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Semiconductor	  wire	  	  	  	  	  	  	  vs.	  	  	  	  	  	  SO	  coupled	  1d	  Fermi	  gas	  

S-‐wave	  superconductor	  

Majorana	  zero	  modes	  

Semiconductor	  wire	  

•  Proximity	  coupling	  to	  SC	  
•  Charge	  not	  conserved	  
•  Fully	  gapped	  

•  Similar	  single	  parJcle	  dispersion	  	  

•  Intrinsic	  aKracJve	  interacJon	  
•  Charge	  is	  conserved	  
•  Gapless	  phonon	  modes	  

Is	  there	  a	  topological	  state	  in	  the	  cold	  atomic	  system?	  	  
Protected	  zero	  modes?	  If	  yes,	  what	  is	  their	  experimental	  signature?	  

ACrac9ve	  Fermi-‐gas	  

Wang,	  et.	  al.	  (Jing	  Zhang’s)	  group	  	  PRL	  2012	  
Cheuk	  et.	  al.	  (Zwierlein’s	  group),	  PRL	  2012	  	  

Lutchyn	  et	  al	  PRL	  2010,	  Oreg	  et	  al	  PRL	  2010	  
+	  experiments	  at	  DelU,	  WIS,	  …	  

B	  



Essence	  of	  the	  problem:	  charge	  is	  a	  good	  quantum	  number	  

cold	  Fermi-‐gas	  ? ?

Majorana	  zero	  modes	  implies	  degeneracy	  	  
of	  ground	  states	  with	  different	  parJcle	  number:	  	  	  

But	  in	  a	  system	  with	  compressibility	  κ:	  

E(N + 1) = E(N)

E(N + 1)� E(N) =
1

L

Fidkowski,	  Lutchyn,	  Nayak,	  Fisher	  PRB	  2011;	  Sau,	  Halperin,	  Flensberg,	  Das	  Sarma	  PRB	  2011	  

Possible	  soluJon:	  1d	  semiconductors	  coupled	  to	  1d	  superconductor.	  
(Fidkowski	  et.	  al.	  2011)	  

SC	  

Semi-‐cond	   Semi-‐cond	  
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Topological States in a One-Dimensional Fermi Gas with Attractive Interactions

Jonathan Ruhman, Erez Berg and Ehud Altman
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

We describe a novel topological superfluid state, which forms in a one-dimensional Fermi gas with
Rashba-like spin-orbit coupling, a Zeeman field and intrinsic attractive interactions. In spite of
total number conservation and the presence of gapless excitations, Majorana-like zero modes appear
in this system and can be linked with interfaces between two distinct phases that naturally form
at di↵erent regions of the harmonic trap. As a result, the low lying collective excitations of the
system, including the dipole oscillations and the long-wavelength phonons, are doubly degenerate.
While backscattering from point impurities can lead to a splitting of the degeneracies that scales
algebraically with the system size, the smooth confining potential can only cause an exponentially
small splitting. We show that the topological state can be uniquely probed by a pumping e↵ect
induced by a slow sweep of the Zeeman field from a high initial value down to zero field.

Introduction.— Recent experiments with semiconduct-
ing nanowires have shown possible signatures of Majo-
rana zero modes, the hallmarks of a topological super-
conducting state, localized at the ends of the wires [1, 2].
The two key ingredients required to realize such topo-
logical states are a single particle dispersion a↵ected by
spin-orbit coupling and a Zeeman field, and pairing cor-
relations induced by proximity coupling to an s-wave su-
perconductor [3, 4].

Systems of ultracold atoms o↵er a high degree of con-
trollability, and are therefore attractive as platforms for
realizing Majorana zero modes [5]. E↵ective spin-orbit
coupling and Zeeman field can also be generated in sys-
tems of ultra-cold atoms confined to one dimension[6–9].
However, in this case it is much more di�cult to induce
pairing correlations externally. This naturally leads to
the following basic question: can intrinsic attractive in-
teractions (generated naturally in atomic systems with
Feshbach resonances) lead to a topological phase and Ma-
jorana zero modes without externally induced pairing?

If the system was two or three dimensional then attrac-
tive interactions, naturally generated in atomic systems
with Feshbach resonances, would give rise to a Bardeen-
Cooper-Schrie↵er (BCS) pairing gap equivalent to that
induced by proximity to a bulk superconductor. But this
is not the case in the one-dimensional system in ques-
tion, where long range order superfluid order is impossi-
ble. Nevertheless, it was shown in Refs. [10, 11] that
proximity coupling of two independent spin orbit cou-
pled wires to a single one-dimensional superconducting
wire with quasi-long range pairing correlations would re-
tain a Majorana-like ground state degeneracy. The ques-
tion remains if a single, isolated wire can sustain similar
topological zero modes due to the intrinsic attractive in-
teractions.

In this paper we use an e↵ective field theory to answer
this question and characterize the emergent low energy
modes. We show that this system can exhibit Majorana-
like degeneracies in spite of having no proximity coupling
to an external pairing field. The zero modes are associ-

ated with interfaces between distinct phases that may
form in di↵erent regions of the trap due to the spatial
variation of the chemical potential. We term ”topologi-
cal” the phase established where the chemical potential
is inside the Zeeman gap. This phase supports gapless
single-fermion excitations. In other regions the attrac-
tive interactions dominate and generate a gap to single-
fermion excitations. The Majorana-like quasi-zero modes
occur in a configuration, as illustrated in Fig. 1.a, which
includes at least two “topological” regions. The physical
picture and observable consequences of the zero modes
in this charge conserving system, which emerge from
our exact analysis, are notably di↵erent from previous
mean field studies [12, 13]. We show how to probe the
zero modes and expose their topological origin through a
pumping phenomena induced by a quasi-adiabatic sweep
of the Zeeman field.
Model — We consider a one dimensional Fermi gas with
spin-orbit coupling, a Zeeman field and short ranged at-
tractive interactions described by the following Hamilto-
nian

H =

Z
dx
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Here  
�

annihilates a fermion with spin � =", #,  T =
( ", #), m is the particle mass, ↵ the spin-orbit coupling
strength, µ the chemical potential, �

z

is an e↵ective Zee-
man field, V (x) = m⌦2x2/2 is the parabolic trapping
potential, and U > 0 is the interaction strength.
The parabolic trap potential can be thought of as a

position dependent chemical potential. We consider fill-
ing the system to a point that the chemical potential in
the middle of the trap is located above the Zeeman gap
and continuously decreases towards the flanks. In the
usual case where there is a small proximity induced s-
wave pairing field � < �

z

, the spatially dependent chem-
ical potential tunes the system from a trivial state in the
middle of the trap to two topological states on the sides
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single	  fermion	  gap	  

no	  single	  
fermion	  gap	  

1.  Topological	  (Majorana-‐like)	  ground	  state	  degeneracy	  	  
associated	  with	  exchanging	  parity	  between	  “topo”	  domains	  

2.  Observe	  through	  a	  novel	  topological	  pumping	  	  
induced	  by	  slow	  sweep	  of	  the	  Zeeman	  field	  

“Topo”	   trivial	   “Topo”	  

Z2	  subgroup	  of	  spin-‐symmetry	  remains:	  spin-‐parity	  =	  fermion	  parity.	  
Integerness	  of	  the	  spin	  (integer	  /	  half-‐integer)	  is	  a	  good	  quantum	  number	  



Low	  energy	  descripJon	  (BosonizaJon)	  
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Charge	  density	  

2

FIG. 1. (a) A one dimensional Fermi gas with synthetic spin-orbit coupling, a Zeeman field and attractive interactions in a
one dimensional harmonic trap. Majorana zero modes are localized at the interface between topological and trivial regions,
approximately where the chemical potential dips below the Zeeman gap at wave vector q = 0. Two topological segments
enumerated by I and II form when the chemical potential at the center of the trap is set to be larger than the Zeeman splitting.
When the segments are close to each other there is a finite probability, �, to switch parity between them. (b) The Rashba-like
dispersion at µ = 0 and �

z

= 0 showing our notations of the four modes crossing the Fermi energy. The black arrows denote
the spin orientation of the helical modes. (c) Schematic depiction of the energy spectrum showing the topological degeneracies.
The low energy excitations associated with dipole oscillations in the trap are spaced by the trap frequency ⌦ ⇠ 1/L as in a
conventional system. However, the ground state as well as the collective excitations are doubled (up to the exponentially small
splitting) because of a topological degeneracy associated with switching fermion parity between the ’topological’ segments.

which further transform to trivial states at the ends of
the system (see Fig. 1.a). An alternative way to tune the
system between the same two phases, is by varying the
ratio of �/�

z

, while keeping the chemical potential fixed
in the middle of the gap. The topological phase is estab-
lished in the region where �/�

z

< 1. This way of tuning
proves to be a convenient theoretical tool in deriving the
universal low energy theory of the system.

Low energy theory.— As a preparatory step consider an
infinite homogenous wire described by the Hamiltonian
(1) with µ = 0. It is convenient to formulate the long
wavelength theory starting from the case with �

z

= 0.
Then we have four fermion modes crossing the Fermi en-
ergy, R

a

and L
a

, as shown in Fig. 1.b. a = 0, 2 labels
the modes at k = 0 and k = ±2k0 ⌘ ±2m↵ respectively.
Next, we Bosonize the four chiral modes at k = 0,±2k0:
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⇥(x�x0), F0,2 are Klein factors
to set the Fermionic anti-commutation relations between
the modes and ⇢0 is the average density.

