

Static and Dynamic Properties of One-Dimensional Few-Atom Systems

Doerte Blume

Ebrahim Gharashi, Qingze Guan, Xiangyu Yin, Yangqian Yan Department of Physics and Astronomy, Washington State University, Pullman

Supported by NSF.

Few-Body Physics in Cold Gases

- **"Traditionally": Loss measurements of large cold samples provide insights into two-, three- and higher-body processes. Important work on three-body Efimov effect.**
- **Recent advances: Few-body systems can be prepared in an isolated environment and probed (single atom detection).**

Cold molecular beam experiment: Imaging of quantum mechanical density of Efimov helium trimer.

THREE-BODY PHYSICS

Science 348, 551 (2015)

Observation of the Efimov state of the helium trimer

Maksim Kunitski,^{1*} Stefan Zeller,¹ Jörg Voigtsberger,¹ Anton Kalinin,¹ Lothar Ph. H. Schmidt,¹ Markus Schöffler,¹ Achim Czasch,¹ Wieland Schöllkopf,² Robert E. Grisenti,^{1,3} Till Jahnke,¹ Dörte Blume,⁴ Reinhard Dörner^{1*}

Ultracold fermions in microtrap (Selim Jochim's group): Deterministic state preparation. Radio-frequency spectroscopy. Tunneling spectroscopy with single atom detection.

Outline of This Talk

- **Static properties of one-dimensional few-atom gases:**
	- § **Non-interacting Fermi gas with a single impurity [(N,1) system with delta-function interaction].**

§ **Strongly-interacting gas (identical bosons or identical fermions) with spin-orbit and Raman couplings.**

- **Dynamic properties of one-dimensional few-atom gases:**
	- § **Tunneling dynamics in the presence of short-range interactions.**

Serwane et al., Science 332, 6027 (2011)

Motivation: Transition to Fermi Sea of Spin-Up Fermions with Single Impurity

в A **repulsive** $g_{1D} = 2.80$ **interactions** Ę ΔΕ [ħω_{ι|}] $g_{1D} = 1.14$ **few-body to many-body (effectively 1D geometry)** $g_{1D} = 0.36$ **Radio-frequency spectroscopy yields interaction energy ΔE (i.e., energy relative to NI system): ΔE goes up with increasing N and g_{1D}.** 5 2 з **Wenz et al., Science 342, 457 (2013).** N

Energy Spectra: Rf Spectroscopy Data versus 3D and 1D Calculations

In the tight xy-directions, the confinement is approximately harmonic. Tunneling in z allows for preparation of (1,1), (2,1), (3,1), (2,2),… systems:

Serwane et al., Science 332, 6027 (2011)

Experimental data: G. Zuern, Ph.D. thesis, Heidelberg (2012). Theory: Gharashi, Yin, Blume, PRA 89, 023603 (2014).

1 / (two-body interaction strength)

Detailed Spectrum: (2,1) Fermi System in Highly-Elongated Trap

Gharashi, Daily and Blume, PRA 86, 042702 (2012) (calculations based on Lippmann-Schwinger equation).

Building a Fermi Sea with a Single Impurity One Atom at a Time

Semi-Analytical Expression for Interaction Energy of True 1D System?

- **For systems with periodic boundary conditions, Bethe ansatz. See McGuire (1965).**
- For harmonically trapped Fermi gas with impurity, $g_{1D}=0$ and g_{1D}=∞ are analytically tractable (Girardeau).

Strategy: Treat Interactions as <u>**Perturbation around g_{1D}=0 and g_{1D}=∞**</u>

- g_{1D} =0 (standard perturbation theory):
	- Interaction **Σ**_j g_{1D}δ(z_j-z₀).

Gharashi, Yin, Yan, Blume, PRA 91, 013620 (2015).

- Boundary condition: $\Psi'(z_{i0}=0^+) \Psi'(z_{i0}=0^-) = (g_{1D}m/\hbar^2)\Psi(z_{i0}=0).$
- § **All infinite sums converge.**
- **•** Up up to 3rd order PT: $\epsilon(N,1) = B^{(1)}(N)\gamma + B^{(2)}(N)\gamma^2 + B^{(3)}(N)\gamma^3$
- g_{1D} =∞ ("non-standard" perturbation theory):
	- Rewrite interaction matrix element V_{αβ} as 1/g_{1D} x integral: $$ $\bf{I}_j = < \Psi_\alpha'({z}_{j0}=0^+) - \Psi_\alpha'({z}_{j0}=0^-)$ | δ(z_{j0}) | Ψ_β['](z_{j0}=0⁺)−Ψ_β'(z_{j0}=0⁻) >.

Volosniev et al., Nat. Comm. 5, 5300 (2014).

