

Static and Dynamic Properties of One-Dimensional Few-Atom Systems

Doerte Blume

Ebrahim Gharashi, Qingze Guan, Xiangyu Yin, Yangqian Yan Department of Physics and Astronomy, Washington State University, Pullman

Supported by NSF.

Few-Body Physics in Cold Gases

- "Traditionally": Loss measurements of large cold samples provide insights into two-, three- and higher-body processes. Important work on three-body Efimov effect.
- Recent advances: Few-body systems can be prepared in an isolated environment and probed (single atom detection).

Cold molecular beam experiment: Imaging of quantum mechanical density of Efimov helium trimer.

THREE-BODY PHYSICS

Science 348, 551 (2015)

Observation of the Efimov state of the helium trimer

Maksim Kunitski,¹* Stefan Zeller,¹ Jörg Voigtsberger,¹ Anton Kalinin,¹ Lothar Ph. H. Schmidt,¹ Markus Schöffler,¹ Achim Czasch,¹ Wieland Schöllkopf,² Robert E. Grisenti,^{1,3} Till Jahnke,¹ Dörte Blume,⁴ Reinhard Dörner^{1*} Ultracold fermions in microtrap (Selim Jochim's group): Deterministic state preparation. Radio-frequency spectroscopy. Tunneling spectroscopy with single atom detection.

Outline of This Talk

- Static properties of one-dimensional few-atom gases:
 - Non-interacting Fermi gas with a single impurity [(N,1) system with delta-function interaction].

 Strongly-interacting gas (identical bosons or identical fermions) with spin-orbit and Raman couplings.

- Dynamic properties of one-dimensional few-atom gases:
 - Tunneling dynamics in the presence of short-range interactions.

Serwane et al., Science 332, 6027 (2011)

Motivation: Transition to Fermi Sea of Spin-Up Fermions with Single Impurity

В Α repulsive $g_{1D} = 2.80$ interactions Ę ∆E [ĥω_µ] g_{1D}= 1.14 few-body to many-body (effectively 1D geometry) $g_{1D} = 0.36$ **Radio-frequency spectroscopy** yields interaction energy ΔE (i.e., energy relative to NI system): ΔE goes up with increasing N and g_{1D} . 5 2 З Wenz et al., Science 342, 457 (2013). Ν

Energy Spectra: Rf Spectroscopy Data versus 3D and 1D Calculations

In the tight xy-directions, the confinement is approximately harmonic. Tunneling in z allows for preparation of (1,1), (2,1), (3,1), (2,2),... systems:

Serwane et al., Science 332, 6027 (2011)

Experimental data: G. Zuern, Ph.D. thesis, Heidelberg (2012). Theory: Gharashi, Yin, Blume, PRA 89, 023603 (2014).

1 / (two-body interaction strength)

Detailed Spectrum: (2,1) Fermi System in Highly-Elongated Trap

Gharashi, Daily and Blume, PRA 86, 042702 (2012) (calculations based on Lippmann-Schwinger equation).

Building a Fermi Sea with a Single Impurity One Atom at a Time

Semi-Analytical Expression for Interaction Energy of True 1D System?

 $Z_1 = Z_2$

(z=0)

Z₁

- For systems with periodic boundary conditions, Bethe ansatz. See McGuire (1965).
- For harmonically trapped Fermi gas with impurity, g_{1D}=0 and $g_{1D} = \infty$ are analytically tractable (Girardeau).

Strategy: Treat Interactions as Perturbation around $g_{1D}=0$ and $g_{1D}=\infty$

- g_{1D}=0 (standard perturbation theory):
 - Interaction $\Sigma_j g_{1D} \delta(z_j z_0)$.

Gharashi, Yin, Yan, Blume, PRA 91, 013620 (2015).

- Boundary condition: $\Psi'(z_{j0}=0^+)-\Psi'(z_{j0}=0^-)=(g_{1D}m/\hbar^2)\Psi(z_{j0}=0).$
- All infinite sums converge.
- Up up to 3rd order PT: $\epsilon(N,1) = B^{(1)}(N)\gamma + B^{(2)}(N)\gamma^2 + B^{(3)}(N)\gamma^3$
- g_{1D}=∞ ("non-standard" perturbation theory):
 - Rewrite interaction matrix element $V_{\alpha\beta}$ as $1/g_{1D}$ x integral: $V_{\alpha\beta} = \Sigma_j -\hbar^4/(m^2g_{1D}) \times I_j$, where $I_j = \langle \Psi_{\alpha}'(z_{j0}=0^+) - \Psi_{\alpha}'(z_{j0}=0^-) | \delta(z_{j0}) | \Psi_{\beta}'(z_{j0}=0^+) - \Psi_{\beta}'(z_{j0}=0^-) \rangle$.