The Hamiltonian (1) written in terms of the bosonic
fields includes, as usual, a quadratic (Luttinger liq-
uid) part due to the kinetic energy and forward scat-
tering channel of the interaction. On the other hand
the Zeeman term and the BCS channel of the attrac-
tive interactions give rise to the respective cosine termsR
dx [g
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2⇡ (at weak coupling). Note that
the cosine terms a↵ect both of Luttinger liquid modes 0
and 2. However, we can simplify the situation by means

of the following canonical transformation:
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✓+ = ✓2

�� = �0

✓� = ✓0 � ✓2
,

In this representation the two modes are decoupled in the
low energy limit[14] and the Hamiltonian takes the form
H = H+ +H�, with
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and where u± andK± are the renormalized velocities and
Luttinger parameters in the two channels. The Hamil-
tonian H+ describes a single gapless phonon mode cor-
responding to fluctuations of the total charge @

x

�+ =
@
x

(�0 + �2). H� is generically gapped by the cosine
terms; it realizes one of two distinct phases separated by
a critical point. Which of the two phases is established
depends on which one of the two cosine terms is larger
and dominates the physics.
The ‘trivial’ phase is established when the interaction

dominates and ✓� is pinned to 0 or ⇡ by the correspond-
ing cosine term. This phase is adiabatically connected
to the conventional spin-gapped Luther-Emery liquid,
which forms in a one dimensional Fermi gas with spin
symmetry and attractive interactions. In our case, the
spin symmetry is broken by the Zeeman and spin-orbit
couplings. But because the Zeeman field can only change
the spin by integer values, while the total spin can be ei-
ther integer or half integer, it leaves a residual Z2 fermion

(gapless	  phonons)	  

Spin	  density	  

2

FIG. 1. (a) A one dimensional Fermi gas with synthetic spin-orbit coupling, a Zeeman field and attractive interactions in a
one dimensional harmonic trap. Majorana zero modes are localized at the interface between topological and trivial regions,
approximately where the chemical potential dips below the Zeeman gap at wave vector q = 0. Two topological segments
enumerated by I and II form when the chemical potential at the center of the trap is set to be larger than the Zeeman splitting.
When the segments are close to each other there is a finite probability, �, to switch parity between them. (b) The Rashba-like
dispersion at µ = 0 and �

z

= 0 showing our notations of the four modes crossing the Fermi energy. The black arrows denote
the spin orientation of the helical modes. (c) Schematic depiction of the energy spectrum showing the topological degeneracies.
The low energy excitations associated with dipole oscillations in the trap are spaced by the trap frequency ⌦ ⇠ 1/L as in a
conventional system. However, the ground state as well as the collective excitations are doubled (up to the exponentially small
splitting) because of a topological degeneracy associated with switching fermion parity between the ’topological’ segments.
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depends on which one of the two cosine terms is larger
and dominates the physics.
The ‘trivial’ phase is established when the interaction

dominates and ✓� is pinned to 0 or ⇡ by the correspond-
ing cosine term. This phase is adiabatically connected
to the conventional spin-gapped Luther-Emery liquid,
which forms in a one dimensional Fermi gas with spin
symmetry and attractive interactions. In our case, the
spin symmetry is broken by the Zeeman and spin-orbit
couplings. But because the Zeeman field can only change
the spin by integer values, while the total spin can be ei-
ther integer or half integer, it leaves a residual Z2 fermion
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	  Two	  phases	  of	  a	  spin-‐orbit	  coupled	  Fermi	  gas	  
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FIG. 1. (a) A one dimensional Fermi gas with synthetic spin-orbit coupling, a Zeeman field and attractive interactions in a
one dimensional harmonic trap. Majorana zero modes are localized at the interface between topological and trivial regions,
approximately where the chemical potential dips below the Zeeman gap at wave vector q = 0. Two topological segments
enumerated by I and II form when the chemical potential at the center of the trap is set to be larger than the Zeeman splitting.
When the segments are close to each other there is a finite probability, �, to switch parity between them. (b) The Rashba-like
dispersion at µ = 0 and �

z

= 0 showing our notations of the four modes crossing the Fermi energy. The black arrows denote
the spin orientation of the helical modes. (c) Schematic depiction of the energy spectrum showing the topological degeneracies.
The low energy excitations associated with dipole oscillations in the trap are spaced by the trap frequency ⌦ ⇠ 1/L as in a
conventional system. However, the ground state as well as the collective excitations are doubled (up to the exponentially small
splitting) because of a topological degeneracy associated with switching fermion parity between the ’topological’ segments.

which further transform to trivial states at the ends of
the system (see Fig. 1.a). An alternative way to tune the
system between the same two phases, is by varying the
ratio of �/�

z

, while keeping the chemical potential fixed
in the middle of the gap. The topological phase is estab-
lished in the region where �/�

z

< 1. This way of tuning
proves to be a convenient theoretical tool in deriving the
universal low energy theory of the system.

Low energy theory.— As a preparatory step consider an
infinite homogenous wire described by the Hamiltonian
(1) with µ = 0. It is convenient to formulate the long
wavelength theory starting from the case with �

z

= 0.
Then we have four fermion modes crossing the Fermi en-
ergy, R

a

and L
a

, as shown in Fig. 1.b. a = 0, 2 labels
the modes at k = 0 and k = ±2k0 ⌘ ±2m↵ respectively.
Next, we Bosonize the four chiral modes at k = 0,±2k0:
R
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p
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2⇡ ei(✓a��
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), L
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p
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), where
the commutation relations of the Bosonic fields are given
by [�

a

(x), ✓
b

(x0)] = i⇡ �
a,b

⇥(x�x0), F0,2 are Klein factors
to set the Fermionic anti-commutation relations between
the modes and ⇢0 is the average density.

The Hamiltonian (1) written in terms of the bosonic
fields includes, as usual, a quadratic (Luttinger liq-
uid) part due to the kinetic energy and forward scat-
tering channel of the interaction. On the other hand
the Zeeman term and the BCS channel of the attrac-
tive interactions give rise to the respective cosine termsR
dx [g

z

cos 2�0 + g
i

cos 2 (✓0 � ✓2)], with the coe�cients

g
i

⇡ ⇢

2
0U

(2⇡)2 and g
z

⇡ ⇢0 �

z

2⇡ (at weak coupling). Note that
the cosine terms a↵ect both of Luttinger liquid modes 0
and 2. However, we can simplify the situation by means

of the following canonical transformation:

�+ = �0 + �2

✓+ = ✓2

�� = �0

✓� = ✓0 � ✓2
,

In this representation the two modes are decoupled in the
low energy limit[14] and the Hamiltonian takes the form
H = H+ +H�, with
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and where u± andK± are the renormalized velocities and
Luttinger parameters in the two channels. The Hamil-
tonian H+ describes a single gapless phonon mode cor-
responding to fluctuations of the total charge @

x

�+ =
@
x

(�0 + �2). H� is generically gapped by the cosine
terms; it realizes one of two distinct phases separated by
a critical point. Which of the two phases is established
depends on which one of the two cosine terms is larger
and dominates the physics.
The ‘trivial’ phase is established when the interaction

dominates and ✓� is pinned to 0 or ⇡ by the correspond-
ing cosine term. This phase is adiabatically connected
to the conventional spin-gapped Luther-Emery liquid,
which forms in a one dimensional Fermi gas with spin
symmetry and attractive interactions. In our case, the
spin symmetry is broken by the Zeeman and spin-orbit
couplings. But because the Zeeman field can only change
the spin by integer values, while the total spin can be ei-
ther integer or half integer, it leaves a residual Z2 fermion
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dx cos(2✓�)� gz

Z
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2.	  Zeeman	  dominated	  -‐	  unpaired	  

•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
•  Gapless	  single	  fermion	  excitaJons	  

hei��i ⇡ ±1

1.	  InteracJon	  dominated	  -‐	  paired	  

•  The	  “spin-‐	  ½”	  field	  is	  pinned	  
(+1	  and	  -‐1	  are	  gauge	  equivalent,	  not	  disJnct	  states)	  	  

•  Gap	  to	  single	  fermion	  excitaJons	  (“spin-‐gap”)	  

hei✓�i ⇡ ±1



	  Degeneracy	  in	  a	  harmonic	  trap	  

•  Degenerate	  ground	  states	  are	  related	  by	  transferring	  a	  	  
spin	  ½	  (single	  fermion)	  between	  topological	  domains.	  

•  BackscaKering	  by	  local	  impuriJes	  splits	  the	  degeneracy	  
Fidkowski	  et.	  al.	  PRB	  2011;	  Sau	  et.	  al.	  PRB	  2011	  

•  But	  with	  smooth	  potenJal	  only	  exponenJally	  small	  spliing.	  	  

PA = hcos[✓�(x2)� ✓�(x1)]i = ±1

x1	   x2	  

A	   B	  

Fermion	  parity	  of	  region	  A:	  	  

✓�(x2)� ✓�(x1) = ⇡

Z
x2

x1

dx [n"(x)� n#(x)] = ⇡ (N
A" �N

A#)

spin	  ½	  	  

ଵܲ ଶܲ

ܴଶܮଶ
ܴܮ

ଵݔ

Fidkowski et al PRB (2011)

ଶݔ

Lifting of degeneracy by backscattering

2݇ி backscattering potential:

ଵܸ,ଶܮଶାܴ .ܪ+ .ܿ ଵܸ,ଶ݁ ఏష ௫భ,మ ାథశ ௫భ,మ .ܪ+ ܿ.

