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Essence	
  of	
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  problem:	
  charge	
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  quantum	
  number	
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  ? ?
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  zero	
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Topological States in a One-Dimensional Fermi Gas with Attractive Interactions

Jonathan Ruhman, Erez Berg and Ehud Altman
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

We describe a novel topological superfluid state, which forms in a one-dimensional Fermi gas with
Rashba-like spin-orbit coupling, a Zeeman field and intrinsic attractive interactions. In spite of
total number conservation and the presence of gapless excitations, Majorana-like zero modes appear
in this system and can be linked with interfaces between two distinct phases that naturally form
at di↵erent regions of the harmonic trap. As a result, the low lying collective excitations of the
system, including the dipole oscillations and the long-wavelength phonons, are doubly degenerate.
While backscattering from point impurities can lead to a splitting of the degeneracies that scales
algebraically with the system size, the smooth confining potential can only cause an exponentially
small splitting. We show that the topological state can be uniquely probed by a pumping e↵ect
induced by a slow sweep of the Zeeman field from a high initial value down to zero field.

Introduction.— Recent experiments with semiconduct-
ing nanowires have shown possible signatures of Majo-
rana zero modes, the hallmarks of a topological super-
conducting state, localized at the ends of the wires [1, 2].
The two key ingredients required to realize such topo-
logical states are a single particle dispersion a↵ected by
spin-orbit coupling and a Zeeman field, and pairing cor-
relations induced by proximity coupling to an s-wave su-
perconductor [3, 4].

Systems of ultracold atoms o↵er a high degree of con-
trollability, and are therefore attractive as platforms for
realizing Majorana zero modes [5]. E↵ective spin-orbit
coupling and Zeeman field can also be generated in sys-
tems of ultra-cold atoms confined to one dimension[6–9].
However, in this case it is much more di�cult to induce
pairing correlations externally. This naturally leads to
the following basic question: can intrinsic attractive in-
teractions (generated naturally in atomic systems with
Feshbach resonances) lead to a topological phase and Ma-
jorana zero modes without externally induced pairing?

If the system was two or three dimensional then attrac-
tive interactions, naturally generated in atomic systems
with Feshbach resonances, would give rise to a Bardeen-
Cooper-Schrie↵er (BCS) pairing gap equivalent to that
induced by proximity to a bulk superconductor. But this
is not the case in the one-dimensional system in ques-
tion, where long range order superfluid order is impossi-
ble. Nevertheless, it was shown in Refs. [10, 11] that
proximity coupling of two independent spin orbit cou-
pled wires to a single one-dimensional superconducting
wire with quasi-long range pairing correlations would re-
tain a Majorana-like ground state degeneracy. The ques-
tion remains if a single, isolated wire can sustain similar
topological zero modes due to the intrinsic attractive in-
teractions.

In this paper we use an e↵ective field theory to answer
this question and characterize the emergent low energy
modes. We show that this system can exhibit Majorana-
like degeneracies in spite of having no proximity coupling
to an external pairing field. The zero modes are associ-

ated with interfaces between distinct phases that may
form in di↵erent regions of the trap due to the spatial
variation of the chemical potential. We term ”topologi-
cal” the phase established where the chemical potential
is inside the Zeeman gap. This phase supports gapless
single-fermion excitations. In other regions the attrac-
tive interactions dominate and generate a gap to single-
fermion excitations. The Majorana-like quasi-zero modes
occur in a configuration, as illustrated in Fig. 1.a, which
includes at least two “topological” regions. The physical
picture and observable consequences of the zero modes
in this charge conserving system, which emerge from
our exact analysis, are notably di↵erent from previous
mean field studies [12, 13]. We show how to probe the
zero modes and expose their topological origin through a
pumping phenomena induced by a quasi-adiabatic sweep
of the Zeeman field.
Model — We consider a one dimensional Fermi gas with
spin-orbit coupling, a Zeeman field and short ranged at-
tractive interactions described by the following Hamilto-
nian

H =

Z
dx
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Here  
�

annihilates a fermion with spin � =", #,  T =
( ", #), m is the particle mass, ↵ the spin-orbit coupling
strength, µ the chemical potential, �

z

is an e↵ective Zee-
man field, V (x) = m⌦2x2/2 is the parabolic trapping
potential, and U > 0 is the interaction strength.
The parabolic trap potential can be thought of as a

position dependent chemical potential. We consider fill-
ing the system to a point that the chemical potential in
the middle of the trap is located above the Zeeman gap
and continuously decreases towards the flanks. In the
usual case where there is a small proximity induced s-
wave pairing field � < �

z

, the spatially dependent chem-
ical potential tunes the system from a trivial state in the
middle of the trap to two topological states on the sides
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single	
  fermion	
  gap	
  

no	
  single	
  
fermion	
  gap	
  

1.  Topological	
  (Majorana-­‐like)	
  ground	
  state	
  degeneracy	
  	
  
associated	
  with	
  exchanging	
  parity	
  between	
  “topo”	
  domains	
  

2.  Observe	
  through	
  a	
  novel	
  topological	
  pumping	
  	
  
induced	
  by	
  slow	
  sweep	
  of	
  the	
  Zeeman	
  field	
  

“Topo”	
   trivial	
   “Topo”	
  

Z2	
  subgroup	
  of	
  spin-­‐symmetry	
  remains:	
  spin-­‐parity	
  =	
  fermion	
  parity.	
  
Integerness	
  of	
  the	
  spin	
  (integer	
  /	
  half-­‐integer)	
  is	
  a	
  good	
  quantum	
  number	
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FIG. 1. (a) A one dimensional Fermi gas with synthetic spin-orbit coupling, a Zeeman field and attractive interactions in a
one dimensional harmonic trap. Majorana zero modes are localized at the interface between topological and trivial regions,
approximately where the chemical potential dips below the Zeeman gap at wave vector q = 0. Two topological segments
enumerated by I and II form when the chemical potential at the center of the trap is set to be larger than the Zeeman splitting.
When the segments are close to each other there is a finite probability, �, to switch parity between them. (b) The Rashba-like
dispersion at µ = 0 and �

z

= 0 showing our notations of the four modes crossing the Fermi energy. The black arrows denote
the spin orientation of the helical modes. (c) Schematic depiction of the energy spectrum showing the topological degeneracies.
The low energy excitations associated with dipole oscillations in the trap are spaced by the trap frequency ⌦ ⇠ 1/L as in a
conventional system. However, the ground state as well as the collective excitations are doubled (up to the exponentially small
splitting) because of a topological degeneracy associated with switching fermion parity between the ’topological’ segments.

which further transform to trivial states at the ends of
the system (see Fig. 1.a). An alternative way to tune the
system between the same two phases, is by varying the
ratio of �/�

z

, while keeping the chemical potential fixed
in the middle of the gap. The topological phase is estab-
lished in the region where �/�

z

< 1. This way of tuning
proves to be a convenient theoretical tool in deriving the
universal low energy theory of the system.

Low energy theory.— As a preparatory step consider an
infinite homogenous wire described by the Hamiltonian
(1) with µ = 0. It is convenient to formulate the long
wavelength theory starting from the case with �

z

= 0.
Then we have four fermion modes crossing the Fermi en-
ergy, R

a

and L
a

, as shown in Fig. 1.b. a = 0, 2 labels
the modes at k = 0 and k = ±2k0 ⌘ ±2m↵ respectively.
Next, we Bosonize the four chiral modes at k = 0,±2k0:
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⇥(x�x0), F0,2 are Klein factors
to set the Fermionic anti-commutation relations between
the modes and ⇢0 is the average density.

The Hamiltonian (1) written in terms of the bosonic
fields includes, as usual, a quadratic (Luttinger liq-
uid) part due to the kinetic energy and forward scat-
tering channel of the interaction. On the other hand
the Zeeman term and the BCS channel of the attrac-
tive interactions give rise to the respective cosine termsR
dx [g
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2⇡ (at weak coupling). Note that
the cosine terms a↵ect both of Luttinger liquid modes 0
and 2. However, we can simplify the situation by means

of the following canonical transformation:

�+ = �0 + �2

✓+ = ✓2
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✓� = ✓0 � ✓2
,

In this representation the two modes are decoupled in the
low energy limit[14] and the Hamiltonian takes the form
H = H+ +H�, with

H+ =
u+

2⇡

Z
dx


K+(@x✓+)

2 +
1

K+
(@

x

�+)
2

�
(2)

H� =
u�
2⇡

Z
dx


K�(@x✓�)

2 +
1

K�
(@

x

��)
2

�
(3)

�
Z

dx [g
z

cos 2�� + g
i

cos 2✓�] ,

and where u± andK± are the renormalized velocities and
Luttinger parameters in the two channels. The Hamil-
tonian H+ describes a single gapless phonon mode cor-
responding to fluctuations of the total charge @

x

�+ =
@
x

(�0 + �2). H� is generically gapped by the cosine
terms; it realizes one of two distinct phases separated by
a critical point. Which of the two phases is established
depends on which one of the two cosine terms is larger
and dominates the physics.
The ‘trivial’ phase is established when the interaction

dominates and ✓� is pinned to 0 or ⇡ by the correspond-
ing cosine term. This phase is adiabatically connected
to the conventional spin-gapped Luther-Emery liquid,
which forms in a one dimensional Fermi gas with spin
symmetry and attractive interactions. In our case, the
spin symmetry is broken by the Zeeman and spin-orbit
couplings. But because the Zeeman field can only change
the spin by integer values, while the total spin can be ei-
ther integer or half integer, it leaves a residual Z2 fermion