Volosniev et al., Nat. Comm. 5, 5300 (2014).

- Starting at 2nd order, we see divergencies (need to introduce counterterms).
- Up to 3rd order PT: $\epsilon(N,1) = 1 + C^{(1)}(N)\gamma^{-1} + C^{(2)}(N)\gamma^{-2} + C^{(3)}(N)\gamma^{-3}$

1/g_{1D} Expansion Coefficients

For (N,1)=(1,1), expand transcendental equation by Busch et al. (1998) around $\gamma=0$ and $1/\gamma=0$.

For (N,1)=(∞ ,1), apply local density approximation to McGuire result (1965) and expand around γ and 1/ γ .

(N,1)=(1,1) and $(N,1)=(\infty,1)$ results connect smoothly.

How well do the expansions work?

Change from Statics to Dynamics: Tunneling for Two Interacting Particles

Somewhat similar to He atom (two electrons) in external field.

A key difference: The cold-atom experiments are effectively onedimensional.

From Zuern et al., PRL 108, 075303 (2012).

Electrons: Atoms in particular hyperfine state. Electron-electron Coulomb potential: Zero-range contact potential. Electron-nucleus Coulomb potential: External harmonic trap.

Look at Tunneling in Detail: Start with Single-Particle System

Functional form of $V_{trap}(z)$: $V_{trap}(z) =$ $pV_0[1-1/[1+(z/z_r)^2]]-\mu_m c_{|j>}B'z$

First task:

Can we look at outward flux and determine p and c_{|j>}B' through comparison with experimental data?

Second task: What happens if we prepare two-atom state?

> Look at upper branch. Look at molecular branch.

How to Calculate the Flux out of the Trap (Tunneling Rate)?

Solve time-dependent Schroedinger equation iħ $\delta \Psi(x,t)/\delta t = H \Psi(x,t)$ for initial state $\Psi(x,0)$.

Hamiltonian H = (kinetic energy operator) + (potential energy).

For single particle: potential energy = trapping potential $V_{trap}(z)$. For two particles: $V_{trap,1}(z_1) + V_{trap,2}(z_2) + (interaction potential)$.

Trap time scale: $T_{ho} = \omega^{-1}$. "Many runs against the barrier": Need to go to t >> T_{ho} .

Use absorbing boundary conditions or damping so that wave packet will not get reflected by the box.

Our 2D Numerics: Three Different Length Scales (z₀ << a_{ho} << Num. Box L)

Two different time propagation schemes: 1) Expand propagator in Chebychev polynomials (only for finite-range two-body potentials; "fast"). 2) Use exact zero-range propagator ("slow").

Region with two trapped particles (R_2), regions with one trapped particle (R_{1A} and R_{1B}) and region with zero trapped particles (R_0).

To get average number of particles in trap, we monitor flux through $b_{2,1A}$, $b_{2,1B}$, $b_{2,0}$.

Fraction P_{sp,in} Inside the Trap: Exponential Decay with Extra Features

Compare Single-Particle Dynamics with Experimental Results

Experimental paper contains trap parameters p and c_{|j>}B' [Zuern et al., PRL 108, 075303 (2012)].

When we use these parameters, our tunneling rate γ differs by up to a factor of two from experimentally measured tunneling rate.

Overview: Upper Branch and Molecular Branch for Deep Trap (Quasi-Eigenstates)

Harmonic approximation

Overview: Upper Branch and Molecular Branch for Deep Trap (Quasi-Eigenstates)

Upper Branch: Comparison with Experimental Data

Molecular Branch

"Molecular branch" means that the interaction energy is negative ($|F=1/2,M_F=1/2>$ and $|F=3/2,M_F=-3/2>$ states). In free space, the two-body system would form a molecule of size ~ $-2/g_{1D}$.

Getting the single-particle tunneling rates to agree with experiment (=our re-calibration approach), does not guarantee agreement of two-body tunneling dynamics.

We unsuccessfully tried to "tweak" trap parameters such that we agree at one- and two-body level (non-unique inversion problem at single-particle level). May not be possible...

Results for Tunneling Dynamics of Molecular Branch

Set 1: We use the trap parameters determined by Heidelberg WKB analysis. Problem: Single particle tunneling rate is off by factor of 2.