Degeneracy lifting: ઢ۳  כࢂ ࢂ


࢞ି࢞ ࢻ + .ࢉ .ࢉ

Sau et al PRB (2011)

Vortex tunneling “measures” the fermion parity



�1 �2 �3 �4

�1 �4

�1 �2 �3 �4

Probing	  the	  topological	  state:	  quanJzed	  pumping	  in	  the	  trap	  
Slow	  sweep	  of	  the	  Zeeman	  field	  from	  high	  value	  to	  zero.	  
IniJal	  state	  with	  even	  parJcle	  number:	  

Odd	  iniJal	  state:	  generate	  1	  fermion	  

In	  the	  sweep	  we	  generate	  0	  or	  2	  gapped	  fermions!	  

QuanJzed	  excess	  energy	  per	  sweep	  for	  random	  even/odd	  iniJal	  state.	  	  

| i = |0, 0i

| i = 1p
2
|0, 0i+ 1p

2
|1, 1i

�z � ✏SO

�z = 0



Summary	  of	  this	  part	  

•  Zero	  modes	  naturally	  occur	  in	  a	  SO-‐coupled	  Fermi	  cold	  gas.	  	  
But	  different	  from	  the	  Kitaev	  wire.	  

•  Probed	  by	  a	  novel	  topological	  pump.	  

•  Protected	  at	  low	  T	  by	  the	  spin	  gap	  in	  
	  the	  non	  topological	  domains.	  
(coupling	  to	  phonons	  is	  irrelevant	  	  
at	  low	  energy)	  

�1 �2 �3 �4

�1 �4

�1 �2 �3 �4

spin	  ½	  	  





Many-‐Body	  localiza9on:	  new	  insights	  
from	  theory	  and	  experiment	  

Minerva	  foundaJon	   ISF	  

Collaborators:	  	   	  Ronen	  Vosk,	  Mark	  Fischer	  (WIS),	  David	  Huse	  (Princeton)	  

Experiment:	   	  Michael	  Schreiber,	  Sean	  Hodgman,	  Pranjal	  Bordia,	  	  
	   	   	   	  Henrik	  Luschen,	  Ulrich	  Schneider,	  Immanuel	  Bloch	  (LMU)	  

Ehud	  Altman,	  Weizmann	  InsJtute	  of	  Science	  



ConvenJonal	  wisdom:	  	  
Quantum	  mechanics	  is	  manifest	  only	  close	  to	  the	  ground	  state	  

Fermi	  liquid:	  

Quantum	  Hall	  effect:	   Topological	  insulators:	  

Quantum	  criJcal	  points	  



Ergodicity	  is	  the	  enemy	  of	  quantum	  mechanics	  

Classical	  hydrodynamic	  
descripJon	  (e.g.	  diffusion).	  

Quantum	  informaJon	  stored	  in	  local	  
objects	  is	  rapidly	  lost	  as	  these	  get	  
entangled	  with	  the	  rest	  of	  the	  system.	  

The	  only	  remaining	  structures	  of	  
informaJon	  are	  slow	  order	  parameter	  
fields	  and	  conserved	  densiJes.	  

Many-‐body	  Jme	  evoluJon	  washes	  
away	  quantum	  correlaJons.	  

To	  see	  quantum	  phenomena	  at	  long	  Jmes	  need	  breaking	  of	  ergodicity!	  



Well	  known	  example:	  integrability	  

Failure	  to	  thermalize	  due	  to	  constraints	  imposed	  by	  
many	  conservaJon	  rules	  

Quantum	  newton’s	  cradle	  experiment	  with	  cold	  atoms.	  
Weiss,	  Nature	  2010	  

But	  integrability	  is	  fragile!	  Only	  special	  points	  in	  parameter	  space.	  
Are	  there	  more	  generic	  non-‐thermal	  states?	  

p	  

n(p)	  



Anderson	  localizaJon	  

Single	  parJcle	  (Anderson	  1958):	  

Vanishing	  probability	  of	  resonances.	  	  

At	  high	  energies	  interacJon	  connects	  between	  ~2L	  localized	  states	  !	  
Can	  localizaJon	  survive	  ?	  

Uc†↵c
†
�c�c�Many	  parJcle	  states:	  



Many-‐Body	  LocalizaJon	
Basko,	  Aleiner,	  Altshuler	  (2005);	  Gornyi,	  Mirlin,	  Polyakov	  (2005):	  	  
InsulaJng	  phase	  stable	  below	  a	  criJcal	  T	  or	  E;	  metal	  above	  it.	  	  

System	  with	  bounded	  spectrum:	  Disorder	  tuned	  transiJon	  at    𝑇=∞  	  	  
Oganesyan	  and	  Huse	  (2007),	  Pal	  and	  Huse	  (2010)	  

delocalized	  
thermalizing	  

Localized	  (κ =0,	  σ =0)	  
non	  ergodic	  phase	  

𝑇=∞	  

Disorder	  strength	  

T,	  E	  

Nature	  of	  the	  dynamics	  in	  the	  localized	  phase?	  	  
At	  the	  criJcal	  point?	  Experiments?	  

Many	  quesJons:	  



The	  eignestate	  perspecJve:	  
Eigenstate	  thermalizaJon	  hypothesis	  (ETH)	  

L	  

A	  

High	  energy	  eigenstate	  of	  an	  ergodic	  	  
system	  appears	  thermal:	  

⇢A =
1

ZA
e��HA

Anderson	  localizaJon	  is	  
an	  example	  where	  ETH	  fails:	  	  

L	  

SA / Ld�1
“Area	  law”	  entropy	  even	  in	  high	  
energy	  eigenstates	  

Many	  body	  localizaJon	  =	  stability	  of	  such	  localized	  states	  to	  interacJons	  

Deutsch	  91,	  Srednicki	  94	  

Von-‐Neuman	  (entanglement)	  entropy:	  

SA ⌘ tr [⇢A ln ⇢A] / Ld



A	  tale	  of	  two	  paradigms	  
ThermalizaJon	  

Classical	  hydro	  descripJon	  of	  remaining	  
slow	  modes	  (conserved	  quanJJes,	  and	  
order	  parameters).	  

Quantum	  correlaJons	  in	  local	  d.o.f	  are	  
rapidly	  lost	  as	  these	  get	  entangled	  with	  
the	  rest	  of	  the	  system.	  	  

Many-‐body	  localizaJon	  

Need	  a	  fully	  quantum	  descripJon	  	  
of	  the	  long	  Jme	  dynamics!	  

Local	  quantum	  informaJon	  	  
persists	  indefinitely.	  

?	  

elusive	  interface	  between	  	  
quantum	  and	  classical	  worlds	  

The	  many-‐body	  	  
localizaJon	  transiJon	  	   =	  



The	  eigenstate	  perspecJve	  
Thermalizing	  

Energy	  eigenstates	  are	  	  
highly	  entangled:	  

SA ⇠ Ld

Many-‐body	  localized	  

?	  

Eigenstates	  have	  low	  
entanglement	  

SA ⇠ Ld�1 (area	  law)	  (volume	  law)	  

LocalizaJon	  transiJon:	  fundamental	  change	  in	  entanglement	  paKern.	  
More	  radical	  than	  in	  any	  other	  phase	  transiJon	  we	  know	  !	  



Outline	  

•  New	  insights	  from	  theory	  
–  Dynamics	  in	  the	  many-‐body	  localized	  (MBL)	  phase	  
–  Phase	  transiJon	  from	  MBL	  to	  a	  thermal	  liquid	  

•  Confron9ng	  theory	  and	  experiment	  
CollaboraJon	  with	  I.	  Bloch’s	  	  LMU	  group,	  U.	  Schneider	  and	  co.	  	  
– MBL	  of	  fermions	  in	  quasi-‐periodic	  laice	  
–  Outlook	  to	  future	  experiments	  

	  



RG	  SoluJon	  of	  Jme	  evoluJon	  

Dynamical quantum phase transitions in random spin chains

Ronen Vosk and Ehud Altman
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Quantum spin chains and related systems undergo interesting phase transitions in their ground
states. The transition of the transverse-field Ising model from a paramagnet to a magnetically
ordered state is a paradigmatic example of a quantum critical point. On the other hand, quantum
time evolution of the same systems involves all energies and it is therefore thought to be much
harder, if at all possible, to have sharp transitions in the dynamics. In this paper we show that
the non-equilibrium dynamics of random spin chains do exhibit phase transitions characterized by
universal singularities. The sharpness of the transitions and integrity of the phases owes to many-
body localization, which prevents thermalization in these systems. Using a renormalization group
approach, we solve the time evolution of random Ising spin chains with generic interactions starting
from initial states of arbitrary energy. As a function of the Hamiltonian parameters, the system is
tuned through a dynamical transition, similar to the ground state critical point, at which the local
spin correlations establish true long range temporal order. In the state with dominant transverse
field, a spin that starts in an up state loses its orientation with time, while in the ”ordered” state
it never does. As in ground state quantum phase transitions, the dynamical transition has unique
signatures in the entanglement properties of the system. When the system is initialized in a product
state the entanglement entropy grows as log(t) in the two ”phases”, while at the critical point it
grows as log

↵(t), with ↵ a universal number. This universal entanglement growth requires generic
(”integrability breaking”) interactions to be added to the pure transverse field Ising model.