(gapless	
  phonons)	
  

Spin	
  density	
  

2

FIG. 1. (a) A one dimensional Fermi gas with synthetic spin-orbit coupling, a Zeeman field and attractive interactions in a
one dimensional harmonic trap. Majorana zero modes are localized at the interface between topological and trivial regions,
approximately where the chemical potential dips below the Zeeman gap at wave vector q = 0. Two topological segments
enumerated by I and II form when the chemical potential at the center of the trap is set to be larger than the Zeeman splitting.
When the segments are close to each other there is a finite probability, �, to switch parity between them. (b) The Rashba-like
dispersion at µ = 0 and �

z

= 0 showing our notations of the four modes crossing the Fermi energy. The black arrows denote
the spin orientation of the helical modes. (c) Schematic depiction of the energy spectrum showing the topological degeneracies.
The low energy excitations associated with dipole oscillations in the trap are spaced by the trap frequency ⌦ ⇠ 1/L as in a
conventional system. However, the ground state as well as the collective excitations are doubled (up to the exponentially small
splitting) because of a topological degeneracy associated with switching fermion parity between the ’topological’ segments.

which further transform to trivial states at the ends of
the system (see Fig. 1.a). An alternative way to tune the
system between the same two phases, is by varying the
ratio of �/�

z

, while keeping the chemical potential fixed
in the middle of the gap. The topological phase is estab-
lished in the region where �/�

z

< 1. This way of tuning
proves to be a convenient theoretical tool in deriving the
universal low energy theory of the system.

Low energy theory.— As a preparatory step consider an
infinite homogenous wire described by the Hamiltonian
(1) with µ = 0. It is convenient to formulate the long
wavelength theory starting from the case with �

z

= 0.
Then we have four fermion modes crossing the Fermi en-
ergy, R

a

and L
a

, as shown in Fig. 1.b. a = 0, 2 labels
the modes at k = 0 and k = ±2k0 ⌘ ±2m↵ respectively.
Next, we Bosonize the four chiral modes at k = 0,±2k0:
R

a

⇠ F
a

p
⇢0

2⇡ ei(✓a��

a

), L
a

⇠ F
a

p
⇢0

2⇡ ei(✓a+�

a

), where
the commutation relations of the Bosonic fields are given
by [�

a

(x), ✓
b

(x0)] = i⇡ �
a,b

⇥(x�x0), F0,2 are Klein factors
to set the Fermionic anti-commutation relations between
the modes and ⇢0 is the average density.

The Hamiltonian (1) written in terms of the bosonic
fields includes, as usual, a quadratic (Luttinger liq-
uid) part due to the kinetic energy and forward scat-
tering channel of the interaction. On the other hand
the Zeeman term and the BCS channel of the attrac-
tive interactions give rise to the respective cosine termsR
dx [g

z

cos 2�0 + g
i

cos 2 (✓0 � ✓2)], with the coe�cients

g
i

⇡ ⇢

2
0U

(2⇡)2 and g
z

⇡ ⇢0 �

z

2⇡ (at weak coupling). Note that
the cosine terms a↵ect both of Luttinger liquid modes 0
and 2. However, we can simplify the situation by means

of the following canonical transformation:

�+ = �0 + �2

✓+ = ✓2

�� = �0

✓� = ✓0 � ✓2
,

In this representation the two modes are decoupled in the
low energy limit[14] and the Hamiltonian takes the form
H = H+ +H�, with

H+ =
u+

2⇡

Z
dx


K+(@x✓+)

2 +
1

K+
(@

x

�+)
2

�
(2)

H� =
u�
2⇡

Z
dx


K�(@x✓�)

2 +
1

K�
(@

x

��)
2

�
(3)

�
Z

dx [g
z

cos 2�� + g
i

cos 2✓�] ,

and where u± andK± are the renormalized velocities and
Luttinger parameters in the two channels. The Hamil-
tonian H+ describes a single gapless phonon mode cor-
responding to fluctuations of the total charge @

x

�+ =
@
x

(�0 + �2). H� is generically gapped by the cosine
terms; it realizes one of two distinct phases separated by
a critical point. Which of the two phases is established
depends on which one of the two cosine terms is larger
and dominates the physics.
The ‘trivial’ phase is established when the interaction

dominates and ✓� is pinned to 0 or ⇡ by the correspond-
ing cosine term. This phase is adiabatically connected
to the conventional spin-gapped Luther-Emery liquid,
which forms in a one dimensional Fermi gas with spin
symmetry and attractive interactions. In our case, the
spin symmetry is broken by the Zeeman and spin-orbit
couplings. But because the Zeeman field can only change
the spin by integer values, while the total spin can be ei-
ther integer or half integer, it leaves a residual Z2 fermion
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FIG. 1. (a) A one dimensional Fermi gas with synthetic spin-orbit coupling, a Zeeman field and attractive interactions in a
one dimensional harmonic trap. Majorana zero modes are localized at the interface between topological and trivial regions,
approximately where the chemical potential dips below the Zeeman gap at wave vector q = 0. Two topological segments
enumerated by I and II form when the chemical potential at the center of the trap is set to be larger than the Zeeman splitting.
When the segments are close to each other there is a finite probability, �, to switch parity between them. (b) The Rashba-like
dispersion at µ = 0 and �

z

= 0 showing our notations of the four modes crossing the Fermi energy. The black arrows denote
the spin orientation of the helical modes. (c) Schematic depiction of the energy spectrum showing the topological degeneracies.
The low energy excitations associated with dipole oscillations in the trap are spaced by the trap frequency ⌦ ⇠ 1/L as in a
conventional system. However, the ground state as well as the collective excitations are doubled (up to the exponentially small
splitting) because of a topological degeneracy associated with switching fermion parity between the ’topological’ segments.

which further transform to trivial states at the ends of
the system (see Fig. 1.a). An alternative way to tune the
system between the same two phases, is by varying the
ratio of �/�

z

, while keeping the chemical potential fixed
in the middle of the gap. The topological phase is estab-
lished in the region where �/�

z

< 1. This way of tuning
proves to be a convenient theoretical tool in deriving the
universal low energy theory of the system.

Low energy theory.— As a preparatory step consider an
infinite homogenous wire described by the Hamiltonian
(1) with µ = 0. It is convenient to formulate the long
wavelength theory starting from the case with �

z

= 0.
Then we have four fermion modes crossing the Fermi en-
ergy, R

a

and L
a

, as shown in Fig. 1.b. a = 0, 2 labels
the modes at k = 0 and k = ±2k0 ⌘ ±2m↵ respectively.
Next, we Bosonize the four chiral modes at k = 0,±2k0:
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the commutation relations of the Bosonic fields are given
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a
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b

(x0)] = i⇡ �
a,b

⇥(x�x0), F0,2 are Klein factors
to set the Fermionic anti-commutation relations between
the modes and ⇢0 is the average density.

The Hamiltonian (1) written in terms of the bosonic
fields includes, as usual, a quadratic (Luttinger liq-
uid) part due to the kinetic energy and forward scat-
tering channel of the interaction. On the other hand
the Zeeman term and the BCS channel of the attrac-
tive interactions give rise to the respective cosine termsR
dx [g
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cos 2 (✓0 � ✓2)], with the coe�cients
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and 2. However, we can simplify the situation by means
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In this representation the two modes are decoupled in the
low energy limit[14] and the Hamiltonian takes the form
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and where u± andK± are the renormalized velocities and
Luttinger parameters in the two channels. The Hamil-
tonian H+ describes a single gapless phonon mode cor-
responding to fluctuations of the total charge @
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�+ =
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(�0 + �2). H� is generically gapped by the cosine
terms; it realizes one of two distinct phases separated by
a critical point. Which of the two phases is established
depends on which one of the two cosine terms is larger
and dominates the physics.
The ‘trivial’ phase is established when the interaction

dominates and ✓� is pinned to 0 or ⇡ by the correspond-
ing cosine term. This phase is adiabatically connected
to the conventional spin-gapped Luther-Emery liquid,
which forms in a one dimensional Fermi gas with spin
symmetry and attractive interactions. In our case, the
spin symmetry is broken by the Zeeman and spin-orbit
couplings. But because the Zeeman field can only change
the spin by integer values, while the total spin can be ei-
ther integer or half integer, it leaves a residual Z2 fermion
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2.	
  Zeeman	
  dominated	
  -­‐	
  unpaired	
  

•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
•  Gapless	
  single	
  fermion	
  excitaJons	
  

hei��i ⇡ ±1

1.	
  InteracJon	
  dominated	
  -­‐	
  paired	
  

•  The	
  “spin-­‐	
  ½”	
  field	
  is	
  pinned	
  
(+1	
  and	
  -­‐1	
  are	
  gauge	
  equivalent,	
  not	
  disJnct	
  states)	
  	
  

•  Gap	
  to	
  single	
  fermion	
  excitaJons	
  (“spin-­‐gap”)	
  

hei✓�i ⇡ ±1



	
  Degeneracy	
  in	
  a	
  harmonic	
  trap	
  

•  Degenerate	
  ground	
  states	
  are	
  related	
  by	
  transferring	
  a	
  	
  
spin	
  ½	
  (single	
  fermion)	
  between	
  topological	
  domains.	
  

