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Outline

• Radio-frequency spectroscopy of quasi-2D Fermi gases:
– Failure of dimer and 2D-BCS theories

– 2D Fermi-polaron model

• Thermodynamics of quasi-2D Fermi gases:
– Density, pressure, and temperature in spin-imbalanced mixtures

– Phase transition of spin-imbalanced mixtures to a balanced core

• Creating layered quasi-two dimensional Fermi gases:

– Meaning of quasi-2D? 

Experiments

Introduction



Creating a Quasi-2D Fermi Gas

CO2 laser:
Mirror

Standing wave

~1000 atoms/site, 5.3 mm spacing

Individual optical imaging



Atoms in Standing Wave Trap
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Two-Dimensional Gas
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Quasi-Two-Dimensional Gas
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Quasi-2D Fermi Gases

Enhancement of the superfluid transition 

temperature compared to true 2D materials:

• In copper oxide and organic films, electrons 

are confined in a quasi-two-dimensional geometry

• Complex, strongly interacting many-body systems

• Phase diagrams are not well understood

• Exotic superfluids in spin-imbalanced systems 

Search for high temperature superconductivity 

in layered materials:

• Heterostructures and inverse layers

• Quasi-2D organic superconductors

• Intercalated structures and films of transition metals



Optically-Trapped 6Li Atoms

6Li Fermi Gas
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Bare Atom Picture

Radio Frequency Spectroscopy

Eb(𝑎𝑠,𝜈trap) - dimer binding energy



RF 12-to-13 spectrum at 720 G

Bound to free transition Bare atomic transition 

kHz 145
12
bE

kHz 9.2
13
bE

Calculated dimer binding energies:



RF 12-to-13 spectrum at 832 G

Bare atomic transition 

Dimer theory fails!

Bound to bound transition 

𝐸𝑏
12 = 7.25 kHz

𝐸𝑏
13 = 0.81 kHz



Many-body physics? 

BCS Theory in Two Dimensions

bEh 

No many-body effects on the spectrum!

Dimer Spectrum!

BCS-Two dimensions: (Randeria 1989)

Predicts radio-frequency transition with frequency 𝜔:

ℏ𝜔 = 𝜇⊥
2 + ∆2 − 𝜇⊥

Gap equation: 𝐸𝑏 = 𝜇⊥
2 + ∆2 − 𝜇⊥



Fermi-Polaron Gas (Chevy)


  qkkq k-qp

kq

01;,0,0polaron
FSFS 

single spin down cloud of particle-hole pairs

1

2



B(G) νz (kHz) ∆νmeas (kHz) ∆νdimer (kHz) ∆νpolaron (kHz)

832 24.5 12.3 6.6 11.6

832 82.0 28.3 18.3 29.1

832 135 38.8 26.9 42.8

831 179 44.5 33.2 48.3

Comparison of Polaron Model

with  Measurements

1312dimer bb EEh 
1312polaron pp EEh 



Thermodynamics—Spin Imbalance 

Transverse Density Profiles: )(2 Dn
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Measure Column Density:
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Eb = 2D dimer binding energy EF = 2D ideal gas Fermi energy

Column Densities versus N2/N1



Quasi- 2D Fermi Gas Temperature
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Quasi-2D Fermi Gas Spatial Profiles

N2/N1 = 0.1

EF/Eb= 2.1

N2/N1 = 1

EF/Eb= 6.6

N2/N1 = 0.5

Fit n = 0 only

Fit n = 0,1,2
n = 0 contribution

T/TF = 0.21 T/TF = 0.18 T/TF = 0.14



Majority and Minority Radii
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Majority and Minority Radii
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2D-Polaron Thermodynamics

Free energy density of imbalanced gas: )2(2222
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Chemical potentials:    
𝜕𝑓

𝜕𝑛1
=𝜇1 =𝜇10−𝑈 𝜌 ,

𝜕𝑓
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Majority and Minority Radii
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Predicted Density Profiles

N2/N1 = 0.5EF/Eb = 0.75
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Transition to a Balanced Core?
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12 RRRAn D  Balanced Core 2D-Profile:

balanced core ρ < R

data

model

N2/N1 = 0.35  EF / Eb = 0.75



2D-Central Density Ratio

• Transition to balanced core:

• Not predicted!

Polaron model

Ideal gas
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Summary

• 2D polaron model explains several features of the 

density profiles in the quasi-2D regime. 

• 2D polaron model with the analytic approximation is 

too crude to predict the transition to a balanced core. 

• Measurements with imbalanced mixtures provide

the first benchmarks for predictions of the 

phase diagram for quasi-2D Fermi gases. 

• BCS theory for a true 2D system 

fails in the quasi-2D regime. 