Closed systems evolving with Hamiltonian dynamics,
are commonly thought to settle to a thermal equilibrium
consistent with the energy density in the initial state.
Any sharp transition associated with the long time be-
havior of observables must in this case correspond to clas-
sical thermal phase transitions in the established thermal
ensemble. Accordingly in one dimension where thermal
transitions do not occur, dynamical transitions are not
expected either.

But systems with strong disorder may behave di↵er-
ently. Anderson conjectured already in his original paper
on localization, that closed systems of interacting parti-
cles or spins with su�ciently strong disorder would fail to
come to equilibrium[1]. Recently, Basko et. al. [2] gave
new arguments to revive this idea of many-body localiza-
tion, which has since received further support from the-
ory and numerics[3–7]. An important point for our dis-
cussion is that localized eigenstates, even at macroscopic
energies are akin to quantum ground states in their en-
tanglement properties[7, 8]. In particular, it was pointed
out in Ref. 8, that localized eigenstates can sustain long
range order and undergo phase transitions that would
not occur in a finite temperature equilibrium ensemble.
But a theory of such dynamical transitions is lacking.

In this paper we develop a theory of such a transition
in the non-equilibrium dynamics of random Ising spin
chains with generic interactions

H =
X
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⇥
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Here Jz
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, h
i

and Jx
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are uncorrelated random variables
and . . . represents other possible interaction terms that
respect the Z

2

symmetry of the model. For simplicity
of the later analysis we take the distributions of coupling

constants to be symmetric around zero. Without the last
term, Jx

i

, the hamiltonian can be mapped to a system of
non-interacting Fermions. We include the coupling Jx

i

to add interactions between the fermions and thereby
make the system generic. We shall assume throughout
that the interactions are weak, so that almost always
Jx

i

⌧ Jz

i

, h
i

h
i+1

.

The transverse field Ising model (1) undergoes a
ground state quantum phase transition controlled by an
infinite randomness fixed point [9]. The transition sep-
arates between a quantum paramagnet obtained when
the transverse field is the dominant coupling and a spin
ordered state established when the Ising coupling Jz is
dominant. Recently, it was pointed out that this tran-
sition can also occur in eigenstates with arbitrarily high
energy, provided that the system is in the many-body
localized phase. Here we develop a theory of the non-
equilibrium transition, focusing on the universal singular
e↵ects it has on the time evolution of the system in pres-
ence of generic interactions.

We shall describe the time evolution of the system
starting from initial states of arbitrarily high energy.
Specifically, we take random Ising configurations of the
spins in the Sz basis, such as | 

in

i = | ""#", . . . ##" i .
The theoretical analysis relies on the strong disorder real
space RG approach (SDRG) [10, 11], which we recently
extended to address the quantum time evolution of ran-
dom systems[7]. The properties of the transition are elu-
cidated by tracking the time evolution of two quantities:
spin correlations and entanglement entropy.

First, we show that the spin auto correlation function
C

z

(t) = h 
in

|Sz

i

(t)Sz

i

(0) | 
in

i decays as a power-law in
the paramagnetic phase, whereas it saturates to a posi-

| 0i =

Pick	  out	  largest	  couplings	  	   ⌦ = max (Jz
i , hi)

Short	  Jmes	  (t	  ≈1/Ω):	  System	  evolves	  according	  to	  Hfast	  

Other	  spins	  essenJally	  frozen	  on	  this	  Jmescale.	


Hfast	


Longer	  Jmes	  (t	  >>1/Ω):	  Eliminate	  fast	  modes	  (order	  Ω)	  perturbaJvely	  
to	  obtain	  effecJve	  evoluJon	  for	  longer	  Jmescales.	


R.	  Vosk	  and	  EA	  PRL	  (2013);	  PRL	  (2014)	  

Similar	  to	  standard	  strong	  disorder	  RG,	  Dasgupta-‐Ma	  (1980),	  D.	  Fisher	  (1992)	  
But	  here	  we	  target	  low	  frequency	  instead	  of	  low	  absolute	  	  energy	  



Outcome	  of	  RG:	  integrals	  of	  moJon	  =	  (frozen	  spins)	  

Example:	  strong	  transverse	  field	  
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J̃ = JLJR/⌦

In	  this	  RG	  scheme	  degrees	  of	  freedom	  are	  not	  eliminated	  but	  rather	  frozen	  into	  
quasi-‐local	  integrals	  of	  mo<on:	  	  

R.	  Vosk	  and	  EA	  PRL	  (2013);	  PRL	  (2014);	  Pekker,	  Refael	  et.	  al.	  PRX	  (2014)	  



EffecJve	  Hamiltonian	  (fixed	  point	  theory)	  

Independently	  postulated	  as	  a	  phenomenological	  descripJon	  of	  the	  
many-‐body	  localized	  phase.	  
Oganesyan	  &	  Huse	  (2013);	  Serbyn,	  Papic	  &	  Abanin	  (2013)	  
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Depends	  only	  on	  the	  quasi-‐local	  integrals	  of	  moJon:	  

Surprisingly	  rich	  dynamics	  in	  MBL	  phase:	  
•  Slow	  log(t)	  growth	  of	  the	  entanglement	  entropy.	  
•  Quantum	  coherence	  revealed	  by	  spin	  echoes	  
•  DisJnct	  localized	  phases	  (glassy,	  paramagneJc,	  topological	  …)	  

This	  scheme	  cannot	  access	  the	  localizaJon	  phase	  transiJon!	  



Theory	  of	  the	  many-‐body	  localizaJon	  transiJon	  

Spin	  chain	  fragmented	  into	  puddles	  of	  different	  types:	  
incipient	  insulators	  and	  incipient	  metals.	  	  	  
Modeled	  as	  coupled	  random	  matrices:	   �i,�i

��1
i = ⌧i Time	  for	  entanglement	  to	  spread	  across	  the	  block	  

�i Mean	  level	  spacing	  in	  the	  block	  

gi ⌧ 1 gi � 1 “thermalizing	  block”	  “insulaJng	  block”	  

(Wigner-‐Dyson	  staJsJcs)	  (Poisson	  level	  staJsJcs)	  

gi = �i/�i

RG	  flow:	  iKeraJvely	  join	  matrices	  that	  entangle	  with	  each	  other	  at	  
running	  cutoff	  scale.	  At	  the	  end	  of	  the	  flow	  we	  are	  leU	  with	  one	  big	  
block	  that	  is	  either	  insulaJng	  or	  thermalizing	  	  	  

Vosk,	  Huse	  and	  E.A.	  arXiv:1412.3117	  



Outcome	  of	  the	  RG	  flow	  
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Next,	  characterize	  the	  transiJon:	  	  
(i)	  in	  terms	  of	  dynamics;	  (ii)	  in	  terms	  of	  eigenstate	  entanglement	  



RG	  results	  I	  –	  dynamical	  scaling	  for	  transport	  
RelaJon	  between	  transport	  Jme	  τtr	  	  and	  length	  l	  of	  blocks:	  

l

⌧tr = l2Diffusion:	   ltr = (D⌧)1/2

12

the main text.

Having located the critical point we can turn to charac-
terize the critical flow. Infinite randomness critical points
are usually characterized by (i) how the scaling variables
(associated with coupling constants) and their standard
deviations scale with the block length l, and (ii) how the
block length scales with the logarithm of the energy cut-
o↵ � = log(⌦

0

/⌦).

Fig. 5 clearly shows a linear dependence of the scaling
variable � = log(⌦/�

link

), associated with the link en-
tanglement rates, and of its standard deviation ��, with
the block length l. The same linear scaling behavior is
seen for � log (g). The length time scaling at the critical
point is shown in Fig. 6(b), showing a linear dependence
of l on �, that is, a logarithmic dependence on the time.

These results indicate a di↵erent class of infinite ran-
domness critical point from the famous cases of the ran-
dom singlet phase and the random transverse field Ising
model considered by Fisher [23, 31]. Specifically, at
Fisher’s fixed point the RG flow parameter � scales with
l as � ⇠ l with  = 1/2, while in our case  = 1.

Appendix C: Length time scaling

In Fig. 6 we present the length vs. time scaling ex-
tracted from the RG calculation. The lines show the
average block length l versus the time-scale given by the
inverse of the cuto↵ frequency t = ⌦�1. As explained in
the main text this scale corresponds to the time for entan-
glement spreading. Therefore the power-laws fitted in the
delocalized phase give the dynamical exponent for entan-
glement growth ↵

ent

. To obtain the transport exponent
↵ shown in Fig. 2(b) of the main text we use the scaling
relation derived in the main text ↵ = ↵

ent

/(1+↵
ent

). We
note that at the critical point and the localized phase, i.e.
for log(g

0

)  log(g
0c

) ⇡ �1.75, the exponent vanishes
and the dependence becomes instead logarithmic growth
of entanglement with time.

We can ask how the dynamical exponent ↵ or ↵
ent

vanishes as g
0

approaches g
0c

. The plot of ↵
ent

versus
(g

0

� g
0c

) on a log-log plot, computed using the RG on
systems of varying sizes is shown in Fig. 7. These re-
sults are consistent with the expected ↵

ent

⇠ (g
0

�g
0c

)⌫ ;
they are not consistent with the naive Gri�ths scaling
↵
naive

⇠ (g
0

� g
0c

)2. Note that to obtain the asymptotic
behavior of ↵ near the critical point we must satisfy two
requirements. First is to get su�ciently close to the crit-
ical point in order to be in the critical scaling regime.
Second, the sub-di↵usive transport is a property of the
Gri�ths phase, thus for given value of the tuning param-
eter g

0

�g
0c

in the scaling regime we must obtain ↵ from
system sizes that are much larger than the long correla-
tion length ⇠ = c(g0 � g

0c

)�⌫ . For this reason we only
show here results for systems larger than 10000 initial
blocks.