•  BackscaKering	
  by	
  local	
  impuriJes	
  splits	
  the	
  degeneracy	
  
Fidkowski	
  et.	
  al.	
  PRB	
  2011;	
  Sau	
  et.	
  al.	
  PRB	
  2011	
  

•  But	
  with	
  smooth	
  potenJal	
  only	
  exponenJally	
  small	
  spliing.	
  	
  

PA = hcos[✓�(x2)� ✓�(x1)]i = ±1

x1	
   x2	
  

A	
   B	
  

Fermion	
  parity	
  of	
  region	
  A:	
  	
  

✓�(x2)� ✓�(x1) = ⇡

Z
x2

x1

dx [n"(x)� n#(x)] = ⇡ (N
A" �N

A#)

spin	
  ½	
  	
  

ଵܲ ଶܲ

ܴଶܮଶ
଴ܴ଴ܮ

ଵݔ

Fidkowski et al PRB (2011)

ଶݔ

Lifting of degeneracy by backscattering

2݇ி backscattering potential:

ଵܸ,ଶܮଶାܴ଴ .ܪ+ ׽.ܿ ଵܸ,ଶ݁௜ ఏష ௫భ,మ ାథశ ௫భ,మ .ܪ+ ܿ.

Degeneracy lifting: ઢ۳ ׽ כ૚ࢂ ૛ࢂ
૚

૛࢞૚ି࢞ ࢻ + .ࢉ .ࢉ

Sau et al PRB (2011)

Vortex tunneling “measures” the fermion parity



�1 �2 �3 �4

�1 �4

�1 �2 �3 �4

Probing	
  the	
  topological	
  state:	
  quanJzed	
  pumping	
  in	
  the	
  trap	
  
Slow	
  sweep	
  of	
  the	
  Zeeman	
  field	
  from	
  high	
  value	
  to	
  zero.	
  
IniJal	
  state	
  with	
  even	
  parJcle	
  number:	
  

Odd	
  iniJal	
  state:	
  generate	
  1	
  fermion	
  

In	
  the	
  sweep	
  we	
  generate	
  0	
  or	
  2	
  gapped	
  fermions!	
  

QuanJzed	
  excess	
  energy	
  per	
  sweep	
  for	
  random	
  even/odd	
  iniJal	
  state.	
  	
  

| i = |0, 0i

| i = 1p
2
|0, 0i+ 1p

2
|1, 1i

�z � ✏SO

�z = 0



Summary	
  of	
  this	
  part	
  

•  Zero	
  modes	
  naturally	
  occur	
  in	
  a	
  SO-­‐coupled	
  Fermi	
  cold	
  gas.	
  	
  
But	
  different	
  from	
  the	
  Kitaev	
  wire.	
  

•  Probed	
  by	
  a	
  novel	
  topological	
  pump.	
  

•  Protected	
  at	
  low	
  T	
  by	
  the	
  spin	
  gap	
  in	
  
	
  the	
  non	
  topological	
  domains.	
  
(coupling	
  to	
  phonons	
  is	
  irrelevant	
  	
  
at	
  low	
  energy)	
  

�1 �2 �3 �4

�1 �4

�1 �2 �3 �4

spin	
  ½	
  	
  





Many-­‐Body	
  localiza9on:	
  new	
  insights	
  
from	
  theory	
  and	
  experiment	
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  foundaJon	
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  Luschen,	
  Ulrich	
  Schneider,	
  Immanuel	
  Bloch	
  (LMU)	
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ConvenJonal	
  wisdom:	
  	
  
Quantum	
  mechanics	
  is	
  manifest	
  only	
  close	
  to	
  the	
  ground	
  state	
  

Fermi	
  liquid:	
  

Quantum	
  Hall	
  effect:	
   Topological	
  insulators:	
  

Quantum	
  criJcal	
  points	
  



Ergodicity	
  is	
  the	
  enemy	
  of	
  quantum	
  mechanics	
  

Classical	
  hydrodynamic	
  
descripJon	
  (e.g.	
  diffusion).	
  

Quantum	
  informaJon	
  stored	
  in	
  local	
  
objects	
  is	
  rapidly	
  lost	
  as	
  these	
  get	
  
entangled	
  with	
  the	
  rest	
  of	
  the	
  system.	
  

The	
  only	
  remaining	
  structures	
  of	
  
informaJon	
  are	
  slow	
  order	
  parameter	
  
fields	
  and	
  conserved	
  densiJes.	
  

Many-­‐body	
  Jme	
  evoluJon	
  washes	
  
away	
  quantum	
  correlaJons.	
  

To	
  see	
  quantum	
  phenomena	
  at	
  long	
  Jmes	
  need	
  breaking	
  of	
  ergodicity!	
  



Well	
  known	
  example:	
  integrability	
  

Failure	
  to	
  thermalize	
  due	
  to	
  constraints	
  imposed	
  by	
  
many	
  conservaJon	
  rules	
  

Quantum	
  newton’s	
  cradle	
  experiment	
  with	
  cold	
  atoms.	
  
Weiss,	
  Nature	
  2010	
  

But	
  integrability	
  is	
  fragile!	
  Only	
  special	
  points	
  in	
  parameter	
  space.	
  
Are	
  there	
  more	
  generic	
  non-­‐thermal	
  states?	
  

p	
  

n(p)	
  



Anderson	
  localizaJon	
  

Single	
  parJcle	
  (Anderson	
  1958):	
  

Vanishing	
  probability	
  of	
  resonances.	
  	
  

At	
  high	
  energies	
  interacJon	
  connects	
  between	
  ~2L	
  localized	
  states	
  !	
  
Can	
  localizaJon	
  survive	
  ?	
  

Uc†↵c
†
�c�c�Many	
  parJcle	
  states:	
  



Many-­‐Body	
  LocalizaJon	

Basko,	
  Aleiner,	
  Altshuler	
  (2005);	
  Gornyi,	
  Mirlin,	
  Polyakov	
  (2005):	
  	
  
InsulaJng	
  phase	
  stable	
  below	
  a	
  criJcal	
  T	
  or	
  E;	
  metal	
  above	
  it.	
  	
  

System	
  with	
  bounded	
  spectrum:	
  Disorder	
  tuned	
  transiJon	
  at    𝑇=∞  	
  	
  
Oganesyan	
  and	
  Huse	
  (2007),	
  Pal	
  and	
  Huse	
  (2010)	
  

delocalized	
  
thermalizing	
  

Localized	
  (κ =0,	
  σ =0)	
  
non	
  ergodic	
  phase	
  

𝑇=∞	
  

Disorder	
  strength	
  

T,	
  E	
  

Nature	
  of	
  the	
  dynamics	
  in	
  the	
  localized	
  phase?	
  	
  
At	
  the	
  criJcal	
  point?	
  Experiments?	
  

Many	
  quesJons:	
  



The	
  eignestate	
  perspecJve:	
  
Eigenstate	
  thermalizaJon	
  hypothesis	
  (ETH)	
  

L	
  

A	
  

High	
  energy	
  eigenstate	
  of	
  an	
  ergodic	
  	
  
system	
  appears	
  thermal:	
  

⇢A =
1

ZA
e��HA

Anderson	
  localizaJon	
  is	
  
an	
  example	
  where	
  ETH	
  fails:	
  	
  

L	
  

SA / Ld�1
“Area	
  law”	
  entropy	
  even	
  in	
  high	
  
energy	
  eigenstates	
  

Many	
  body	
  localizaJon	
  =	
  stability	
  of	
  such	
  localized	
  states	
  to	
  interacJons	
  

Deutsch	
  91,	
  Srednicki	
  94	
  

Von-­‐Neuman	
  (entanglement)	
  entropy:	
  

SA ⌘ tr [⇢A ln ⇢A] / Ld



A	
  tale	
  of	
  two	
  paradigms	
  
ThermalizaJon	
  

Classical	
  hydro	
  descripJon	
  of	
  remaining	
  
slow	
  modes	
  (conserved	
  quanJJes,	
  and	
  
order	
  parameters).	
  

Quantum	
  correlaJons	
  in	
  local	
  d.o.f	
  are	
  
rapidly	
  lost	
  as	
  these	
  get	
  entangled	
  with	
  
the	
  rest	
  of	
  the	
  system.	
  	
  

Many-­‐body	
  localizaJon	
  

Need	
  a	
  fully	
  quantum	
  descripJon	
  	
  
of	
  the	
  long	
  Jme	
  dynamics!	
  

Local	
  quantum	
  informaJon	
  	
  
persists	
  indefinitely.	
  

?	
  

elusive	
  interface	
  between	
  	
  
quantum	
  and	
  classical	
  worlds	
  

The	
  many-­‐body	
  	
  
localizaJon	
  transiJon	
  	
   =	
  



The	
  eigenstate	
  perspecJve	
  
Thermalizing	
  

Energy	
  eigenstates	
  are	
  	
  
highly	
  entangled:	
  

SA ⇠ Ld

Many-­‐body	
  localized	
  

?	
  

Eigenstates	
  have	
  low	
  
entanglement	
  

SA ⇠ Ld�1 (area	
  law)	
  (volume	
  law)	
  

LocalizaJon	
  transiJon:	
  fundamental	
  change	
  in	
  entanglement	
  paKern.	
  
