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Introduction

I Lattice gauge theories→ fundamental contribution towards
understanding of strongly correlated systems.

I Most non-perturbative computations done in Euclidean space with
Wilson formulation.

I Ultra-cold atoms toolbox→ quantum dynamics of gauge theories.

I Questions of real-time evolution and finite baryon density.

I Alternate formulation of gauge theories (Horn,1981; Orland, Rohrlich, 1990;
Chandrasekharan, Wiese, 1997 ) and QCD with domain wall fermions
(Brower, Chandrasekharan, Wiese, 1999) are particularly relevant.

I These realize continuous gauge symmetries using discrete
quantum link variables, having finite dimensional Hilbert space
→ extension of Wilson formulation of gauge theories.

I Excellent candidate models to be implemented in cold-atom systems.

I Allows construction of very efficient algorithms to study static
properties.



Hamiltonian U(1) LGT: Wilson formulation
I U(1) gauge invariant Hamiltonian:

H =
g2

2

∑
x,i

e2
x,i −

1
2g2

∑
�

(u� + u†�)

I u = exp(iϕ); u† = exp(−iϕ); e = −i∂ϕ;
⇒ are operators in the Hamiltonian formulation, operating in an
infinite dimensional Hilbert space on a single link

I U(1) gauge transformations generated by Gauss Law:

Gx =
∑

i

(ex,i − ex−î,i ); [Gx ,H] = 0

V =
∏

x

exp(iαxGx ); u′xy = Vuxy V † = exp(iαx )uxy exp(−iαy )

I Commutation relations realizing gauge invariance:

[e,u] = u, [e,u†] = −u†

I [u,u†] = 0



Hamiltonian U(1) LGT: Quantum Links
I U(1) gauge invariant Hamiltonian:

H =
g2

2

∑
x,i

E2
x,i −

1
2g2

∑
�

(U� + U†�)

I U = S1 + iS2 = S+; U† = S1 − iS2 = S−; E = S3

⇒ are operators in the Hamiltonian formulation, operating in a
finite dimensional Hilbert space on a single link

I U(1) gauge transformations generated by Gauss Law:

Gx =
∑

i

(Ex,i − Ex−î,i ); [Gx ,H] = 0

V =
∏

x

exp(iαxGx ); U ′xy = VUxy V † = exp(iαx )Uxy exp(−iαy )

I Commutation relations realizing gauge invariance:

[E ,U] = U, [E ,U†] = −U†

I [U,U†] = 2E



The (2+1)-d U(1) Quantum Link model
I Simplest Abelian pure gauge model: with spin S = 1/2
→ 2-dim Hilbert space per link

E | ↑〉 =
1
2
| ↑〉; E | ↓〉 = −

1
2
| ↓〉; U| ↑〉 = 0; U| ↓〉 = | ↑〉; U†| ↑〉 = | ↓〉; U†| ↓〉 = 0

I E2 contributes a constant for S = 1/2.

H = −J
∑
�

(
U� + U†

�

)
+λ
∑
�

(
U� + U†

�

)2

HJ

HJ

λHλ

Hλ

-J

I Plaquettes are flipped only if they have flux in the right order; second term (= Hλ)

counts the number of flippable plaquettes

H 16Hλ



Gauss Law and Charge Sectors

To define the path integral Z = Tr (exp(−βH)PG),
the Gauss Law must be implemented :∑

i

(
Ex ,i − Ex−î,i

)
= Qx

There is zero charge everywhere (charge-0 sector) unless
external static charges are placed at vertices.

Q=0

Q=1

Q=2



Symmetry breaking and phase transitions
I Discrete: Rotation by π/2, Reflection,

Charge Conjugation (C), Translation(T = (Tx ,Ty ))

C

I Charge conjugation: CU = U†; CE = −E

I Symmetry breaking −→ quantum phase transitions.

(px, py) = (π, π);C = +

(px, py) = (π, π);C = −
(px, py) = (0, 0);C = + λc

0 1

λ

C,T T

I Continuous: U(1) center symmetries in x- and y-directions



Diagnosis by Exact Diagonalization
I ED on lattices of 4× 4,4× 6,6× 6,6× 8, ... used to study the system.

Quite large by ED standards: 6× 6 has ∼ 16 million states.
I Volume scaling of the lowest energy states:
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I 2-component order parameter (MA,MB) to analyze the symmetry
breaking patterns
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Phase diagram
Explored with exact diagonalization and a newly developed cluster
algorithm using dualization techniques.
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An approximate global SO(2) symmetry is emergent at λc . A
description in terms of a low-energy effective theory suggests a weak
1st order transition.



