

## Spin-imbalanced quasi-2D Fermi gases

Ilya Arakelyan JETLab NC State University



#### JETLab Group



#### **PI:** J. E. Thomas

#### **Graduate Students:**

Willie Ong Chingyun Cheng Jayampathi Kangara

**Graduated Student:** 

Yingyi Zhang

Support: ARO DOE NSF AFOSR

# Outline



#### **Introduction**

• Creating layered quasi-two dimensional Fermi gases: – Meaning of quasi-2D?

#### **Experiments**

- Radio-frequency spectroscopy of quasi-2D Fermi gases:
- Failure of dimer and 2D-BCS theories
- 2D Fermi-polaron model
- Thermodynamics of quasi-2D Fermi gases:
- Density, pressure, and temperature in spin-imbalanced mixtures
- Phase transition of spin-imbalanced mixtures to a balanced core





#### Atoms in Standing Wave Trap





#### **Two-Dimensional Gas**





#### **Quasi-Two-Dimensional Gas**









Search for high temperature superconductivity in layered materials:

- In copper oxide and organic films, electrons are confined in a quasi-two-dimensional geometry
- Complex, strongly interacting many-body systems
- Phase diagrams are not well understood
- Exotic superfluids in spin-imbalanced systems

Enhancement of the superfluid transition temperature compared to true 2D materials:

- Heterostructures and inverse layers
- Quasi-2D organic superconductors
- Intercalated structures and films of transition metals

## Optically-Trapped <sup>6</sup>Li Atoms



#### <sup>6</sup>Li Fermi Gas





# Radio Frequency Spectroscopy



## RF 12-to-13 spectrum at 720 G



Calculated dimer binding energies:

$$E_b^{13} = 145 \text{ kHz}$$
  
 $E_b^{13} = 2.9 \text{ kHz}$ 

## RF 12-to-13 spectrum at 832 G



**Dimer theory fails!** 

## Many-body physics? BCS Theory in Two Dimensions



BCS-Two dimensions: (Randeria 1989)

Predicts radio-frequency transition with frequency  $\omega$ :

$$\hbar\omega = \sqrt{\mu_{\perp}^2 + \Delta^2} - \mu_{\perp}$$
Gap equation:  $E_b = \sqrt{\mu_{\perp}^2 + \Delta^2} - \mu_{\perp}$ 

$$h\omega = E_b$$
Dimer Spectrum!

No many-body effects on the spectrum!

## Fermi-Polaron Gas (Chevy)





single spin down

cloud of particle-hole pairs

# Comparison of Polaron Model with Measurements



$$h\Delta \upsilon_{\text{dimer}} = E_{b12} - E_{b13}$$
  $h\Delta \upsilon_{\text{polaron}} = E_{p12} - E_{p13}$ 

| B(G) | $v_{z}$ (kHz) | $\Delta v_{meas}$ (kHz) | $\Delta v_{dimer}$ (kHz) | $\Delta v_{polaron}  (\mathrm{kHz})$ |
|------|---------------|-------------------------|--------------------------|--------------------------------------|
| 832  | 24.5          | 12.3                    | 6.6                      | 11.6                                 |
| 832  | 82.0          | 28.3                    | 18.3                     | 29.1                                 |
| 832  | 135           | 38.8                    | 26.9                     | 42.8                                 |
| 831  | 179           | 44.5                    | 33.2                     | 48.3                                 |

#### Thermodynamics—Spin Imbalance







#### Measure Column Density:

$$n_c(x) = \int_{-\infty}^{\infty} dy \, n_{2D}(\sqrt{x^2 + y^2})$$

Transverse Density Profiles:  $n_{2D}(
ho)$ 

Column Densities versus  $N_2/N_1$ 



 $E_{h} = 2D$  dimer binding energy  $E_{F} = 2D$  ideal gas Fermi energy



#### Quasi- 2D Fermi Gas Temperature





$$n_{2D}^{(n)}(\rho) = \frac{2N}{\pi R^2} \widetilde{T} \ln \left[ \frac{1 + e^{[\widetilde{\mu}_n - \widetilde{U}(\rho)]/\widetilde{T}}}{1 + e^{[\widetilde{\mu}_n - \widetilde{U}_0]/\widetilde{T}}} \right]$$

Total 2D-Density  
$$n(\rho) = \sum_{n} n_{2D}^{(n)}(\rho)$$

Normalization determines  $\mu_0$ 

Fit Column Density:

$$n_c(x) = \int_{-\infty}^{\infty} dy \, n(\sqrt{x^2 + y^2})$$

#### **Quasi-2D Fermi Gas Spatial Profiles**





### Majority and Minority Radii





### Majority and Minority Radii





# 2D-Polaron Thermodynamics



Free energy density of imbalanced gas: 
$$f = \frac{1}{2}n_{1}\varepsilon_{F1} + \frac{1}{2}n_{2}\varepsilon_{F2} + n_{2}E_{p}(2)$$
Polaron energy: 
$$E_{p}(2) = y_{m}(q_{1})\varepsilon_{F1}$$
Ideal Fermi gas Minority Polaron Energy
$$\varepsilon_{F1} = \frac{2\pi\hbar^{2}}{m}n_{1}$$

$$q_{1} \equiv \frac{\varepsilon_{F1}}{E_{b}}$$

$$y_{m}(q_{1}) = \frac{-2}{\log(1+2q_{1})}$$
Klawunn and Recati 2011
Chemical potentials: 
$$\frac{\partial f}{\partial n_{1}} = \mu_{1} = \mu_{10} - U(\rho), \quad \frac{\partial f}{\partial n_{2}} = \mu_{2} = \mu_{20} - U(\rho)$$

Pressure:  $p = n_1 \mu_1 + n_2 \mu_2 - f$ 

### Majority and Minority Radii





#### **Predicted Density Profiles**





Transition to a Balanced Core?



Balanced Core 2D-Profile: 
$$\Delta n_{2D}(\rho) = A \Theta[\rho - R] \Theta[R_1 - \rho](1 - \rho^2 / R_1^2)$$
  
balanced core  $\rho < R$ 



## **2D-Central Density Ratio**





- Polaron model
- --- Ideal gas

Transition to balanced core:Not predicted!





- BCS theory for a true 2D system fails in the quasi-2D regime.
- 2D polaron model explains several features of the density profiles in the quasi-2D regime.
- 2D polaron model with the analytic approximation is too crude to predict the transition to a balanced core.
- Measurements with imbalanced mixtures provide the first benchmarks for predictions of the phase diagram for quasi-2D Fermi gases.