More	
  radical	
  than	
  in	
  any	
  other	
  phase	
  transiJon	
  we	
  know	
  !	
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  SoluJon	
  of	
  Jme	
  evoluJon	
  

Dynamical quantum phase transitions in random spin chains

Ronen Vosk and Ehud Altman
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Quantum spin chains and related systems undergo interesting phase transitions in their ground
states. The transition of the transverse-field Ising model from a paramagnet to a magnetically
ordered state is a paradigmatic example of a quantum critical point. On the other hand, quantum
time evolution of the same systems involves all energies and it is therefore thought to be much
harder, if at all possible, to have sharp transitions in the dynamics. In this paper we show that
the non-equilibrium dynamics of random spin chains do exhibit phase transitions characterized by
universal singularities. The sharpness of the transitions and integrity of the phases owes to many-
body localization, which prevents thermalization in these systems. Using a renormalization group
approach, we solve the time evolution of random Ising spin chains with generic interactions starting
from initial states of arbitrary energy. As a function of the Hamiltonian parameters, the system is
tuned through a dynamical transition, similar to the ground state critical point, at which the local
spin correlations establish true long range temporal order. In the state with dominant transverse
field, a spin that starts in an up state loses its orientation with time, while in the ”ordered” state
it never does. As in ground state quantum phase transitions, the dynamical transition has unique
signatures in the entanglement properties of the system. When the system is initialized in a product
state the entanglement entropy grows as log(t) in the two ”phases”, while at the critical point it
grows as log

↵(t), with ↵ a universal number. This universal entanglement growth requires generic
(”integrability breaking”) interactions to be added to the pure transverse field Ising model.

Closed systems evolving with Hamiltonian dynamics,
are commonly thought to settle to a thermal equilibrium
consistent with the energy density in the initial state.
Any sharp transition associated with the long time be-
havior of observables must in this case correspond to clas-
sical thermal phase transitions in the established thermal
ensemble. Accordingly in one dimension where thermal
transitions do not occur, dynamical transitions are not
expected either.

But systems with strong disorder may behave di↵er-
ently. Anderson conjectured already in his original paper
on localization, that closed systems of interacting parti-
cles or spins with su�ciently strong disorder would fail to
come to equilibrium[1]. Recently, Basko et. al. [2] gave
new arguments to revive this idea of many-body localiza-
tion, which has since received further support from the-
ory and numerics[3–7]. An important point for our dis-
cussion is that localized eigenstates, even at macroscopic
energies are akin to quantum ground states in their en-
tanglement properties[7, 8]. In particular, it was pointed
out in Ref. 8, that localized eigenstates can sustain long
range order and undergo phase transitions that would
not occur in a finite temperature equilibrium ensemble.
But a theory of such dynamical transitions is lacking.

In this paper we develop a theory of such a transition
in the non-equilibrium dynamics of random Ising spin
chains with generic interactions
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X
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⇥
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are uncorrelated random variables
and . . . represents other possible interaction terms that
respect the Z

2

symmetry of the model. For simplicity
of the later analysis we take the distributions of coupling

constants to be symmetric around zero. Without the last
term, Jx

i

, the hamiltonian can be mapped to a system of
non-interacting Fermions. We include the coupling Jx

i

to add interactions between the fermions and thereby
make the system generic. We shall assume throughout
that the interactions are weak, so that almost always
Jx
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⌧ Jz

i

, h
i

h
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.

The transverse field Ising model (1) undergoes a
ground state quantum phase transition controlled by an
infinite randomness fixed point [9]. The transition sep-
arates between a quantum paramagnet obtained when
the transverse field is the dominant coupling and a spin
ordered state established when the Ising coupling Jz is
dominant. Recently, it was pointed out that this tran-
sition can also occur in eigenstates with arbitrarily high
energy, provided that the system is in the many-body
localized phase. Here we develop a theory of the non-
equilibrium transition, focusing on the universal singular
e↵ects it has on the time evolution of the system in pres-
ence of generic interactions.

We shall describe the time evolution of the system
starting from initial states of arbitrarily high energy.
Specifically, we take random Ising configurations of the
spins in the Sz basis, such as | 

in

i = | ""#", . . . ##" i .
The theoretical analysis relies on the strong disorder real
space RG approach (SDRG) [10, 11], which we recently
extended to address the quantum time evolution of ran-
dom systems[7]. The properties of the transition are elu-
cidated by tracking the time evolution of two quantities:
spin correlations and entanglement entropy.

First, we show that the spin auto correlation function
C

z

(t) = h 
in

|Sz

i

(t)Sz

i

(0) | 
in

i decays as a power-law in
the paramagnetic phase, whereas it saturates to a posi-

| 0i =

Pick	
  out	
  largest	
  couplings	
  	
   ⌦ = max (Jz
i , hi)

Short	
  Jmes	
  (t	
  ≈1/Ω):	
  System	
  evolves	
  according	
  to	
  Hfast	
  

Other	
  spins	
  essenJally	
  frozen	
  on	
  this	
  Jmescale.	



Hfast	



Longer	
  Jmes	
  (t	
  >>1/Ω):	
  Eliminate	
  fast	
  modes	
  (order	
  Ω)	
  perturbaJvely	
  
to	
  obtain	
  effecJve	
  evoluJon	
  for	
  longer	
  Jmescales.	



R.	
  Vosk	
  and	
  EA	
  PRL	
  (2013);	
  PRL	
  (2014)	
  

Similar	
  to	
  standard	
  strong	
  disorder	
  RG,	
  Dasgupta-­‐Ma	
  (1980),	
  D.	
  Fisher	
  (1992)	
  
But	
  here	
  we	
  target	
  low	
  frequency	
  instead	
  of	
  low	
  absolute	
  	
  energy	
  



Outcome	
  of	
  RG:	
  integrals	
  of	
  moJon	
  =	
  (frozen	
  spins)	
  

Example:	
  strong	
  transverse	
  field	
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In	
  this	
  RG	
  scheme	
  degrees	
  of	
  freedom	
  are	
  not	
  eliminated	
  but	
  rather	
  frozen	
  into	
  
quasi-­‐local	
  integrals	
  of	
  mo<on:	
  	
  

R.	
  Vosk	
  and	
  EA	
  PRL	
  (2013);	
  PRL	
  (2014);	
  Pekker,	
  Refael	
  et.	
  al.	
  PRX	
  (2014)	
  



EffecJve	
  Hamiltonian	
  (fixed	
  point	
  theory)	
  

Independently	
  postulated	
  as	
  a	
  phenomenological	
  descripJon	
  of	
  the	
  
many-­‐body	
  localized	
  phase.	
  
Oganesyan	
  &	
  Huse	
  (2013);	
  Serbyn,	
  Papic	
  &	
  Abanin	
  (2013)	
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Depends	
  only	
  on	
  the	
  quasi-­‐local	
  integrals	
  of	
  moJon:	
  

Surprisingly	
  rich	
  dynamics	
  in	
  MBL	
  phase:	
  
•  Slow	
  log(t)	
  growth	
  of	
  the	
  entanglement	
  entropy.	
  
•  Quantum	
  coherence	
  revealed	
  by	
  spin	
  echoes	
  
•  DisJnct	
  localized	
  phases	
  (glassy,	
  paramagneJc,	
  topological	
  …)	
  

This	
  scheme	
  cannot	
  access	
  the	
  localizaJon	
  phase	
  transiJon!	
  



Theory	
  of	
  the	
  many-­‐body	
  localizaJon	
  transiJon	
  

Spin	
  chain	
  fragmented	
  into	
  puddles	
  of	
  different	
  types:	
  
incipient	
  insulators	
  and	
  incipient	
  metals.	
  	
  	
  
Modeled	
  as	
  coupled	
  random	
  matrices:	
   �i,�i

��1
i = ⌧i Time	
  for	
  entanglement	
  to	
  spread	
  across	
  the	
  block	
  

�i Mean	
  level	
  spacing	
  in	
  the	
  block	
  

gi ⌧ 1 gi � 1 “thermalizing	
  block”	
  “insulaJng	
  block”	
  

(Wigner-­‐Dyson	
  staJsJcs)	
  (Poisson	
  level	
  staJsJcs)	
  

gi = �i/�i

RG	
  flow:	
  iKeraJvely	
  join	
  matrices	
  that	
  entangle	
  with	
  each	
  other	
  at	
  
running	
  cutoff	
  scale.	
  At	
  the	
  end	
  of	
  the	
  flow	
  we	
  are	
  leU	
  with	
  one	
  big	
  
block	
  that	
  is	
  either	
  insulaJng	
  or	
  thermalizing	
  	
  	
  

Vosk,	
  Huse	
  and	
  E.A.	
  arXiv:1412.3117	
  



Outcome	
  of	
  the	
  RG	
  flow	
  

1Γ

1g
2Γ

2g
3Γ

3g
4Γ

4g
5Γ

5g

12Γ 12g 23Γ 23g 34Γ 34g 45Γ 45g

hlo
g
gi

MBL	
  

hlog g0i = 1

-­‐2	
  

criJcal	
  

L 
Next,	
  characterize	
  the	
  transiJon:	
  	
  
(i)	
  in	
  terms	
  of	
  dynamics;	
  (ii)	
  in	
  terms	
  of	
  eigenstate	
  entanglement	
  



RG	
  results	
  I	
  –	
  dynamical	
  scaling	
  for	
  transport	
  
RelaJon	
  between	
  transport	
  Jme	
  τtr	
  	
  and	
  length	
  l	
  of	
  blocks:	
  

l

⌧tr = l2Diffusion:	
   ltr = (D⌧)1/2

12

the main text.

