimer Tunneling spectros-
e e M SR copy with single

Robert E. Grisenti,»* Till Jahnke,! Dorte Blume,* Reinhard Dorner™* =
atom detection.




Outl f This Tall

* Static properties of one-dimensional few-atom gases:

* Non-interacting Fermi gas with a single impurity [(N,1)
system with delta-function interaction]. ( >

= Strongly-interacting gas (identical bosons or identical
fermions) with spin-orbit and Raman couplings.

e e

°* Dynamic properties of one-dimensional few-atom gases:
* Tunneling dynamics in the presence of short-range

interactions. %/ \
Serwane et al., oo

Science 332, 6027 (2011) open




Motivation: Transition to Fermi Sea of

y

)
few-body to many-body

(effectively 1D geometry)

Radio-frequency spectroscopy
yields interaction energy AE
(i.e., energy relative to Nl system):

AE goes up with increasing N and g,p.
Wenz et al., Science 342, 457 (2013).
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Energy Spectra: Rf Spectroscopy Data
versus 3D and 1D Calculations

In the tight xy-directions, the
confinement is approximately
harmonic. Tunneling in z

allows for preparation of (1,1),
(2,1), (3,1), (2,2),... systems:

open close
>Z

Serwane et al., Science 332, 6027 (2011)

Experimental data: G. Zuern, Ph.D. thesis,
Heidelberg (2012).

Theory: Gharashi, Yin, Blume, PRA 89,
023603 (2014).

Experiment: rf spectroscopy
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Detailed Spectrum: (2,1) Fermi System

mJ:IJgthELQngaIe_d_'[Lap_C > D,
3D energy spectrum for elongated

trap with aspect ratio 10 (but shown 1 and 3 interact.
as a function of -1/g,p): 2 and 3 interact.
E
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Gharashi, Daily and Blume, PRA 86, 042702 (2012)
(calculations based on Lippmann-Schwinger equation). U



Building a Fermi Sea with a Single

Impurity One Atom at a Time

Scale interaction
energy AE(N,1) by
Fermi energy E.(N).

E-(N) =NE,,

N: # of majority
atoms.

Subtract scaled
two-body energy

€(1,1) (“residue”
beyond one
interacting pair at
. Z
a time). W o

g(N,1)=AE(N,1)/E-(N)

Y = 04p/[Epnon.(2N)"?]
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Semi-Analytical Expression for

?
* For systems with periodic boundary conditions, Bethe
ansatz. See McGuire (1965).
* For harmonically trapped Fermi gas with impurity, g,,=0
and g,p,=> are analytically tractable (Girardeau).
E.g., (1,1) and g,p=°: 2, Z1fzz
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Strategy: Treat Interactions as

Perturbation around g9,5,=0 and g.,5=

* g.o=0 (standard perturbation theory): Gharashi, Yin, Yan, Blume,
* Interaction Z; g,p5(z-2,). PRA 91, 013620 (2015).

= Boundary condition: '-P’(zj0=0+)—‘+"(zj0=0‘)=(g1Dmlhz)\l-’(zjo=0).
= All infinite sums converge.
= Up up to 39 order PT: £(N,1) = B)(N)y + B(2(N)y2 + B)(N)y3

* g.p=> (“non-standard” perturbation theory):
" Rewrite interaction matrix element V gz as 1/g, x integral:
Vg = Z;-h%(m?g,p) x I;, where
l; = < W, '(2,0=0%)-%¥,'(zo=0") | 8(z;p) | Wg’(2;o=0")-¥p'(2jo=0") >.

Volosniev et al., Nat. Comm. 5, 5300 (2014).

= Starting at 2"9 order, we see divergencies (need to introduce
counterterms).

= Up to 3@ order PT: g(N,1) = 1+ C)(N)y! + C@(N)y2 + CE)(N)y3



1/g,p EXpansion
S oefficient

For (N,1)=(1,1), expand
transcendental equation by
Busch et al. (1998) around
v=0 and 1/y=0.

For (N,1)=(,1), apply local
density approximation to
McGuire result (1965) and

expand around y and 1/y.

(N,1)=(1,1) and (N,1)=(,1)
results connect smoothly.

How well do the expansions
work?
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Scaled Interaction
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Scaled Interaction
O(N,N’) =
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Change from Statics to Dynamics:

(a) (b) (c) Somewhat similar

\@/ \'\ to He atom (two

electrons) in external
a - B > 1|/ field.
—~ \/
o e A key difference:
The cold-atom
P experiments are
. => effectively one-
] dimensional.