FIG. 6. Length time scaling computed from the RG flow.

Appendix D: Entanglement entropy distributions

In this appendix we show examples of the entangle-
ment entropy distributions computed using the RG flow
applied to an ensemble of disorder realizations. Fig. 8
shows four distributions taken respectively from the lo-
calized phase, the critical point, the Gri�ths phase and
the di↵usive regime for long chains with L/l

0

= 10000.
In the localized phase the entanglement entropy follows
an area law, therefore the distribution of the specific en-
tropy s = S/S

T

is concentrated near zero, with the tail
of the distribution consistent with a simple exponential.
At the critical point the entanglement entropy shows a
broad distribution that is consistent with a power law
P
c

(s) ⇠ 1/s⇣ with ⇣ ⇠= 0.9. In the Gri�ths phase the
distribution has a relatively narrow peak near the ther-
mal value. Finally, in the di↵usive phase the distribution

FIG. 7. Vanishing of the dynamical exponent ↵ent near the
critical point plotted on a log-log plot. The result is consistent
with ↵ ⇠ (g0 � g0c)

⌫ but also suggests that the systems we
calculate are not deep inside the critical scaling regime for
this quantity.

Delocalized,	  but	  not	  diffusion	  
↵ <

1

2



RG	  results	  I	  –	  dynamical	  scaling	  for	  transport	  
RelaJon	  between	  transport	  Jme	  τtr	  	  and	  length	  l	  of	  blocks:	  

Surprise!	  The	  transiJon	  is	  from	  	  
localized	  to	  anomalous	  diffusion.	  

Seen	  also	  in	  recent	  ED	  studies:	  	  
Bar-‐Lev	  et	  al	  2014;	  Agarwal	  et	  al	  2014	  
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Result	  of	  Griffiths	  effects.	  long	  insulaJng	  inclusions	  inside	  the	  metal	  are	  exponenJally	  
rare	  but	  give	  exponenJally	  large	  contribuJon	  to	  the	  transport	  Jme.	  	  

l � ⇠ � l
o

RelaxaJon	  with	  slow	  power-‐law	  tails	  



   

 

       
  























  
 
 
 
 
 
 

     

 


























 
 
 
 
 
 
 

   

 

Eigenstate	  entanglement	  turns	  out	  to	  be	  the	  natural	  
scaling	  variable	  of	  this	  RG	  scheme	  !	  

g12

SE(L/2) ⇠ log2 [g(L) + 1]



Eigenstate	  entanglement	  turns	  out	  to	  be	  the	  natural	  
scaling	  variable	  of	  this	  RG	  scheme	  !	  

g12

SE(L/2) ⇠ log2 [g(L) + 1]

•  Infinite	  randomness	  fixed	  point	  characterized	  by	  broad	  entanglement	  distribuJon	  

•  Universal	  jump	  to	  full	  thermal	  entropy 	  	  	  	  the	  Griffiths	  phase	  is	  thermal	  

   

 

       
  























  
 
 
 
 
 
 

     

 


























 
 
 
 
 
 
 

   

 

perfect	  data	  	  
collapse!	  	  

⌫ ⇡ 3



Thermalizing	  

Volume	  law	  entanglement	  	  

Many-‐body	  localized	  

Area	  law	  entanglement	  

“Classical”	  dynamics	  Quantum	  coherent	  dynamics	  

Emergent	  
integrability	  

Dynamical	  RG	   Random	  
matrix	  RG	  

SA	  broadly	  	  
distributed	  
at	  crit.	  point	  

diffusive	  sub-‐diffusive	  



Experimental	  study	  of	  MBL:	  	  
fermions	  in	  a	  quasi-‐random	  opJcal	  laice	  

CollaboraJon	  with	  With:	  	  
Immanuel	  Bloch’s	  group	  (Munich)	  

Mark	  Fischer	  and	  Ronen	  Vosk	  (Weizmann)	  
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Expansion	  in	  disordered	  potenJal	  	  

Anderson	  localizaJon:	  

Previous	  experiments	  

Many-‐body	  localizaJon	  (?):	  
Transport	  in	  a	  trap	  (response	  to	  impulse)	  
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Kondov	  et	  al.	  (DeMarco)	  preprint	  2013	  



Previous	  experiments	  
Many	  body	  localizaJon	  (?)	  :	  

In-‐trap	  transport	  (following	  impulse)	  

The	  Problems	  with	  such	  a	  global	  probe:	  
	  

•  Very	  slow	  probe	  (finite	  size	  Jme	  scale	  by	  definiJon)	  
•  SensiJve	  to	  inhomogeneity.	  	  
	  	  	  	  	  e.g.	  MoD	  shells	  can	  block	  transport	  
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Our	  solu<on:	  Use	  a	  fast	  local	  observable	  	  



Quantum	  quench	  protocol	  

1.  Fermions	  in	  opJcal	  laice	  prepared	  in	  period-‐2	  CDW	  

	  
2.  Evolve	  the	  state	  with	  the	  1d	  laice	  Hamiltonian:	  

e	   e	   e	  e	  e	  o	   o	   o	  o	  

classical physics.
While Anderson localization of non-interacting particles has been

experimentally observed in a range of systems, including light scatter-
ing from semiconductor powders in 3D [31, 32, 33], photonic lattices in
1D [34] and 2D [35] and cold atoms in random [36] and quasi-random
[37] disorder, the interacting case has proven more elusive. Initial exper-
iments with interacting systems have focused on the superfluid [38, 40]
or metal [39] to insulator transition in the ground state. Evidence for in-
hibited macroscopic mass transport was reported even at elevated tem-
peratures [39], but is hard to distinguish from exponentially slow motion
expected from conventional activated transport or effects stemming from
the inhomogeneity of the cloud. A conclusive indication of many-body
localization at finite energy density is still lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-random lattice potential. We identify the many-body
localized phase by monitoring the time evolution of local observables
following a quench of system parameters. Specifically, we prepare a
high-energy initial state with strong charge density wave (CDW) order
(as shown in Fig. 1A) and measure the relaxation of this charge density
wave in the ensuing unitary evolution. Our main observable is the im-
balance I between the respective atom numbers on even (Ne) and odd
(No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the CDW will quickly
relax to zero in the thermalizing case, this is not true in a localized sys-
tem, where ergodicity is broken and the system cannot act as its own
heat bath (Fig. 1B) [41]. Intuitively, if the system is strongly localized,
all particles will stay close to their original positions during time evolu-
tion, thus only smearing out the CDW little. A longer localization length
will lead to a lower saturation value of the CDW. The stationary value
of the CDW thus effectively serves as an order parameter of the MBL
phase and allows us to map the phase boundary between the ergodic and
non-ergodic phases in the parameter space of interaction versus disorder
strength. In particular, if the localization length becomes large com-
pared to the lattice constant, then the CDW vanishes as I / 1/⇠2 [43].
In contrast to previous experiments, which studied the effect of disorder
on the global expansion dynamics [36, 37, 38, 39, 40], the CDW order
parameter acts as a purely local probe, directly captures the ergodicity
breaking and is insensitive to effects stemming from the global inhomo-
geneity of the trapped system.

Our system can be described by the one-dimensional fermionic
Aubry-André model [42] with interactions [41], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, with the ratio of lattice periodicities �, disorder
strength � and phase offset �. Lastly, U represents the on-site interac-
tion energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator (see Fig.
1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge density
wave, consisting of a Fermi gas with atoms only occupying even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential for vari-
able times, after which the relative imbalance I between atoms on odd and even
sites is measured. Experimental time traces (circles) and DMRG calculations for
a homogeneous system (lines) are shown for various disorder strengths �. The
evolution time is given in units of the tunneling time. Each datapoint denotes
the average of six different realizations of the disorder potential and the errorbars
show the standard deviation. The shaded region indicates the time window used
to characterise the stationary imbalance in the rest of the analysis.

Figure 3: Stationary values of the imbalance I as a function of disorder � for
non-interacting atoms, with the Aubry-André transition around � = 2. To avoid
any interaction effects, only a single spin component was used. Circles show the
experimental data, along with exact diagonalization (ED) calculations including
trap effects (red line) and, additionally, lattice inhomogeneity (grey shaded area).
The inset shows experimental time traces (circles) for non-interacting atoms, as
in Fig. 2, plus ED results incorporating trap effects and lattice inhomogeneity
(shaded regions).

