

Spin-imbalanced quasi-2D Fermi gases

Ilya Arakelyan **JETLab** NC State University

JETLab Group

PI: J. E. Thomas

Graduate Students:

Willie Ong Chingyun Cheng Jayampathi Kangara

Graduated Student:

Yingyi Zhang

Support: **ARO DOE NSF AFOSR**

Outline

Introduction

• *Creating layered quasi-two dimensional Fermi gases:* – Meaning of quasi-2D?

Experiments

- *Radio-frequency spectroscopy of quasi-2D Fermi gases:*
- Failure of dimer and 2D-BCS theories
- 2D Fermi-polaron model
- *Thermodynamics of quasi-2D Fermi gases:*
- Density, pressure, and temperature in spin-imbalanced mixtures
- Phase transition of spin-imbalanced mixtures to a balanced core

Atoms in Standing Wave Trap

Two-Dimensional Gas

Quasi-Two-Dimensional Gas

Search for high temperature superconductivity in layered materials:

- In copper oxide and organic films, electrons are confined in a quasi-two-dimensional geometry
- Complex, strongly interacting many-body systems
- Phase diagrams are not well understood
- Exotic superfluids in spin-imbalanced systems

Enhancement of the superfluid transition temperature compared to true 2D materials:

- Heterostructures and inverse layers
- Quasi-2D organic superconductors
- Intercalated structures and films of transition metals

Optically-Trapped ⁶Li Atoms

⁶Li Fermi Gas

Radio Frequency Spectroscopy

RF 12-to-13 spectrum at 720 G

RF 12-to-13 spectrum at 832 G

Dimer theory fails!

Many-body physics? BCS Theory in Two Dimensions

BCS-*Two* dimensions: (Randeria 1989)

Predicts radio-frequency transition with frequency ω :

$$
\hbar \omega = \sqrt{\mu_{\perp}^2 + \Delta^2 - \mu_{\perp}}
$$

Gap equation: $E_b = \sqrt{\mu_{\perp}^2 + \Delta^2 - \mu_{\perp}}$

$$
\boxed{h\omega = E_b}
$$
 Dimer Spectrum!

No many-body effects on the spectrum!

Fermi-Polaron Gas (Chevy)

Comparison of Polaron Model with Measurements

$$
h\Delta\upsilon_{\text{dimer}} = E_{b12} - E_{b13} \qquad h\Delta\upsilon_{\text{polaron}} = E_{p12} - E_{p13}
$$

Thermodynamics—Spin Imbalance

Measure Column Density:

$$
n_c(x) = \int_{-\infty}^{\infty} dy \, n_{2D}(\sqrt{x^2 + y^2})
$$

Transverse Density Profiles: $n^{\,}_{2D}(\rho)$

Column Densities versus N_2/N_1

Quasi- 2D Fermi Gas Temperature

$$
n_{2D}^{(n)}(\rho) = \frac{2N}{\pi R^2} \widetilde{T} \ln \left[\frac{1 + e^{[\widetilde{\mu}_n - \widetilde{U}(\rho)]/\widetilde{T}}}{1 + e^{[\widetilde{\mu}_n - \widetilde{U}_0]/\widetilde{T}}} \right]
$$

Total 2D-Density
\n
$$
n(\rho) = \sum_{n} n_{2D}^{(n)}(\rho)
$$

Normalization determines μ_0

Fit Column Density:

$$
n_c(x) = \int_{-\infty}^{\infty} dy \, n(\sqrt{x^2 + y^2})
$$

Quasi-2D Fermi Gas Spatial Profiles

Majority and Minority Radii

Majority and Minority Radii

2D-Polaron Thermodynamics PINS

Free energy density of imbalanced gas:
$$
f = \frac{1}{2}n_1\varepsilon_{F1} + \frac{1}{2}n_2\varepsilon_{F2} + n_2E_p(2)
$$

\nPolaron energy: $E_p(2) = y_m(q_1)\varepsilon_{F1}$ Ideal Fermi gas *Minority Polaron*
\nEnergy
\n
$$
\varepsilon_{F1} = \frac{2\pi h^2}{m}n_1
$$
\n
$$
q_1 = \frac{\varepsilon_{F1}}{E_b}
$$
\n
$$
y_m(q_1) = \frac{-2}{\log(1+2q_1)}
$$
\nKlawunn and Recati 2011
\nChemical potentials: $\frac{\partial f}{\partial t} = \mu_{12} - U(\rho)$, $\frac{\partial f}{\partial t} = \mu_{23} - U(\rho)$

Chemical potentials: $\frac{\partial J}{\partial n_1} = \mu_1 = \mu_{10} - U(\rho), \quad \frac{\partial J}{\partial n_2} = \mu_2 = \mu_{20} - U(\rho)$

Pressure: $p = n_1 \mu_1 + n_2 \mu_2 - f$

Majority and Minority Radii

Predicted Density Profiles

Transition to a Balanced Core?

$$
\underline{\text{Balanced Core 2D-Profile:}} \quad \Delta n_{2D}(\rho) = A \Theta[\rho - R] \Theta[R_1 - \rho](1 - \rho^2 / R_1^2)
$$
\n
$$
\underline{\text{balanced core } \rho < R}
$$

2D-Central Density Ratio

- Polaron model
- Ideal gas

• Transition to balanced core: • Not predicted!

- BCS theory for a true 2D system fails in the quasi-2D regime.
- 2D polaron model explains several features of the density profiles in the quasi-2D regime.
- 2D polaron model with the analytic approximation is too crude to predict the transition to a balanced core.
- Measurements with imbalanced mixtures provide the first benchmarks for predictions of the phase diagram for quasi-2D Fermi gases.