Magnetic field gradient —_— 2

From Zuern et al., PRL 108, 075303 (2012).

Electrons: Atoms in particular hyperfine state.
Electron-electron Coulomb potential: Zero-range contact potential.
Electron-nucleus Coulomb potential: External harmonic trap.



Look at Tunneling in Detail:
Start W|th Single-Particle System

V(I“d[) / (5 Eho)

Vlrap / (5 Eho)

Vtrup / (5 Eho)

I
in

z/a,

lower the
barrier in
about 2ms

wavepacket is
no longer in
“eigenstate”:
follow time
evolution for
~100-1000ms

Functional form of V, , (2):

trap(z) =
pV,o[1-1/[1+(z/z,)*]]-H,,c);-B’2

First task:

Can we look at outward flux
and determine p and c;.B’
through comparison with
experimental data?

Second task:

What happens if we prepare

two-atom state?
Look at upper branch.
Look at molecular
branch.



How to Calculate the Flux out of the

Trap (Tunneling Rate)?

Solve time-dependent Schroedinger equation
ih OW(x,t)/6t = H W(x,t) for initial state ¥(x,0).

Hamiltonian H = (kinetic energy operator) + (potential energy).

For single particle: potential energy = trapping potential V,,, (z).
For two particles: Vi, 1(2,) + Vi, 2(2,) + (interaction potential).

10 L] I

}

| harmonic
\ / appr.

flux

=

u . — _1
Trap time scale: T, =w™".

“Many runs against the barrier”:
Needtogotot>>T,..

Use absorbing boundary
conditions or damping so that
wave packet will not get
reflected by the box.



Our 2D Numerics: Three Different
Length Scales (z, << a,, << Num. Box L)

Two different time
propagation schemes:

1) Expand propagator in
Chebychev polynomials (only
for finite-range two-body
potentials; “fast”).

2) Use exact zero-range
propagator (“slow”).

Region with two trapped
particles (R,), regions with
one trapped particle (R,, and
R,g) and region with zero
trapped particles (R,).

To get average number of
7. barticles in trap, we monitor
1 flux through b, ,s, b, 15, by .




Fraction P, ;, Inside the Trap:
Exponential Decay with Extra Features

short-time
dynamics .
oscillations on
00 — t/'ms 00N, 150 top of exponentia|
decay

< 0.0001F
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Compare Single-Particle Dynamics with
Experimental Results

Experimental paper contains trap parameters p and c;,B’ [Zuern

et al., PRL 108, 075303 (2012)].

When we use these parameters, our tunneling rate y differs by
up to a factor of two from experimentally measured tunneling

rate.

I:’sp,in(t) = Psp,in(o) exp(-yt).

Why? Trap parameters p and
c;>B’ are calibrated using

numerics

-

K (re-calibrated trap)

semi-classical WKB
approximation. WKB
tunneling rate is inaccurate.

- See also Lundmark et al.,
PRA 91, 041601(R) (2015).

Re-parameterize trap: Find
parameters such that oury




Overview: Upper Branch and Molecular
Branch for Deep Trap (Quasi-Eigenstates)

Harmonic
Two-body energy spectrum:
3 | ' | ' | .

. 2

non- ~ |

interacting - fermionization

(NI) OfF
1 | L | 1 | H

-2 -1 0

a /g
trap trap <1D
1/ (two-body interaction strength)



Overview: Upper Branch and Molecular
Branch for Deep Trap (Quasi-Eigenstates)

Anharmonic
cgnfjnement |

Two-body energy spectrum:
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interacting
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We consider 1 L3 1
zero-range and -2 -1
finite-range Eap 8ap &10

interactions (tiny

1/ (two-body interaction strength)
range dependence).



Upper Branch:
Comparlson with Experimental Data

f)

Very good agreement with
experimental results.
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The “further up”

the upper branch
the system is, the
faster the decay.




weakly-bound

Molecular Branch molecule

“Molecular branch” means Oj' NI | ~
that the interaction energy I _
is negative (|F=1/2,M=1/2>

and |F=3/2,M=-3/2> states). -1 J -

In free space, the two-body

system would form a i ‘ {".’
| L

molecule of size ~ =2/g,. D) .

gp/ (@ E )

5(|)0 \1000
B /G \deeply-bound
molecule
Getting the single-particle tunneling rates to agree with
experiment (=our re-calibration approach), does not guarantee
agreement of two-body tunneling dynamics.