Set 2: We use parameters that reproduce single-particle tunneling rate. Problem: Tunneling rates for interacting systems are off.

We disagree with results by Lundmark et al., PRA 91, 041601(R) (2015).

Magnitude of the Flux

Non-interacting system (g=0): Particles tunnel independently. Attractive interaction $(a_{1D}=1.38a_{ho}, g < 0)$: Pair tunneling.

Summary of Time-Dependent Studies

- Single-particle dynamics: WKB analysis should not be used to calibrate trapping potential.
- Two-particle tunneling dynamics in the presence of shortrange interactions:
 - Upper branch tunneling dynamics (initial state is an excited state...) observed in Heidelberg experiment is reproduced nicely by our numerics.
 - Molecular branch tunneling dynamics observed in Heidelberg experiment turns out to be more challenging to reproduce: We find qualitative but not quantitative agreement.
 - Functional form of trap? Other molecular levels?

N Trapped 1D Particles with g_{1D}=∞: Spin-Orbit and Raman Coupling

Single particle terms (equal mixture of Rashba and Dresselhaus): Raman coupling ($\Omega/2$) $\sigma_{x,j}$ and spin-orbit coupling ($\hbar k_{so}/m$) $p_{x,j}\sigma_{y,j}$.

Unitary transformation $U_j = \exp(-ik_{so}x_j\sigma_{y,j}): -(\hbar k_{so})^2/(2m) + V_{R,j}$, where $V_{R,j} = (\Omega/2) (U_j)^+ \sigma_{x,j} U_j$.

Weak couplings: Effective spin Hamiltonian of the form $(\Omega/2) \Sigma_j \underline{B}_j \underline{\sigma}_j$. Spin spiral due to "spiraling" of effective B-field at slot j [Cui and Ho, PRA 89, 013629 (2014)].

First-order degenerate perturbation theory yields $\Sigma_j \underline{B}_j \underline{\sigma}_j$ term ("matrix elements factorize"). Beyond 1st order?

How To Go Beyond First Order?

- Construct and diagonalize Hamiltonian matrix using "rotated" g=∞ states as basis.
- Using 2nd order degenerate PT, construct effective lowenergy Hamiltonian H_{eff} that is accurate to order Ω^2 : $H_{eff} = \sum_{I,I' in HL} |\Psi_I \rangle \langle \Psi_I | (\Omega^2/8) \sum_{k in HH} ((A_{II'})_k) |\Psi_{I'} \rangle \langle \Psi_{I'} |$.

Matrix elements for any N can be rewritten as finite sums (one numerical integration for N>2): This allows for evaluation with arbitrary (controlled) accuracy.

Integrate over the spatial degrees of freedom: ($\Omega/2$) $\Sigma_j \underline{B}_j \underline{\sigma}_j + (\Omega^2/8) \Sigma_{j,j'} \underline{\sigma}_j \underline{M}_{jj'} \underline{\sigma}_{j'}$. slot j=1 j=2 j=3 j=4

Three-Particle Example: Spin Structure as a Function of k_{so} (Fixed Ω)

Observable: 2D vector ($(S_{x,j}), (S_{z,j})$) for each slot j. Note $(S_{y,j}) = 0$.

Infinitely strongly-interacting 1D gases with spin-orbit and Raman couplings can be described by spin Hamiltonian H_{spin} : spin-spin interactions can be designed (not as much flexibility as for ions...).

H_{spin} offers means to understand the system dynamics.

Three-Particle Example: Spin Structure as a Function of k_{so} (Fixed Ω)

Observable: 2D vector ($(S_{x,j}), (S_{z,j})$) for each slot j. Note $(S_{y,j}) = 0$.

Infinitely strongly-interacting 1D gases with spin-orbit and Raman couplings can be described by spin Hamiltonian H_{spin} : spin-spin interactions can be designed (not as much flexibility as for ions...).

H_{spin} offers means to understand the system dynamics.

Summary: Harmonically Trapped One-Dimensional Atomic Gases

- Static properties of one-dimensional few-atom gases:
 - Non-interacting Fermi gas with a single impurity [(N,1) system with delta-function interaction].

Perturbative expressions for g=0 and 1/g=0.

 Strongly-interacting gas (identical bosons or identical fermions) with spin-orbit and Raman couplings.

Spin-chain with effective magnetic field and spin-spin interactions.

- Dynamic properties of one-dimensional few-atom gases:
 - Tunneling dynamics in the presence of short-range interactions.

Simulations of twoparticle dynamics.