Having located the critical point we can turn to charac-
terize the critical flow. Infinite randomness critical points
are usually characterized by (i) how the scaling variables
(associated with coupling constants) and their standard
deviations scale with the block length l, and (ii) how the
block length scales with the logarithm of the energy cut-
o↵ � = log(⌦

0

/⌦).

Fig. 5 clearly shows a linear dependence of the scaling
variable � = log(⌦/�

link

), associated with the link en-
tanglement rates, and of its standard deviation ��, with
the block length l. The same linear scaling behavior is
seen for � log (g). The length time scaling at the critical
point is shown in Fig. 6(b), showing a linear dependence
of l on �, that is, a logarithmic dependence on the time.

These results indicate a di↵erent class of infinite ran-
domness critical point from the famous cases of the ran-
dom singlet phase and the random transverse field Ising
model considered by Fisher [23, 31]. Specifically, at
Fisher’s fixed point the RG flow parameter � scales with
l as � ⇠ l with  = 1/2, while in our case  = 1.

Appendix C: Length time scaling

In Fig. 6 we present the length vs. time scaling ex-
tracted from the RG calculation. The lines show the
average block length l versus the time-scale given by the
inverse of the cuto↵ frequency t = ⌦�1. As explained in
the main text this scale corresponds to the time for entan-
glement spreading. Therefore the power-laws fitted in the
delocalized phase give the dynamical exponent for entan-
glement growth ↵

ent

. To obtain the transport exponent
↵ shown in Fig. 2(b) of the main text we use the scaling
relation derived in the main text ↵ = ↵

ent

/(1+↵
ent

). We
note that at the critical point and the localized phase, i.e.
for log(g

0

)  log(g
0c

) ⇡ �1.75, the exponent vanishes
and the dependence becomes instead logarithmic growth
of entanglement with time.

We can ask how the dynamical exponent ↵ or ↵
ent

vanishes as g
0

approaches g
0c

. The plot of ↵
ent

versus
(g

0

� g
0c

) on a log-log plot, computed using the RG on
systems of varying sizes is shown in Fig. 7. These re-
sults are consistent with the expected ↵

ent

⇠ (g
0

�g
0c

)⌫ ;
they are not consistent with the naive Gri�ths scaling
↵
naive

⇠ (g
0

� g
0c

)2. Note that to obtain the asymptotic
behavior of ↵ near the critical point we must satisfy two
requirements. First is to get su�ciently close to the crit-
ical point in order to be in the critical scaling regime.
Second, the sub-di↵usive transport is a property of the
Gri�ths phase, thus for given value of the tuning param-
eter g

0

�g
0c

in the scaling regime we must obtain ↵ from
system sizes that are much larger than the long correla-
tion length ⇠ = c(g0 � g

0c

)�⌫ . For this reason we only
show here results for systems larger than 10000 initial
blocks.

FIG. 6. Length time scaling computed from the RG flow.

Appendix D: Entanglement entropy distributions

In this appendix we show examples of the entangle-
ment entropy distributions computed using the RG flow
applied to an ensemble of disorder realizations. Fig. 8
shows four distributions taken respectively from the lo-
calized phase, the critical point, the Gri�ths phase and
the di↵usive regime for long chains with L/l

0

= 10000.
In the localized phase the entanglement entropy follows
an area law, therefore the distribution of the specific en-
tropy s = S/S

T

is concentrated near zero, with the tail
of the distribution consistent with a simple exponential.
At the critical point the entanglement entropy shows a
broad distribution that is consistent with a power law
P
c

(s) ⇠ 1/s⇣ with ⇣ ⇠= 0.9. In the Gri�ths phase the
distribution has a relatively narrow peak near the ther-
mal value. Finally, in the di↵usive phase the distribution

FIG. 7. Vanishing of the dynamical exponent ↵ent near the
critical point plotted on a log-log plot. The result is consistent
with ↵ ⇠ (g0 � g0c)

⌫ but also suggests that the systems we
calculate are not deep inside the critical scaling regime for
this quantity.

Delocalized,	
  but	
  not	
  diffusion	
  
↵ <

1

2



RG	
  results	
  I	
  –	
  dynamical	
  scaling	
  for	
  transport	
  
RelaJon	
  between	
  transport	
  Jme	
  τtr	
  	
  and	
  length	
  l	
  of	
  blocks:	
  

Surprise!	
  The	
  transiJon	
  is	
  from	
  	
  
localized	
  to	
  anomalous	
  diffusion.	
  

Seen	
  also	
  in	
  recent	
  ED	
  studies:	
  	
  
Bar-­‐Lev	
  et	
  al	
  2014;	
  Agarwal	
  et	
  al	
  2014	
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Result	
  of	
  Griffiths	
  effects.	
  long	
  insulaJng	
  inclusions	
  inside	
  the	
  metal	
  are	
  exponenJally	
  
rare	
  but	
  give	
  exponenJally	
  large	
  contribuJon	
  to	
  the	
  transport	
  Jme.	
  	
  

l � ⇠ � l
o

RelaxaJon	
  with	
  slow	
  power-­‐law	
  tails	
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Eigenstate	
  entanglement	
  turns	
  out	
  to	
  be	
  the	
  natural	
  
scaling	
  variable	
  of	
  this	
  RG	
  scheme	
  !	
  

g12

SE(L/2) ⇠ log2 [g(L) + 1]

•  Infinite	
  randomness	
  fixed	
  point	
  characterized	
  by	
  broad	
  entanglement	
  distribuJon	
  

•  Universal	
  jump	
  to	
  full	
  thermal	
  entropy 	
  	
  	
  	
  the	
  Griffiths	
  phase	
  is	
  thermal	
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perfect	
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Experimental	
  study	
  of	
  MBL:	
  	
  
fermions	
  in	
  a	
  quasi-­‐random	
  opJcal	
  laice	
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Expansion	
  in	
  disordered	
  potenJal	
  	
  

Anderson	
  localizaJon:	
  

Previous	
  experiments	
  

Many-­‐body	
  localizaJon	
  (?):	
  
Transport	
  in	
  a	
  trap	
  (response	
  to	
  impulse)	
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Previous	
  experiments	
  
Many	
  body	
  localizaJon	
  (?)	
  :	
  

In-­‐trap	
  transport	
  (following	
  impulse)	
  

The	
  Problems	
  with	
  such	
  a	
  global	
  probe:	
  
	
  

•  Very	
  slow	
  probe	
  (finite	
  size	
  Jme	
  scale	
  by	
  definiJon)	
  
•  SensiJve	
  to	
  inhomogeneity.	
  	
  
	
  	
  	
  	
  	
  e.g.	
  MoD	
  shells	
  can	
  block	
  transport	
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Our	
  solu<on:	
  Use	
  a	
  fast	
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Quantum	
  quench	
  protocol	
  

1.  Fermions	
  in	
  opJcal	
  laice	
  prepared	
  in	
  period-­‐2	
  CDW	
  

	
  
2.  Evolve	
  the	
  state	
  with	
  the	
  1d	
  laice	
  Hamiltonian:	
  

e	
   e	
   e	
  e	
  e	
  o	
   o	
   o	
  o	
  

classical physics.
While Anderson localization of non-interacting particles has been

experimentally observed in a range of systems, including light scatter-
ing from semiconductor powders in 3D [31, 32, 33], photonic lattices in
1D [34] and 2D [35] and cold atoms in random [36] and quasi-random
[37] disorder, the interacting case has proven more elusive. Initial exper-
iments with interacting systems have focused on the superfluid [38, 40]
or metal [39] to insulator transition in the ground state. Evidence for in-
hibited macroscopic mass transport was reported even at elevated tem-
peratures [39], but is hard to distinguish from exponentially slow motion
expected from conventional activated transport or effects stemming from
the inhomogeneity of the cloud. A conclusive indication of many-body
localization at finite energy density is still lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-random lattice potential. We identify the many-body
localized phase by monitoring the time evolution of local observables
following a quench of system parameters. Specifically, we prepare a
high-energy initial state with strong charge density wave (CDW) order
(as shown in Fig. 1A) and measure the relaxation of this charge density
wave in the ensuing unitary evolution. Our main observable is the im-
balance I between the respective atom numbers on even (Ne) and odd
(No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the CDW will quickly
relax to zero in the thermalizing case, this is not true in a localized sys-
tem, where ergodicity is broken and the system cannot act as its own
heat bath (Fig. 1B) [41]. Intuitively, if the system is strongly localized,
all particles will stay close to their original positions during time evolu-
tion, thus only smearing out the CDW little. A longer localization length
will lead to a lower saturation value of the CDW. The stationary value
of the CDW thus effectively serves as an order parameter of the MBL
phase and allows us to map the phase boundary between the ergodic and
non-ergodic phases in the parameter space of interaction versus disorder
strength. In particular, if the localization length becomes large com-
pared to the lattice constant, then the CDW vanishes as I / 1/⇠2 [43].
In contrast to previous experiments, which studied the effect of disorder
on the global expansion dynamics [36, 37, 38, 39, 40], the CDW order
parameter acts as a purely local probe, directly captures the ergodicity
breaking and is insensitive to effects stemming from the global inhomo-
geneity of the trapped system.