This quasi-random model is special in that, for certain classes of
irrational � [43, 44], above a critical disorder strength �/J = 2 all sin-
gle particle states become localized [42] and the now finite localization
length decreases monotonically for stronger disorders. Such a transition
was indeed observed experimentally in a non-interacting bosonic gas
[37]. In contrast, truly random disorder will lead to single-particle lo-
calization in one dimension for arbitrarily small disorder strengths. Pre-
vious numerical work indicates many-body localization in quasi-random
systems to be similar to that obtained for a truly random potential [41].
Localization persists for all interaction strengths – even those larger than

2

classical physics.
While Anderson localization of non-interacting particles has been

experimentally observed in a range of systems, including light scatter-
ing from semiconductor powders in 3D [31, 32, 33], photonic lattices in
1D [34] and 2D [35] and cold atoms in random [36] and quasi-random
[37] disorder, the interacting case has proven more elusive. Initial exper-
iments with interacting systems have focused on the superfluid [38, 40]
or metal [39] to insulator transition in the ground state. Evidence for in-
hibited macroscopic mass transport was reported even at elevated tem-
peratures [39], but is hard to distinguish from exponentially slow motion
expected from conventional activated transport or effects stemming from
the inhomogeneity of the cloud. A conclusive indication of many-body
localization at finite energy density is still lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-random lattice potential. We identify the many-body
localized phase by monitoring the time evolution of local observables
following a quench of system parameters. Specifically, we prepare a
high-energy initial state with strong charge density wave (CDW) order
(as shown in Fig. 1A) and measure the relaxation of this charge density
wave in the ensuing unitary evolution. Our main observable is the im-
balance I between the respective atom numbers on even (Ne) and odd
(No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the CDW will quickly
relax to zero in the thermalizing case, this is not true in a localized sys-
tem, where ergodicity is broken and the system cannot act as its own
heat bath (Fig. 1B) [41]. Intuitively, if the system is strongly localized,
all particles will stay close to their original positions during time evolu-
tion, thus only smearing out the CDW little. A longer localization length
will lead to a lower saturation value of the CDW. The stationary value
of the CDW thus effectively serves as an order parameter of the MBL
phase and allows us to map the phase boundary between the ergodic and
non-ergodic phases in the parameter space of interaction versus disorder
strength. In particular, if the localization length becomes large com-
pared to the lattice constant, then the CDW vanishes as I / 1/⇠2 [43].
In contrast to previous experiments, which studied the effect of disorder
on the global expansion dynamics [36, 37, 38, 39, 40], the CDW order
parameter acts as a purely local probe, directly captures the ergodicity
breaking and is insensitive to effects stemming from the global inhomo-
geneity of the trapped system.

Our system can be described by the one-dimensional fermionic
Aubry-André model [42] with interactions [41], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, with the ratio of lattice periodicities �, disorder
strength � and phase offset �. Lastly, U represents the on-site interac-
tion energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator (see Fig.
1C).
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Figure 2: Time evolution of an initial charge-density wave. A charge density
wave, consisting of a Fermi gas with atoms only occupying even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential for vari-
able times, after which the relative imbalance I between atoms on odd and even
sites is measured. Experimental time traces (circles) and DMRG calculations for
a homogeneous system (lines) are shown for various disorder strengths �. The
evolution time is given in units of the tunneling time. Each datapoint denotes
the average of six different realizations of the disorder potential and the errorbars
show the standard deviation. The shaded region indicates the time window used
to characterise the stationary imbalance in the rest of the analysis.

Figure 3: Stationary values of the imbalance I as a function of disorder � for
non-interacting atoms, with the Aubry-André transition around � = 2. To avoid
any interaction effects, only a single spin component was used. Circles show the
experimental data, along with exact diagonalization (ED) calculations including
trap effects (red line) and, additionally, lattice inhomogeneity (grey shaded area).
The inset shows experimental time traces (circles) for non-interacting atoms, as
in Fig. 2, plus ED results incorporating trap effects and lattice inhomogeneity
(shaded regions).

This quasi-random model is special in that, for certain classes of
irrational � [43, 44], above a critical disorder strength �/J = 2 all sin-
gle particle states become localized [42] and the now finite localization
length decreases monotonically for stronger disorders. Such a transition
was indeed observed experimentally in a non-interacting bosonic gas
[37]. In contrast, truly random disorder will lead to single-particle lo-
calization in one dimension for arbitrarily small disorder strengths. Pre-
vious numerical work indicates many-body localization in quasi-random
systems to be similar to that obtained for a truly random potential [41].
Localization persists for all interaction strengths – even those larger than

2

| (t)i = e�iĤt| (0)i
Incommensurate	  potenJal	  

J 
U 

Δ	


Numerics	  suggest	  that	  this	  model	  shows	  generic	  MBL	  (	  Iyer	  et.	  al.	  PRB	  2013)	  



What	  to	  measure?	  

RelaxaJon	  of	  the	  CDW	  with	  Jme:	   I =
1

N

LX

j=1

(�1)jhn
j

i = hN
e

�N
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i
N

e

+N
o

If	  the	  system	  is	  localized,	  the	  CDW	  operator	  has	  finite	  overlap	  with	  
an	  integral	  of	  moJon.	  
	  

  I(t)	  will	  relax	  to	  a	  non-‐vanishing	  value	  	  

time:   0 t 

Macroscopic	  order	  parameter	  of	  the	  MBL	  phase	  



Experimental	  results	  

Non	  interacJng	  Aubry-‐André:	  
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With	  interacJons:	  

Ergodicity	  is	  broken,	  	  
as	  expected,	  for	  Δ/J>2	  

Ergodicity	  is	  broken	  even	  with	  
interacJons!	  	  
	  
Direct	  signature	  of	  MBL!	  



Experimental	  phase	  diagram	  

the other side quantum correlations persist indefinitely. Hence the MBL
transition sets a sharp boundary between a macroscopic world showing
quantum phenomena and one governed by classical physics.

While Anderson localization of non-interacting particles has been
experimentally observed in a variety of systems, including light scat-
tering from semiconductor powders in 3D [25], photonic lattices in 1D
[26] and 2D [27] and cold atoms in 1D and 3D random [28, 29, 30]
and quasi-random [31] disorder, the interacting case has proven more
elusive. Initial experiments with interacting systems have focused on
the superfluid [32, 33] or metal [34] to insulator transition in the ground
state. Evidence for inhibited macroscopic mass transport was reported
even at elevated temperatures [34], but is hard to distinguish from ex-
ponentially slow motion expected from conventional activated transport
or effects stemming from the inhomogeneity of the cloud. Until now
conclusive experimental evidence for many-body localization at finite
energy density has thus been lacking.

In this paper we report the first experimental observation of ergod-
icity breaking due to many-body localization. Our experiments are
performed in a one-dimensional system of ultracold fermions in a bi-
chromatic, quasi-randomly disordered lattice potential. We identify the
many-body localized phase by monitoring the time evolution of local
observables following a quench of system parameters. Specifically,
we prepare a high-energy initial state with strong charge density wave
(CDW) order (as shown in Fig. 1A) and measure the relaxation of this
charge density wave in the ensuing unitary evolution. Our main observ-
able is the imbalance I between the respective atom numbers on even
(Ne) and odd (No) sites

I =

Ne �No

Ne +No
, (1)

which directly measures the CDW order. While the initial CDW (I &
0.9) will quickly relax to zero in the thermalizing case, this is not true in
a localized system, where ergodicity is broken and the system cannot act
as its own heat bath (Fig. 1B) [35]. Intuitively, if the system is strongly
localized, all particles will stay close to their original positions during
time evolution, thus only smearing out the CDW a little. A longer local-
ization length ⇠ corresponds to more extended states and will lead to a
lower steady state value of the CDW. The long-time stationary value thus
effectively serves as an order parameter of the MBL phase and allows us
to map the phase boundary between the ergodic and non-ergodic phases
in the parameter space of interaction versus disorder strength. In par-
ticular, in the non-interacting system the CDW vanishes asymptotically
as / 1/⇠2 [36]. In contrast to previous experiments, which studied the
effect of disorder on the global expansion dynamics [28, 31, 32, 34, 33],
the CDW order parameter acts as a purely local probe, directly capturing
the ergodicity breaking.

Our system can be described by the one-dimensional fermionic
Aubry-André model [37] with interactions [35], given by the Hamil-
tonian

ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.
(2)

Here, J is the tunneling matrix element between neighboring lattice sites
and ĉ†i,� (ĉi,�) denotes the creation (annihilation) operator for a fermion
in spin state � 2 {", #} on site i. The second term describes the quasi-
random disorder, i.e. the shift of the on-site energy due to an additional
incommensurate lattice, characterized by the ratio of lattice periodicities

�, disorder strength � and phase offset �. Lastly, U represents the on-
site interaction energy and n̂i,� = ĉ†i,� ĉi,� is the local number operator
(see Fig. 1C).

U/J=4.7(1)
U/J=10.3(1),   

'/J=8

'/J=3
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Figure 2: Time evolution of an initial charge-density wave. A charge den-
sity wave, consisting of fermionic atoms occupying only even sites, is allowed
to evolve in a lattice with an additional quasi-random disorder potential. After
variable times the imbalance I between atoms on odd and even sites is measured.
Experimental time traces (circles) and DMRG calculations for a single homoge-
neous tube (lines) are shown for various disorder strengths �. Each experimental
datapoint denotes the average of six different realizations of the disorder potential
and the error bars show the standard deviation of the mean. The shaded region
indicates the time window used to characterise the stationary imbalance in the
rest of the analysis.
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Figure 3: Stationary values of the imbalance I as a function of disorder �

for non-interacting atoms. The Aubry-André transition is at �/J = 2. Circles
show the experimental data, along with Exact Diagonalization (ED) calculations
with (red line) and without (grey line) trap effects. Each experimental data point
is the average of three different evolution times (13.7⌧ , 17.1⌧ and 20.5⌧ ) and
four different disorder phases �, for a total of 12 individual measurements per
point. To avoid any interaction effects, only a single spin component was used.
The ED calculations are averaged over similar evolutions times to the experiment
and 12 different phase realizations. Error bars show the standard deviation of the
mean.