- § **Starting at 2nd order, we see divergencies (need to introduce counterterms).**
- \bullet Up to 3rd order PT: **ε**(N,1) = 1+ C⁽¹⁾(N)γ⁻¹ + C⁽²⁾(N)γ⁻² + C⁽³⁾(N)γ⁻³

1/g_{1D} Expansion Coefficients

For (N,1)=(1,1), expand transcendental equation by Busch et al. (1998) around γ=0 and 1/γ=0.

For (N,1)=(∞,1), apply local density approximation to McGuire result (1965) and expand around γ and 1/γ.

(N,1)=(1,1) and (N,1)=(∞,1) results connect smoothly.

How well do the expansions work?

Change from Statics to Dynamics: Tunneling for Two Interacting Particles

Somewhat similar to He atom (two electrons) in external field.

A key difference: The cold-atom experiments are effectively onedimensional.

From Zuern et al., PRL 108, 075303 (2012).

Electrons: Atoms in particular hyperfine state.

Electron-electron Coulomb potential: Zero-range contact potential. Electron-nucleus Coulomb potential: External harmonic trap.

Look at Tunneling in Detail: Start with Single-Particle System

Functional form of V_{trap}(z): $V_{trap}(z) =$ **pV**₀[1−1/[1+(z/z_r)²]]−µ_mc_{li>}B'z

First task:

Can we look at outward flux and determine p and c|j>B' through comparison with experimental data?

Second task: What happens if we prepare two-atom state?

> **Look at upper branch. Look at molecular branch.**

How to Calculate the Flux out of the Trap (Tunneling Rate)?

Solve time-dependent Schroedinger equation \mathbf{F} **ih** $\delta\Psi(\mathbf{x},t)/\delta t = \mathbf{H} \Psi(\mathbf{x},t)$ for initial state $\Psi(\mathbf{x},0)$.

Hamiltonian H = (kinetic energy operator) + (potential energy).

For single particle: potential energy = trapping potential $V_{trap}(z)$. For two particles: $V_{trap,1}(z_1) + V_{trap,2}(z_2) + (interaction potential)$.

Trap time scale: T_{ho}=ω⁻¹. "Many runs against the barrier": Need to go to $t \gg T_{\text{ho}}$.

Use absorbing boundary conditions or damping so that wave packet will not get reflected by the box.

Our 2D Numerics: Three Different Length Scales (z₀ << a_{ho} << Num. Box L)

Two different time propagation schemes: 1) Expand propagator in Chebychev polynomials (only for finite-range two-body potentials; "fast"). 2) Use exact zero-range propagator ("slow").

Region with two trapped particles (R₂), regions with **one trapped particle (R_{1A} and R1B) and region with zero** trapped particles (R₀).

To get average number of particles in trap, we monitor flux through $b_{2,1A}$ **,** $b_{2,1B}$ **,** $b_{2,0}$ **.**

Fraction P_{sp,in} Inside the Trap: Exponential Decay with Extra Features

Compare Single-Particle Dynamics with Experimental Results

Experimental paper contains trap parameters p and c_{li}B' [Zuern] et al., PRL 108, 075303 (2012)].

When we use these parameters, our tunneling rate γ differs by up to a factor of two from experimentally measured tunneling rate.

 $P_{sp,in}(t) = P_{sp,in}(0) \exp(-\gamma t).$ Why? Trap parameters p and **P**_{sp,in}(t) = P_{sp,in}(0) exp(- γt). **c|j>B' are calibrated using semi-classical WKB approximation. WKB experimental tunneling rate is inaccurate. result** $n_{\rm B}^{\frac{5}{28}}0.5$ **See also Lundmark et al., numerics PRA 91, 041601(R) (2015). (re-calibrated trap) Re-parameterize trap: Find numerics parameters such that our γ (exp. trap params) agrees with experimental γ.** 50 100 t/ms

Overview: Upper Branch and Molecular Branch for Deep Trap (Quasi-Eigenstates)

Harmonic approximation

Overview: Upper Branch and Molecular Branch for Deep Trap (Quasi-Eigenstates)

Upper Branch: Comparison with Experimental Data

weakly-bound Molecular Branch molecule NI "Molecular branch" means Ω **that the interaction energy** $\mathrm{g_{1D}}/\left(\mathrm{a_{ho}}\right.\mathrm{E_{ho}})$ **is negative (** $|F=1/2, M_F=1/2$ **)** and |F=3/2,M_F=−3/2> states). **In free space, the two-body system would form a molecule of size** \sim **−2/g_{1D}.** -2 500 1000 B/G **deeply-bound molecule**

Getting the single-particle tunneling rates to agree with experiment (=our re-calibration approach), does not guarantee agreement of two-body tunneling dynamics.