Our system can be described by the one-dimensional fermionic
Aubry-André model [42] with interactions [41], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, with the ratio of lattice periodicities �, disorder
strength � and phase offset �. Lastly, U represents the on-site interac-
tion energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator (see Fig.
1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge density
wave, consisting of a Fermi gas with atoms only occupying even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential for vari-
able times, after which the relative imbalance I between atoms on odd and even
sites is measured. Experimental time traces (circles) and DMRG calculations for
a homogeneous system (lines) are shown for various disorder strengths �. The
evolution time is given in units of the tunneling time. Each datapoint denotes
the average of six different realizations of the disorder potential and the errorbars
show the standard deviation. The shaded region indicates the time window used
to characterise the stationary imbalance in the rest of the analysis.

Figure 3: Stationary values of the imbalance I as a function of disorder � for
non-interacting atoms, with the Aubry-André transition around � = 2. To avoid
any interaction effects, only a single spin component was used. Circles show the
experimental data, along with exact diagonalization (ED) calculations including
trap effects (red line) and, additionally, lattice inhomogeneity (grey shaded area).
The inset shows experimental time traces (circles) for non-interacting atoms, as
in Fig. 2, plus ED results incorporating trap effects and lattice inhomogeneity
(shaded regions).

This quasi-random model is special in that, for certain classes of
irrational � [43, 44], above a critical disorder strength �/J = 2 all sin-
gle particle states become localized [42] and the now finite localization
length decreases monotonically for stronger disorders. Such a transition
was indeed observed experimentally in a non-interacting bosonic gas
[37]. In contrast, truly random disorder will lead to single-particle lo-
calization in one dimension for arbitrarily small disorder strengths. Pre-
vious numerical work indicates many-body localization in quasi-random
systems to be similar to that obtained for a truly random potential [41].
Localization persists for all interaction strengths – even those larger than

2

classical physics.
While Anderson localization of non-interacting particles has been

experimentally observed in a range of systems, including light scatter-
ing from semiconductor powders in 3D [31, 32, 33], photonic lattices in
1D [34] and 2D [35] and cold atoms in random [36] and quasi-random
[37] disorder, the interacting case has proven more elusive. Initial exper-
iments with interacting systems have focused on the superfluid [38, 40]
or metal [39] to insulator transition in the ground state. Evidence for in-
hibited macroscopic mass transport was reported even at elevated tem-
peratures [39], but is hard to distinguish from exponentially slow motion
expected from conventional activated transport or effects stemming from
the inhomogeneity of the cloud. A conclusive indication of many-body
localization at finite energy density is still lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-random lattice potential. We identify the many-body
localized phase by monitoring the time evolution of local observables
following a quench of system parameters. Specifically, we prepare a
high-energy initial state with strong charge density wave (CDW) order
(as shown in Fig. 1A) and measure the relaxation of this charge density
wave in the ensuing unitary evolution. Our main observable is the im-
balance I between the respective atom numbers on even (Ne) and odd
(No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the CDW will quickly
relax to zero in the thermalizing case, this is not true in a localized sys-
tem, where ergodicity is broken and the system cannot act as its own
heat bath (Fig. 1B) [41]. Intuitively, if the system is strongly localized,
all particles will stay close to their original positions during time evolu-
tion, thus only smearing out the CDW little. A longer localization length
will lead to a lower saturation value of the CDW. The stationary value
of the CDW thus effectively serves as an order parameter of the MBL
phase and allows us to map the phase boundary between the ergodic and
non-ergodic phases in the parameter space of interaction versus disorder
strength. In particular, if the localization length becomes large com-
pared to the lattice constant, then the CDW vanishes as I / 1/⇠2 [43].
In contrast to previous experiments, which studied the effect of disorder
on the global expansion dynamics [36, 37, 38, 39, 40], the CDW order
parameter acts as a purely local probe, directly captures the ergodicity
breaking and is insensitive to effects stemming from the global inhomo-
geneity of the trapped system.

Our system can be described by the one-dimensional fermionic
Aubry-André model [42] with interactions [41], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, with the ratio of lattice periodicities �, disorder
strength � and phase offset �. Lastly, U represents the on-site interac-
tion energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator (see Fig.
1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge density
wave, consisting of a Fermi gas with atoms only occupying even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential for vari-
able times, after which the relative imbalance I between atoms on odd and even
sites is measured. Experimental time traces (circles) and DMRG calculations for
a homogeneous system (lines) are shown for various disorder strengths �. The
evolution time is given in units of the tunneling time. Each datapoint denotes
the average of six different realizations of the disorder potential and the errorbars
show the standard deviation. The shaded region indicates the time window used
to characterise the stationary imbalance in the rest of the analysis.

Figure 3: Stationary values of the imbalance I as a function of disorder � for
non-interacting atoms, with the Aubry-André transition around � = 2. To avoid
any interaction effects, only a single spin component was used. Circles show the
experimental data, along with exact diagonalization (ED) calculations including
trap effects (red line) and, additionally, lattice inhomogeneity (grey shaded area).
The inset shows experimental time traces (circles) for non-interacting atoms, as
in Fig. 2, plus ED results incorporating trap effects and lattice inhomogeneity
(shaded regions).

This quasi-random model is special in that, for certain classes of
irrational � [43, 44], above a critical disorder strength �/J = 2 all sin-
gle particle states become localized [42] and the now finite localization
length decreases monotonically for stronger disorders. Such a transition
was indeed observed experimentally in a non-interacting bosonic gas
[37]. In contrast, truly random disorder will lead to single-particle lo-
calization in one dimension for arbitrarily small disorder strengths. Pre-
vious numerical work indicates many-body localization in quasi-random
systems to be similar to that obtained for a truly random potential [41].
Localization persists for all interaction strengths – even those larger than
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the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator
(see Fig. 1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed
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Figure 4: Stationary imbalance for various interaction and disorder strengths. A: Stationary Imbalance I as a function of interactions U and disorder strength
�. Moderate interactions reduce the degree of localization compared to the non-interacting or strongly interacting cases. The white dotted lines are contours of equal
I, while the solid white line is the contour of I matching the Aubry-André transition (U = 0 and �/J = 2) extended to the interacting case. It indicates the MBL
transition. The green dot-dashed line shows the fitted minima of I for each � [36]. Each individual data point (vertices of the pseudo-color plot) is the average of the
same 12 parameters as in Fig. 3. The color of each square represents the average imbalance of the four points on the corners. All data taken with a doublon fraction
of ' 34 (2) %. B: Cuts along four different disorder strengths. The effect of interactions on the localization gives rise to a characteristic ’W’-shape. Solid lines are
the results of DMRG simulations for a single homogeneous tube. Error bars indicate the standard deviation of the mean.

observed experimentally in a non-interacting bosonic gas [31]. In con-
trast, truly random disorder will lead to single-particle localization in
one dimension already for arbitrarily small disorder strengths. Previ-
ous numerical work indicates many-body localization in quasi-random
systems to be similar to that obtained for a truly random potential [35].

Experiment We experimentally realize the Aubry-André model by
superimposing on the primary, short lattice (�s = 532 nm) a second,
incommensurate disorder lattice with �d = 738 nm (thus � = �s/�d ⇡
0.721) and control J , � and � via lattice depths and relative phase be-
tween the two lattices [36]. The interactions (U ) between atoms in the
two different spin states |"i and |#i are tuned via a magnetic Feshbach
resonance [36]. In total, this provides independent control of U , J and
� and enables us to continuously tune the system from an Anderson
insulator in the non-interacting case to the MBL regime for interacting
particles.

An additional long lattice (�l = 1064nm = 2�s) forms a period-
two superlattice [38, 39] together with the short lattice and is employed
during the preparation of the initial CDW state, and during detection
[36]. Deep lattices along the orthogonal directions (�? = 738nm
and V? = 36(1)ER), create an array of decoupled 1D tubes. Here,
ER = h2/

�
2m�2

lat
�

denotes the recoil energy, with h being Planck’s
constant, m the mass of the atoms and �lat the respective wavelength of
the lattice lasers.

We employ a two component degenerate Fermi gas of 40K atoms,
consisting of an equal mixture of 25-30 ⇥10

3 atoms in each of the two
lowest hyperfine states |F,mF i =

�� 9
2

,� 9

2

↵ ⌘ |#i and
�� 9
2

,� 7

2

↵ ⌘ |"i,
at an initial temperature of 0.24(2) TF , where TF is the Fermi tem-
perature. The atoms are initially prepared in a finite temperature band
insulating state [40] in the long and orthogonal lattices. We then split
each lattice site by ramping up the short lattice in a tilted configuration
[36] and subsequently ramp down the long lattice. This creates a charge
density wave, where there are no atoms on odd lattice sites but zero,
one or two atoms on each even site [39, 41]. This initial CDW is then

allowed to evolve for a given time in the 8.0(2)ER deep short lattice
at a specific interaction strength U in the presence of disorder �. In a
final step, we detect the number of atoms on even and odd lattice sites
by employing a band-mapping technique which maps them to different
bands of the superlattice [41, 36]. This allows us to directly measure the
imbalance I, as defined in Eq. (1).