This quasi-random model is special in that, for almost all irrational
� [36], all single particle states become localized at the same critical
disorder strength �/J = 2 [37]. For larger disorder strengths the lo-
calization length decreases monotonically. Such a transition was indeed
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Figure 4: Stationary imbalance for various interaction and disorder strengths. A: Stationary Imbalance I as a function of interactions U and disorder strength
�. Moderate interactions reduce the degree of localization compared to the non-interacting or strongly interacting cases. The white dotted lines are contours of equal
I, while the solid white line is the contour of I matching the Aubry-André transition (U = 0 and �/J = 2) extended to the interacting case. It indicates the MBL
transition. The green dot-dashed line shows the fitted minima of I for each � [36]. Each individual data point (vertices of the pseudo-color plot) is the average of the
same 12 parameters as in Fig. 3. The color of each square represents the average imbalance of the four points on the corners. All data taken with a doublon fraction
of ' 34 (2) %. B: Cuts along four different disorder strengths. The effect of interactions on the localization gives rise to a characteristic ’W’-shape. Solid lines are
the results of DMRG simulations for a single homogeneous tube. Error bars indicate the standard deviation of the mean.

observed experimentally in a non-interacting bosonic gas [31]. In con-
trast, truly random disorder will lead to single-particle localization in
one dimension already for arbitrarily small disorder strengths. Previ-
ous numerical work indicates many-body localization in quasi-random
systems to be similar to that obtained for a truly random potential [35].

Experiment We experimentally realize the Aubry-André model by
superimposing on the primary, short lattice (�s = 532 nm) a second,
incommensurate disorder lattice with �d = 738 nm (thus � = �s/�d ⇡
0.721) and control J , � and � via lattice depths and relative phase be-
tween the two lattices [36]. The interactions (U ) between atoms in the
two different spin states |"i and |#i are tuned via a magnetic Feshbach
resonance [36]. In total, this provides independent control of U , J and
� and enables us to continuously tune the system from an Anderson
insulator in the non-interacting case to the MBL regime for interacting
particles.

An additional long lattice (�l = 1064nm = 2�s) forms a period-
two superlattice [38, 39] together with the short lattice and is employed
during the preparation of the initial CDW state, and during detection
[36]. Deep lattices along the orthogonal directions (�? = 738nm
and V? = 36(1)ER), create an array of decoupled 1D tubes. Here,
ER = h2/

�
2m�2

lat
�

denotes the recoil energy, with h being Planck’s
constant, m the mass of the atoms and �lat the respective wavelength of
the lattice lasers.

We employ a two component degenerate Fermi gas of 40K atoms,
consisting of an equal mixture of 25-30 ⇥10

3 atoms in each of the two
lowest hyperfine states |F,mF i =

�� 9
2

,� 9

2

↵ ⌘ |#i and
�� 9
2

,� 7

2

↵ ⌘ |"i,
at an initial temperature of 0.24(2) TF , where TF is the Fermi tem-
perature. The atoms are initially prepared in a finite temperature band
insulating state [40] in the long and orthogonal lattices. We then split
each lattice site by ramping up the short lattice in a tilted configuration
[36] and subsequently ramp down the long lattice. This creates a charge
density wave, where there are no atoms on odd lattice sites but zero,
one or two atoms on each even site [39, 41]. This initial CDW is then

allowed to evolve for a given time in the 8.0(2)ER deep short lattice
at a specific interaction strength U in the presence of disorder �. In a
final step, we detect the number of atoms on even and odd lattice sites
by employing a band-mapping technique which maps them to different
bands of the superlattice [41, 36]. This allows us to directly measure the
imbalance I, as defined in Eq. (1).

Results We track the time evolution of the imbalance I for various in-
teractions U and disorder strengths � (see Fig. 2). At short times the im-
balance exhibits some dynamics consisting of a fast decay followed by a
few damped oscillations. After a few tunneling times ⌧ = h/(2⇡J) the
imbalance approaches a stationary value. In a clean system (�/J = 0)
and for weak disorder, the stationary value of the imbalance approaches
zero. For stronger disorder, however, this behaviour changes dramat-
ically and the imbalance attains a non-vanishing stationary value that
persists for all observation times. Since the imbalance must decay to
zero on approaching thermal equilibrium at these high energies, the non-
vanishing stationary value of I directly indicates non-ergodic dynamics.
Deep in the localized phase, where unbiased numerical Density-Matrix
Renormalisation Group (DMRG) calculations are feasible due to the
slow entanglement growth, we find the stationary value obtained in the
simulations to be in very good agreement with the experimental result.
These simulations were performed for a single homogeneous tube with-
out any trapping potentials [36]. The stronger damping of oscillations
observed in the experiment can be attributed to a dephasing caused by
variations in J between different 1D tubes [41, 36].

We experimentally observe an additional very slow decay of I
on a timescale of several hundred tunneling times for all interaction
strengths, which we attribute to the fact that our system is not per-
fectly closed due to small losses, technical heating and photon scattering
[42, 36]. Another potential mechanism for delocalization at long times
is related to the intrinsic SU(2) spin symmetry in our system [43]. How-
ever, for the relevant observation times our numerical simulations do not
indicate the presence of such a thermalization process.

3

Broadening	  of	  transiJon	  due	  to	  
inhomogeneity	  (average	  over	  many	  
1d	  tubes	  with	  different	  parameters)	  

But	  inhomogeneity	  unimportant	  
deep	  in	  the	  localized	  phase.	  



Dependence	  on	  iniJal	  state	  

M.	  Schreiber	  et	  al.	  arXiv:1501.05661	  

"   Δ/𝐽=5  :	  Localized	  phase	  

Hard-‐core	  limit	  
=	  non-‐interac<ng	  Fermions	  

Small	  U:	  no	  dependence	  on	  doublon	  fracJon.	  
Large	  U:	  isolated	  doublons	  localize	  easily	  because	   JD ⇠ J2/U



Phase	  diagram	  

No	  doublons	  
Hard-‐core	  limit	  

All	  doublons	  

Regime	  with	  
mobility	  edge	  



Measurement	  Jmes	  are	  sufficiently	  long	  to	  have	  the	  
logarithmic	  growth	  of	  entanglement	  

Is	  there	  an	  observable	  with	  a	  direct	  relaJon	  to	  
the	  entanglement	  entropy?	  

To characterize the dependence of the localization transition on U
and �, we focus on the stationary value of I, plotted in Fig. 3 for non-
interacting atoms and in Fig. 4 for interacting atoms. For non-interacting
atoms (Fig. 3), the measured imbalance is compatible with extended
states within the finite, trapped system for �/J . 2. Above the critical
point of the homogeneous Aubry-André model at �/J = 2 [37], how-
ever, the measured imbalance strongly increases as the single-particle
eigenstates become more and more localized. The observed transition
agrees well with our theoretical modeling including the harmonic trap
[36].
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Figure 5: Growth of entanglement entropy and corresponding slope. A:

DMRG results of the entanglement entropy growth for various interaction
strengths and �/J = 5. For long times, logarithmic growth characteristic of
interacting MBL states is visible. The experimentally used evolution times indi-
cated by the yellow shaded region are found to be in the region of logarithmic
growth. B: The slope of the logarithmic growth, extracted using linear fits up to
the longest simulated time (50 ⌧ ) in A, shows a non-monotonic dependence on
the interaction strength, which tracks the inverse of the steady state CDW value
(red line). Error bars reflect different initial starting times for the fit.

The addition of moderate interactions slightly reduces the degree
of localization compared to the non-interacting case, i.e. they decrease
the imbalance I and hence increase the critical value of � necessary to
cross the delocalization-localization transition (Fig. 4A and B). Impor-
tantly, we find that localization persists for all interaction strengths. For
a given disorder, the imbalance I decreases up to a value of U ⇠ 2�

before increasing again. For large |U |, the system even becomes more
localized than in the non-interacting case. This can be understood qual-
itatively by considering an initial state consisting purely of empty sites
and sites with two atoms (doublons): for sufficiently strong interactions,
isolated doublons represent stable quasiparticles as the two atoms cannot
separate and hence only tunnel with an effective second-order tunneling

rate of JD =

2J2

|U| ⌧ J [44, 45]. This strongly increases the effective
disorder / �/JD � �/J and promotes localization. In the experi-
ment, the initial doublon fraction is well below one [36] and the density
is finite, such that we observe a weaker effect. We find the localization
dynamics and the resulting stationary values to be symmetric around
U = 0, highlighting the dynamical U $ �U symmetry of the Hubbard
Hamiltonian for initially localized atoms [46]. The effect of interactions
can be seen in the contour lines (Fig. 4A, dotted white lines) as well
as directly in the characteristic ‘W’ shape of the imbalance at constant
disorder (Fig. 4B), demonstrating the re-entrant behaviour of the sys-
tem [22]. This behaviour extends to our best estimate of the localization
transition, which is shown in Fig. 4A as the solid white line.
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Figure 6: Stationary imbalance I as a function of interaction strength dur-

ing loading. Data taken with disorder �/J = 3. The loading interactions of
aload = �89(2) a

0

(attractive, where a
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denotes Bohr’s radius), 0(1) a
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(repulsive) correspond to initial doublon fractions of
51(1)%, 43(2)%, and 8(6)%, respectively [36]. Each I value is the average of the
same 12 parameters as in Fig. 3. Error bars show the standard deviation of the
mean. Solid lines are guides to the eye. The grey shaded area spans the limiting
cases of 0 and 50% doublons, simulated using DMRG for a single homogeneous
tube.