We unsuccessfully tried to “tweak” trap parameters such that
we agree at one- and two-body level (non-unique inversion
problem at single-particle level). May not be possible...



Results for Tunneling Dynamics of

Molecular Branch

].OOOO 1 I 1 I 1 I 1 l
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Set 1: We use the trap
parameters determined by
Heidelberg WKB analysis.
Problem: Single particle
tunneling rate is off by factor
of 2.

Set 2: We use parameters
that reproduce single-particle
tunneling rate.

Problem: Tunneling rates for
interacting systems are off.



Non-interacting system
(g=0): Particles tunnel
independently.

ZZ/aho

Magnitude of the Flux

20F
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Attractive interaction
(a,p=1.384a,,, g <0):
Pair tunneling.
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* Single-particle dynamics: WKB analysis should not be used
to calibrate trapping potential.

* Two-particle tunneling dynamics in the presence of short-
range interactions:

= Upper branch tunneling dynamics (initial state is an excited
state...) observed in Heidelberg experiment is reproduced
nicely by our numerics.

= Molecular branch tunneling dynamics observed in
Heidelberg experiment turns out to be more challenging to
reproduce: We find qualitative but not quantitative
agreement.

* Functional form of trap? Other molecular levels?



N Trapped 1D Particles with g,p=<°:
Spin-Orbit and R . i

Single particle terms (equal mixture of Rashba and Dresselhaus):
Raman coupling (Q/2)o, ; and spin-orbit coupling (hkg,/m)p, ;0.

Unitary transformation U;=exp(-ik X0

soNj y,j): _(hkso)zl(zm) + VR,j!
where Vi ;= (Q/2) (U))* o, ; U,

Weak couplings: .
Effective spin 4:‘:—:‘:—:‘:—:‘: >
Hamiltonian of

the form (Q/2) 2, B, o;.

Spin spiral due t t t
to “spiraling” of t

effective B-field at

slot j [Cui and Ho, PRA 89, 013629 (2014)].

v><

First-order degenerate perturbation theory yields 2; B, g; term
(“matrix elements factorize”). Beyond 1st order?



How To Go Beyond First Order?

* Construct and diagonalize Hamiltonian matrix using

“rotated” g=« states as basis.

* Using 2"9 order degenerate PT, construct effective low-
energy Hamiltonian H_; that is accurate to order Q2:

Hett = Z 0 in v [W<w)| (Q%8) Zy i vn ((Ap)) [Wp><wy].

N

H, : (N!) x 2N states

[\

number of distinct two states per
particle orderings spin-1/2 atom

Matrix elements for any N
can be rewritten as finite
sums (one numerical
integration for N>2): This
allows for evaluation with
arbitrary (controlled)
accuracy.

Integrate over the spatial degrees of freedom:
((212) 2,8, 0; * (Q718) 2, o My o, slotj=1t j=21 j=3t j=4t




Three-Particle Example: Spin Structure
as a Function of k. (Fixed Q)

Observable:
2D vector (<S, >,<S,;>) for

X,)

each slot j. Note <S | >=0.

[—

left slot
o

Infinitely strongly-interacting
1D gases with spin-orbit and
Raman couplings can be
described by spin Hamiltonian
H,in: SPin-spin interactions
can be designed (not as much
flexibility as for ions...).
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H,,;, offers means to
understand the system
dynamics.




Three-Particle Example: Spin Structure
as a Function of k. (Fixed Q)

Observable:
2D vector (<S, >,<S,;>) for
each slot j. Note <S ,>=0.

[—

left slot
o
1

s

Infinitely strongly-interacting R

1D gases with spin-orbit and
Raman couplings can be
described by spin Hamiltonian
H,in: SPin-spin interactions

can be designed (not as much
flexibility as for ions...).
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H,,;, offers means to 10 1
understand the system
dynamics.




Summary: Harmonically Trapped One-

Dimensional Atomic Gases

e Static properties of one-dimensional few-atom gases:

= Non-interacting Fermi gas with a single impurity [(N,1) system

with delta-function interaction].

Perturbative expressions (

x5

for g=0 and 1/g=0.

» Strongly-interacting gas (identical bosons or identical fermions)

with spin-orbit and Raman couplings.

Spin-chain with effective magnetic

field and spin-spin interactions. _—==

* Dynamic properties of one-dimensional few-atom gases:

* Tunneling dynamics in the presence of short-range interactions.

~F

Simulations of two- Serwane et al.,

particle dynamics. Science 332,
6027 (2011)
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