Results We track the time evolution of the imbalance I for various in-
teractions U and disorder strengths � (see Fig. 2). At short times the im-
balance exhibits some dynamics consisting of a fast decay followed by a
few damped oscillations. After a few tunneling times ⌧ = h/(2⇡J) the
imbalance approaches a stationary value. In a clean system (�/J = 0)
and for weak disorder, the stationary value of the imbalance approaches
zero. For stronger disorder, however, this behaviour changes dramat-
ically and the imbalance attains a non-vanishing stationary value that
persists for all observation times. Since the imbalance must decay to
zero on approaching thermal equilibrium at these high energies, the non-
vanishing stationary value of I directly indicates non-ergodic dynamics.
Deep in the localized phase, where unbiased numerical Density-Matrix
Renormalisation Group (DMRG) calculations are feasible due to the
slow entanglement growth, we find the stationary value obtained in the
simulations to be in very good agreement with the experimental result.
These simulations were performed for a single homogeneous tube with-
out any trapping potentials [36]. The stronger damping of oscillations
observed in the experiment can be attributed to a dephasing caused by
variations in J between different 1D tubes [41, 36].

We experimentally observe an additional very slow decay of I
on a timescale of several hundred tunneling times for all interaction
strengths, which we attribute to the fact that our system is not per-
fectly closed due to small losses, technical heating and photon scattering
[42, 36]. Another potential mechanism for delocalization at long times
is related to the intrinsic SU(2) spin symmetry in our system [43]. How-
ever, for the relevant observation times our numerical simulations do not
indicate the presence of such a thermalization process.
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To characterize the dependence of the localization transition on U
and �, we focus on the stationary value of I, plotted in Fig. 3 for non-
interacting atoms and in Fig. 4 for interacting atoms. For non-interacting
atoms (Fig. 3), the measured imbalance is compatible with extended
states within the finite, trapped system for �/J . 2. Above the critical
point of the homogeneous Aubry-André model at �/J = 2 [37], how-
ever, the measured imbalance strongly increases as the single-particle
eigenstates become more and more localized. The observed transition
agrees well with our theoretical modeling including the harmonic trap
[36].
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Figure 5: Growth of entanglement entropy and corresponding slope. A:

DMRG results of the entanglement entropy growth for various interaction
strengths and �/J = 5. For long times, logarithmic growth characteristic of
interacting MBL states is visible. The experimentally used evolution times indi-
cated by the yellow shaded region are found to be in the region of logarithmic
growth. B: The slope of the logarithmic growth, extracted using linear fits up to
the longest simulated time (50 ⌧ ) in A, shows a non-monotonic dependence on
the interaction strength, which tracks the inverse of the steady state CDW value
(red line). Error bars reflect different initial starting times for the fit.

The addition of moderate interactions slightly reduces the degree
of localization compared to the non-interacting case, i.e. they decrease
the imbalance I and hence increase the critical value of � necessary to
cross the delocalization-localization transition (Fig. 4A and B). Impor-
tantly, we find that localization persists for all interaction strengths. For
a given disorder, the imbalance I decreases up to a value of U ⇠ 2�

before increasing again. For large |U |, the system even becomes more
localized than in the non-interacting case. This can be understood qual-
itatively by considering an initial state consisting purely of empty sites
and sites with two atoms (doublons): for sufficiently strong interactions,
isolated doublons represent stable quasiparticles as the two atoms cannot
separate and hence only tunnel with an effective second-order tunneling

rate of JD =

2J2

|U| ⌧ J [44, 45]. This strongly increases the effective
disorder / �/JD � �/J and promotes localization. In the experi-
ment, the initial doublon fraction is well below one [36] and the density
is finite, such that we observe a weaker effect. We find the localization
dynamics and the resulting stationary values to be symmetric around
U = 0, highlighting the dynamical U $ �U symmetry of the Hubbard
Hamiltonian for initially localized atoms [46]. The effect of interactions
can be seen in the contour lines (Fig. 4A, dotted white lines) as well
as directly in the characteristic ‘W’ shape of the imbalance at constant
disorder (Fig. 4B), demonstrating the re-entrant behaviour of the sys-
tem [22]. This behaviour extends to our best estimate of the localization
transition, which is shown in Fig. 4A as the solid white line.
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Figure 6: Stationary imbalance I as a function of interaction strength dur-

ing loading. Data taken with disorder �/J = 3. The loading interactions of
aload = �89(2) a

0

(attractive, where a
0

denotes Bohr’s radius), 0(1) a
0

(non-
interacting) and 142(1) a

0

(repulsive) correspond to initial doublon fractions of
51(1)%, 43(2)%, and 8(6)%, respectively [36]. Each I value is the average of the
same 12 parameters as in Fig. 3. Error bars show the standard deviation of the
mean. Solid lines are guides to the eye. The grey shaded area spans the limiting
cases of 0 and 50% doublons, simulated using DMRG for a single homogeneous
tube.

We can gain additional insight into how localization changes with
interaction strength by computing the growth of the entanglement en-
tropy between the two halves of the system during the dynamics, as
shown in Fig. 5A. For long times, we observe a logarithmic growth of
the entanglement entropy with time as S(t) = S

o↵set

+ s⇤ ln(t/⌧),
which is characteristic of the MBL phase [12, 13]. The slope s⇤ is
proportional to the bare localization length ⇠⇤, which in a weakly in-
teracting system in the localized phase corresponds to the single particle
localization length. In general, ⇠⇤ is the characteristic length over which
the effective interactions between the conserved local densities decay
[17, 18] and connects to the many-body localization length ⇠ deep in the
localized phase. In contrast to ⇠, however, ⇠⇤ is expected to remain finite
at the transition [23]. We find s⇤ to exhibit a broad maximum for inter-
mediate interaction strengths (Fig. 5B), corresponding to a maximum
in the thus inferred localization length. This maximum in turn leads to
a minimum in the CDW value. The characteristic ‘W’ shape in the im-
balance is thus directly connected to the maximum in the entanglement
entropy slope, as both are consequences of the maximum in localization
length. Equivalent information on the localization properties as obtained
from the entanglement entropy can be gained in experiments by moni-
toring the temporal decay of fluctuations around the stationary value of
the CDW [36]. While we do not have sufficient sensitivity to measure

4

To characterize the dependence of the localization transition on U
and �, we focus on the stationary value of I, plotted in Fig. 3 for non-
interacting atoms and in Fig. 4 for interacting atoms. For non-interacting
atoms (Fig. 3), the measured imbalance is compatible with extended
states within the finite, trapped system for �/J . 2. Above the critical
point of the homogeneous Aubry-André model at �/J = 2 [37], how-
ever, the measured imbalance strongly increases as the single-particle
eigenstates become more and more localized. The observed transition
agrees well with our theoretical modeling including the harmonic trap
[36].
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Figure 5: Growth of entanglement entropy and corresponding slope. A:

DMRG results of the entanglement entropy growth for various interaction
strengths and �/J = 5. For long times, logarithmic growth characteristic of
interacting MBL states is visible. The experimentally used evolution times indi-
cated by the yellow shaded region are found to be in the region of logarithmic
growth. B: The slope of the logarithmic growth, extracted using linear fits up to
the longest simulated time (50 ⌧ ) in A, shows a non-monotonic dependence on
the interaction strength, which tracks the inverse of the steady state CDW value
(red line). Error bars reflect different initial starting times for the fit.

The addition of moderate interactions slightly reduces the degree
of localization compared to the non-interacting case, i.e. they decrease
the imbalance I and hence increase the critical value of � necessary to
cross the delocalization-localization transition (Fig. 4A and B). Impor-
tantly, we find that localization persists for all interaction strengths. For
a given disorder, the imbalance I decreases up to a value of U ⇠ 2�

before increasing again. For large |U |, the system even becomes more
localized than in the non-interacting case. This can be understood qual-
itatively by considering an initial state consisting purely of empty sites
and sites with two atoms (doublons): for sufficiently strong interactions,
isolated doublons represent stable quasiparticles as the two atoms cannot
separate and hence only tunnel with an effective second-order tunneling

rate of JD =

2J2

|U| ⌧ J [44, 45]. This strongly increases the effective
disorder / �/JD � �/J and promotes localization. In the experi-
ment, the initial doublon fraction is well below one [36] and the density
is finite, such that we observe a weaker effect. We find the localization
dynamics and the resulting stationary values to be symmetric around
U = 0, highlighting the dynamical U $ �U symmetry of the Hubbard
Hamiltonian for initially localized atoms [46]. The effect of interactions
can be seen in the contour lines (Fig. 4A, dotted white lines) as well
as directly in the characteristic ‘W’ shape of the imbalance at constant
disorder (Fig. 4B), demonstrating the re-entrant behaviour of the sys-
tem [22]. This behaviour extends to our best estimate of the localization
transition, which is shown in Fig. 4A as the solid white line.
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Figure 6: Stationary imbalance I as a function of interaction strength dur-

ing loading. Data taken with disorder �/J = 3. The loading interactions of
aload = �89(2) a

0

(attractive, where a
0

denotes Bohr’s radius), 0(1) a
0

(non-
interacting) and 142(1) a

0

(repulsive) correspond to initial doublon fractions of
51(1)%, 43(2)%, and 8(6)%, respectively [36]. Each I value is the average of the
same 12 parameters as in Fig. 3. Error bars show the standard deviation of the
mean. Solid lines are guides to the eye. The grey shaded area spans the limiting
cases of 0 and 50% doublons, simulated using DMRG for a single homogeneous
tube.