We unsuccessfully tried to "tweak" trap parameters such that we agree at one- and two-body level (non-unique inversion problem at single-particle level). May not be possible…

Results for Tunneling Dynamics of Molecular Branch

Set 1: We use the trap parameters determined by Heidelberg WKB analysis. Problem: Single particle tunneling rate is off by factor of 2.

Set 2: We use parameters that reproduce single-particle tunneling rate. Problem: Tunneling rates for interacting systems are off.

We disagree with results by Lundmark et al., PRA 91, 041601(R) (2015).

Magnitude of the Flux

Non-interacting system (g=0): Particles tunnel independently.

Attractive interaction $(a_{1D}=1.38a_{h0}, g \le 0)$: **Pair tunneling.**

Summary of Time-Dependent Studies

- **Single-particle dynamics: WKB analysis should not be used to calibrate trapping potential.**
- **Two-particle tunneling dynamics in the presence of shortrange interactions:**
	- § **Upper branch tunneling dynamics (initial state is an excited state…) observed in Heidelberg experiment is reproduced nicely by our numerics.**
	- § **Molecular branch tunneling dynamics observed in Heidelberg experiment turns out to be more challenging to reproduce: We find qualitative but not quantitative agreement.**
	- § **Functional form of trap? Other molecular levels?**

N Trapped 1D Particles with $q_{1D} = ∞$: **Spin-Orbit and Raman Coupling**

Single particle terms (equal mixture of Rashba and Dresselhaus): Raman coupling (Ω/2) $\sigma_{x,i}$ and spin-orbit coupling (ħk_{so}/m) $p_{x,i} \sigma_{y,i}$.

Unitary transformation Uj =exp(−iksoxj σy,j): −(ħkso)2/(2m) + VR,j, where $V_{R,j} = (\Omega/2) (U_j)^+ \sigma_{x,j} U_j$.

Weak couplings: Effective spin Hamiltonian of the form (Ω/2) Σj Bj σ^j . Spin spiral due to "spiraling" of effective B-field at slot j [Cui and Ho, PRA 89, 013629 (2014)]. x x

First-order degenerate perturbation theory yields Σj Bj σ^j term ("matrix elements factorize"). Beyond 1st order?

How To Go Beyond First Order?

- **Construct and diagonalize Hamiltonian matrix using "rotated" g=∞ states as basis.**
- **Using 2nd order degenerate PT, construct effective lowenergy Hamiltonian Heff that is accurate to order Ω2:** $H_{eff} = Σ_{I,I' in HL} |\psi_1\rangle$ < $\psi_1|$ (Ω²/8) $Σ_{k in HH} ((A_{II'})_k) |\psi_1\rangle$ < ψ_1 ||.

Matrix elements for any N can be rewritten as finite sums (one numerical integration for N>2): This allows for evaluation with arbitrary (controlled) accuracy.

 Integrate over the spatial degrees of freedom: $(\Omega/2)$ Σ_j \underline{B}_j $\underline{\sigma}_j$ + $(\Omega^2/8)$ $\Sigma_{j,j'}$, $\underline{\sigma}_j$ $\underline{M}_{jj'}$, $\underline{\sigma}_{j'}$. **slot j=1 j=2 j=3 j=4**

Three-Particle Example: Spin Structure as a Function of k_{so} (Fixed Ω)

Observable: 2D vector (<S_{x,i}>,<S_{z,i}>) for **each slot j. Note <S y,j>=0.**

Infinitely strongly-interacting 1D gases with spin-orbit and Raman couplings can be described by spin Hamiltonian H_{spin}: spin-spin interactions can be designed (not as much flexibility as for ions…).

H_{spin} offers means to **understand the system dynamics.**

Three-Particle Example: Spin Structure as a Function of k_{so} (Fixed Ω)

Observable: 2D vector (<S_{x,i}>,<S_{z,i}>) for **each slot j. Note <S y,j>=0.**

Infinitely strongly-interacting 1D gases with spin-orbit and Raman couplings can be described by spin Hamiltonian H_{spin}: spin-spin interactions can be designed (not as much flexibility as for ions…).

H_{spin} offers means to **understand the system dynamics.**

Summary: Harmonically Trapped One-Dimensional Atomic Gases

- **Static properties of one-dimensional few-atom gases:**
	- § **Non-interacting Fermi gas with a single impurity [(N,1) system with delta-function interaction].**

Perturbative expressions for g=0 and 1/g=0.

§ **Strongly-interacting gas (identical bosons or identical fermions) with spin-orbit and Raman couplings.**

Spin-chain with effective magnetic field and spin-spin interactions.

- **Dynamic properties of one-dimensional few-atom gases:**
	- § **Tunneling dynamics in the presence of short-range interactions.**

Simulations of twoparticle dynamics.