OP distributions from Monte-Carlo

(a) L = 24a, λ = −1,T = 0, (b) L = 24a, λ ∼ λc ,T = 0, (c) L = 48a, λ ∼ λc ,T = 0,

(d) L = 24a, λ = 0,T = 0



EFT description

I Near λc , ED shows (approximate) finite volume rotor spectra
behavior: Em = m2c2

2ρL1L2
, m even. Emergence of a SO(2) symmetry

which is spontaneously broken.
I EFT description around λc in terms of the unit vector field
~e = (cos(ϕ), sin(ϕ)) representing the direction of (MA,MB).

I (MA,MB) indistinguishable from (−MA,−MB)⇒ RP(1) model

S[ϕ] =

∫
d3x

1
c

[ρ
2
∂µϕ∂µϕ+ δ cos2(2ϕ) + ε cos4(2φ)

]
♠ δ breaks the emergent SO(2)→ Z (4),
♠ gives small Goldstone boson mass Mc = 2

√
2|δ|/ρ

♠ higher order terms give finite string tension at λc



Mean Field Phase Diagram of the EFT
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Solid line is 1st order, dotted lines are 2nd order.
Would need ”fine-tuning” to make the string tension vanish.



Crystalline confinement
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Deconfined Crystal?
Universality arguments predict the finite temperature transition to be
of BKT type. Systematic investigation underway; hints of a
high-temperature phase with broken T symmetry, which gets
smoothly restored with increasing temperature.
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Selecting charge sectors: Quantum Dimer Models
Choose the sector of the Link model satisfying the (new) Gauss Law:

Gx |Ψ〉 = (−1)x1+x2 |Ψ〉

Dimer number at a bond can be connected to the electric flux:

Exy = (−1)x1+x2 (Dxy − 1
2 )
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Selecting charge sectors: Quantum Dimer Models
Choose the sector of the Link model satisfying the (new) Gauss Law:

Gx |Ψ〉 = (−1)x1+x2 |Ψ〉

Dimer number at a bond can be connected to the electric flux:

Exy = (−1)x1+x2 (Dxy − 1
2 )
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Candidate phases and the big question
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Symmetries and results with ED
I Translations combined with charge conjugation: CTx ,CTy

I π/4 rotation O around a lattice point
I rotation about a plaquette center combined with charge conj CO′

I U(1)2 center symmetries
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I For λ ' −0.2, energy gaps behave as E1,2,E3 ∼ exp(−αL1L2)

I For −0.2 ≤ λ ≤ 0.8, the state (−,−) with energy E4 ≈ E3 state almost degenerates

with the (+,+) state.
I For λ ≥ −0.2, E1,2 : E3,4 : E5,6 : E7,8 ≈ 1 : 4 : 9 : 16; approx rotor spectrum



EFT considerations
Effective theory to describe the model around −0.2 ≤ λ ≤ 1.0

L =
ρt

2
∂tϕ∂tϕ+

ρ

2
∂iϕ∂iϕ+ κ(∂i∂iϕ)2 + δ cos2(4ϕ)

M11 = MA −MB −MC + MD = M1 cosϕ1,

M22 = MA + MB −MC −MD = M1 sinϕ1,

M12 = MA −MB −MC −MD = M2 cosϕ2,

M21 = −MA + MB −MC −MD = M2 sinϕ2,

and ϕ = 1
2 (ϕ1 + ϕ2 + π

4 ), where the Mij are the different order
parameters to distinguish the different phases
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Results from QMC

left: L=12a, right: L=48a; top to bottom: λ = 0.5, 0.8, 0.9



Evidence for columnar phase

Study the angular histogram of the probability density:
〈cos(8ϕ)〉 =

∫ π
−π dϕp(ϕ) cos(8ϕ)
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Interface dynamics
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Static Potential
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Fractional Fluxes
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Conclusions
I Although quantum simulating QCD is still far away, many of the

simpler models have similar physical phenomena. Very useful
for insight into the physics of QCD.

I Proposal for the construction of quantum simulators for the
quantum link and quantum dimer models have been presented
by colleagues from Innsbruck [see arXiv: 1404.5326 (Quantum
Spin Ice) and Annals of Physics 351, 634 (2014) (for QLM)]

I Exciting time when theory and experiment meet together for the
lattice gauge theories!

I As pointed out earlier, non-Abelian extensions (all the way upto
QCD!) exist, which makes the development of this area exciting.

I Interesting challenges coming up next: demonstrate
dimensional reduction in gauge theories (connection with
spin-liquids).

Thank You for your attention!
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