We can gain additional insight into how localization changes with
interaction strength by computing the growth of the entanglement en-
tropy between the two halves of the system during the dynamics, as
shown in Fig. 5A. For long times, we observe a logarithmic growth of
the entanglement entropy with time as S(t) = S

o↵set

+ s⇤ ln(t/⌧),
which is characteristic of the MBL phase [12, 13]. The slope s⇤ is
proportional to the bare localization length ⇠⇤, which in a weakly in-
teracting system in the localized phase corresponds to the single particle
localization length. In general, ⇠⇤ is the characteristic length over which
the effective interactions between the conserved local densities decay
[17, 18] and connects to the many-body localization length ⇠ deep in the
localized phase. In contrast to ⇠, however, ⇠⇤ is expected to remain finite
at the transition [23]. We find s⇤ to exhibit a broad maximum for inter-
mediate interaction strengths (Fig. 5B), corresponding to a maximum
in the thus inferred localization length. This maximum in turn leads to
a minimum in the CDW value. The characteristic ‘W’ shape in the im-
balance is thus directly connected to the maximum in the entanglement
entropy slope, as both are consequences of the maximum in localization
length. Equivalent information on the localization properties as obtained
from the entanglement entropy can be gained in experiments by moni-
toring the temporal decay of fluctuations around the stationary value of
the CDW [36]. While we do not have sufficient sensitivity to measure
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Expect	
  them	
  to	
  decay	
  as:	
   1/(Ut)⇠0

Now, to find the time dependence of the CDW we should transform
back from the basis of �̃z

i eigenvalues to the basis of �z
i . This is achieved

with a rotation around the �̃y axis by ✓i

h�z
(t)i = Tr(⇢(t)�z

) = cos

2 ✓i + sin

2 ✓i
1

2

l(t)

2

l(t)X

n

cos(!nt). (28)

Hence, the fluctuations of the local imbalance between an even site and
neighboring odd site behaves as

��z
(t) ⇠ e� ln 2 l(t)/2 ⇠

⇣
1

Ut

⌘⇠ ln 2/2

, (29)

while the fluctuation of the global imbalance (CDW order) is further
suppressed by a factor of 1/

p
L

�I(t) ⇠ 1p
L

⇣
1

Ut

⌘⇠ ln 2/2

. (30)

We see that the decay of the fluctuations is intimately connected to the
log t growth of the entanglement entropy, as it also ‘measures’ the num-
ber of spins coupled through the interactions after time t.

The above analysis was of a simplified effective model. However
the main conclusions are supported by direct simulation of the Hubbard
model on the quasi-periodic lattice using time dependent DMRG. Fig.
12A shows the temporal noise of the of the imbalance as a function of
the time for different values of the interaction strength U/J . The fluctu-
ations are measured by averaging them over a time window of �t = 7/J
around the time t. The results fit well to a power law decay. Fig. 12B
compares the fitted exponent ⇠fluc to the slope of the entanglement log-
arithmic growth of the entanglement entropy showing the direct corre-
spondence between the two.

Thus we conclude that measurement of the temporal fluctuations of
the CDW order provides a viable experimental route to determine the lo-
calization length ⇠ and distinguish the many-body localized state from
an Anderson localized state of non-interacting particles. In the present
experiment, this is, however, not possible, as the automatic averaging
over many tubes suppresses the fluctuations below the resolution limit
after only few oscillations. For future experiments, a single tube, or
even single-site resolution would be desirable to overcome this limita-
tion. We also note that the temporal fluctuations of the expectation value
are different from shot to shot fluctuations at a given time which reflect
the quantum uncertainty of the observable and would be finite even in
the infinite time limit.
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Figure 12: Decay of imbalance oscillations and entanglement entropy growth.
A shows the time evolution of the imbalance with decreasing oscillation ampli-
tudes for different interaction strengths for a system with 30% doublons, ex-
hibiting a power law decay. B shows the connection of the decay exponents of
the imbalance oscillation amplitudes and the slope of the logarithmic growth of
entanglement entropy as a function of interaction strength.
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Temporal	
  fluctuaJons	
  carry	
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  growth	
  yet	
  are	
  measurable!	
  
But	
  will	
  require	
  experiment	
  with	
  single	
  site	
  resoluJon	
  

Let us calculate the reduced density matrix of the pseudo spin at site
i. The system starts the time evolution in a product state

| 
0

i =
X

�1,...,�l

l(t)Y

j=1

Aj
�i
|{�}i (23)

with Aj
" = cos(✓j/2) and Aj

# = sin(✓j/2). We can formally write the
time-dependent density matrix as

⇢̃(t) =
X

{�}

X

{�0}

l(t)Y

j

Aj
�j
(Aj

�0
j
)

⇤e�i(E[{�}]�E[{�0}]t)|{�}ih{�0}|.

(24)
Here, E[{�}] = P

i hi�i +
P

i,j Vij�i�j . We can now trace out all
but one site to obtain the reduced density matrix of a single pseudo-spin
at site i in the basis of the eigenvalues of �̃z

i :

⇢̃"" = cos

2 ✓i/2 (25)
⇢̃## = sin

2 ✓i/2 (26)

⇢̃"# = ⇢̃⇤#" = sin ✓i

2

4 1

Nf (t)

Nf (t)X

n=1

e�i!nt

3

5 , (27)

where !n = E[", {�}]� E[#, {�0}]. {�} and {�0} represent states of
all other sites except site i. The number of frequencies involved Nf (t) is
roughly 2

l(t), i.e. all possible interactions between the l(t) spins that are
significantly entangled with the observed spin at time t. More precisely,
the number of frequencies Nf (t) = eS(t) ⇡ es⇤ ln(Ut/~) measures the
size of the entangled Hilbert space at the observation time.

To find the time dependence of the CDW we have to transform back
from the basis of �̃z

i eigenvalues to the basis of �z
i . This is achieved

with a rotation around the �̃y axis by ✓i

h�z
(t)i = Tr(⇢(t)�z

) = cos

2 ✓i + sin

2 ✓i
1

Nf (t)

Nf (t)X

n=1

cos(!nt).

(28)
Hence, the fluctuations of the local imbalance between an even site and
neighboring odd site behaves as

��z
rms

(t) ⇠ e�
1
2S(t) ⇠

⇣ ~
Ut

⌘ 1
2 s⇤

, (29)

while the fluctuation of the global imbalance (CDW order) is further
suppressed by a factor of 1/

p
L

�I
rms

(t) ⇠ 1p
L

⇣ ~
Ut

⌘ 1
2 s⇤

. (30)

We see that the decay of the fluctuations is intimately connected to the
ln t/⌧ growth of the entanglement entropy, as it also ‘measures’ the
number of spins coupled through the interactions after time t.

0 5 10 15 20
U/J

E
nt

r.
 S

lo
pe

 ı
* /

 D
ec

ay
 E

xp
on

.

0.3

0.2

0.1

B

0.4

Entanglement Entropy Slope
Decay of Oscillations

101 4�101

Time (W)

A
10-1

5�10-1

O
sc

ill
at

io
n 

A
m

pl
itu

de
   

 rm
s

U/J = 2.5
U/J = 3.5
U/J = 4.0
U/J = 7.0

U/J = 1.0

U/J = 12.0

Figure 13: Decay of imbalance oscillations and entanglement entropy

growth. A shows the time evolution of the imbalance with decreasing oscillation
amplitudes for different interaction strengths for a system with 30% doublons,
exhibiting a power law decay. B shows the connection of the decay exponents of
the imbalance oscillation amplitudes and the slope of the logarithmic growth of
entanglement entropy as a function of interaction strength.

The above analysis is of a simplified effective model. However,
the main conclusions are supported by direct simulation of the Hub-
bard model on the quasi-periodic lattice using time dependent DMRG.
Fig. 13A shows the temporal noise of the imbalance as a function of the
time for different values of the interaction strength U/J . The fluctua-
tions are measured by averaging them over a time window of T = 7 ⌧
around the time t. The results fit well to a power law decay. Fig. 13B
compares the fitted exponent s⇤ to the slope of the logarithmic growth
of the entanglement entropy showing the direct correspondence between
the two.

Thus, we conclude that measurements of the temporal fluctuations
of the CDW order provide a viable experimental route to determine the
bare localization length ⇠⇤ and distinguish the many-body localized state
from an Anderson localized state of non-interacting particles. In the
present experiment, this is, however, not possible, as the unavoidable
averaging over many tubes suppresses the fluctuations below the detec-
tion limit after only few oscillations. For future experiments, a single
tube, or even single-site resolution would be desirable to overcome this
limitation. We also note that the temporal fluctuations of the expectation
value are different from shot-to-shot fluctuations at a given time which
reflect the quantum uncertainty of the observable and would be finite
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•  At	
  very	
  long	
  <mes,	
  both	
  atom	
  number	
  and	
  Imbalance	
  decay	
  to	
  zero.	
  
•  Photon	
  scaKering	
  /	
  Light	
  induced	
  collisions	
  
•  Coupling	
  between	
  tubes	
  /	
  influence	
  of	
  higher	
  bands	
  
•  Other	
  sources?	
  



Outlook	
  

•  Control	
  coupling	
  to	
  environment	
  

•  Address	
  criJcal	
  point:	
  finite	
  Jme	
  scaling	
  

•  Measure	
  local	
  observables:	
  fluctuaitons	
  

•  Two	
  and	
  three	
  dimensions	
  

•  True	
  disorder	
  
•  Measure	
  dynamic	
  response	
  

•  Topological-­‐localized	
  states	
  (?)	
  

Much	
  more	
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  done!	
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