We can gain additional insight into how localization changes with
interaction strength by computing the growth of the entanglement en-
tropy between the two halves of the system during the dynamics, as
shown in Fig. 5A. For long times, we observe a logarithmic growth of
the entanglement entropy with time as S(t) = S

o↵set

+ s⇤ ln(t/⌧),
which is characteristic of the MBL phase [12, 13]. The slope s⇤ is
proportional to the bare localization length ⇠⇤, which in a weakly in-
teracting system in the localized phase corresponds to the single particle
localization length. In general, ⇠⇤ is the characteristic length over which
the effective interactions between the conserved local densities decay
[17, 18] and connects to the many-body localization length ⇠ deep in the
localized phase. In contrast to ⇠, however, ⇠⇤ is expected to remain finite
at the transition [23]. We find s⇤ to exhibit a broad maximum for inter-
mediate interaction strengths (Fig. 5B), corresponding to a maximum
in the thus inferred localization length. This maximum in turn leads to
a minimum in the CDW value. The characteristic ‘W’ shape in the im-
balance is thus directly connected to the maximum in the entanglement
entropy slope, as both are consequences of the maximum in localization
length. Equivalent information on the localization properties as obtained
from the entanglement entropy can be gained in experiments by moni-
toring the temporal decay of fluctuations around the stationary value of
the CDW [36]. While we do not have sufficient sensitivity to measure

4

To characterize the dependence of the localization transition on U
and �, we focus on the stationary value of I, plotted in Fig. 3 for non-
interacting atoms and in Fig. 4 for interacting atoms. For non-interacting
atoms (Fig. 3), the measured imbalance is compatible with extended
states within the finite, trapped system for �/J . 2. Above the critical
point of the homogeneous Aubry-André model at �/J = 2 [37], how-
ever, the measured imbalance strongly increases as the single-particle
eigenstates become more and more localized. The observed transition
agrees well with our theoretical modeling including the harmonic trap
[36].
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Figure 5: Growth of entanglement entropy and corresponding slope. A:

DMRG results of the entanglement entropy growth for various interaction
strengths and �/J = 5. For long times, logarithmic growth characteristic of
interacting MBL states is visible. The experimentally used evolution times indi-
cated by the yellow shaded region are found to be in the region of logarithmic
growth. B: The slope of the logarithmic growth, extracted using linear fits up to
the longest simulated time (50 ⌧ ) in A, shows a non-monotonic dependence on
the interaction strength, which tracks the inverse of the steady state CDW value
(red line). Error bars reflect different initial starting times for the fit.

The addition of moderate interactions slightly reduces the degree
of localization compared to the non-interacting case, i.e. they decrease
the imbalance I and hence increase the critical value of � necessary to
cross the delocalization-localization transition (Fig. 4A and B). Impor-
tantly, we find that localization persists for all interaction strengths. For
a given disorder, the imbalance I decreases up to a value of U ⇠ 2�

before increasing again. For large |U |, the system even becomes more
localized than in the non-interacting case. This can be understood qual-
itatively by considering an initial state consisting purely of empty sites
and sites with two atoms (doublons): for sufficiently strong interactions,
isolated doublons represent stable quasiparticles as the two atoms cannot
separate and hence only tunnel with an effective second-order tunneling

rate of JD =

2J2

|U| ⌧ J [44, 45]. This strongly increases the effective
disorder / �/JD � �/J and promotes localization. In the experi-
ment, the initial doublon fraction is well below one [36] and the density
is finite, such that we observe a weaker effect. We find the localization
dynamics and the resulting stationary values to be symmetric around
U = 0, highlighting the dynamical U $ �U symmetry of the Hubbard
Hamiltonian for initially localized atoms [46]. The effect of interactions
can be seen in the contour lines (Fig. 4A, dotted white lines) as well
as directly in the characteristic ‘W’ shape of the imbalance at constant
disorder (Fig. 4B), demonstrating the re-entrant behaviour of the sys-
tem [22]. This behaviour extends to our best estimate of the localization
transition, which is shown in Fig. 4A as the solid white line.
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ing loading. Data taken with disorder �/J = 3. The loading interactions of
aload = �89(2) a
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denotes Bohr’s radius), 0(1) a
0

(non-
interacting) and 142(1) a
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(repulsive) correspond to initial doublon fractions of
51(1)%, 43(2)%, and 8(6)%, respectively [36]. Each I value is the average of the
same 12 parameters as in Fig. 3. Error bars show the standard deviation of the
mean. Solid lines are guides to the eye. The grey shaded area spans the limiting
cases of 0 and 50% doublons, simulated using DMRG for a single homogeneous
tube.

We can gain additional insight into how localization changes with
interaction strength by computing the growth of the entanglement en-
tropy between the two halves of the system during the dynamics, as
shown in Fig. 5A. For long times, we observe a logarithmic growth of
the entanglement entropy with time as S(t) = S

o↵set

+ s⇤ ln(t/⌧),
which is characteristic of the MBL phase [12, 13]. The slope s⇤ is
proportional to the bare localization length ⇠⇤, which in a weakly in-
teracting system in the localized phase corresponds to the single particle
localization length. In general, ⇠⇤ is the characteristic length over which
the effective interactions between the conserved local densities decay
[17, 18] and connects to the many-body localization length ⇠ deep in the
localized phase. In contrast to ⇠, however, ⇠⇤ is expected to remain finite
at the transition [23]. We find s⇤ to exhibit a broad maximum for inter-
mediate interaction strengths (Fig. 5B), corresponding to a maximum
in the thus inferred localization length. This maximum in turn leads to
a minimum in the CDW value. The characteristic ‘W’ shape in the im-
balance is thus directly connected to the maximum in the entanglement
entropy slope, as both are consequences of the maximum in localization
length. Equivalent information on the localization properties as obtained
from the entanglement entropy can be gained in experiments by moni-
toring the temporal decay of fluctuations around the stationary value of
the CDW [36]. While we do not have sufficient sensitivity to measure

4

S(t) = S0 + s⇤ log(t)
VariaJon	  of	  the	  slope	  with	  interacJon	  U	  
correlated	  with	  variaJon	  of	  the	  imbalance	  

DMRG	  calculaJon:	  
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Temporal	  fluctuaJons	  of	  the	  imbalance	  

Expect	  them	  to	  decay	  as:	   1/(Ut)⇠0

Now, to find the time dependence of the CDW we should transform
back from the basis of �̃z

i eigenvalues to the basis of �z
i . This is achieved

with a rotation around the �̃y axis by ✓i

h�z
(t)i = Tr(⇢(t)�z

) = cos

2 ✓i + sin

2 ✓i
1

2

l(t)

2

l(t)X

n

cos(!nt). (28)

Hence, the fluctuations of the local imbalance between an even site and
neighboring odd site behaves as

��z
(t) ⇠ e� ln 2 l(t)/2 ⇠

⇣
1

Ut

⌘⇠ ln 2/2

, (29)

while the fluctuation of the global imbalance (CDW order) is further
suppressed by a factor of 1/

p
L

�I(t) ⇠ 1p
L

⇣
1

Ut

⌘⇠ ln 2/2

. (30)

We see that the decay of the fluctuations is intimately connected to the
log t growth of the entanglement entropy, as it also ‘measures’ the num-
ber of spins coupled through the interactions after time t.

The above analysis was of a simplified effective model. However
the main conclusions are supported by direct simulation of the Hubbard
model on the quasi-periodic lattice using time dependent DMRG. Fig.
12A shows the temporal noise of the of the imbalance as a function of
the time for different values of the interaction strength U/J . The fluctu-
ations are measured by averaging them over a time window of �t = 7/J
around the time t. The results fit well to a power law decay. Fig. 12B
compares the fitted exponent ⇠fluc to the slope of the entanglement log-
arithmic growth of the entanglement entropy showing the direct corre-
spondence between the two.

Thus we conclude that measurement of the temporal fluctuations of
the CDW order provides a viable experimental route to determine the lo-
calization length ⇠ and distinguish the many-body localized state from
an Anderson localized state of non-interacting particles. In the present
experiment, this is, however, not possible, as the automatic averaging
over many tubes suppresses the fluctuations below the resolution limit
after only few oscillations. For future experiments, a single tube, or
even single-site resolution would be desirable to overcome this limita-
tion. We also note that the temporal fluctuations of the expectation value
are different from shot to shot fluctuations at a given time which reflect
the quantum uncertainty of the observable and would be finite even in
the infinite time limit.
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Figure 12: Decay of imbalance oscillations and entanglement entropy growth.
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the imbalance oscillation amplitudes and the slope of the logarithmic growth of
entanglement entropy as a function of interaction strength.
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Temporal	  fluctuaJons	  carry	  similar	  informaJon	  as	  the	  
entanglement	  growth	  yet	  are	  measurable!	  
But	  will	  require	  experiment	  with	  single	  site	  resoluJon	  

Let us calculate the reduced density matrix of the pseudo spin at site
i. The system starts the time evolution in a product state

| 
0

i =
X

�1,...,�l

l(t)Y

j=1

Aj
�i
|{�}i (23)

with Aj
" = cos(✓j/2) and Aj

# = sin(✓j/2). We can formally write the
time-dependent density matrix as

⇢̃(t) =
X

{�}

X

{�0}

l(t)Y

j

Aj
�j
(Aj

�0
j
)

⇤e�i(E[{�}]�E[{�0}]t)|{�}ih{�0}|.

(24)
Here, E[{�}] = P

i hi�i +
P

i,j Vij�i�j . We can now trace out all
but one site to obtain the reduced density matrix of a single pseudo-spin
at site i in the basis of the eigenvalues of �̃z

i :

⇢̃"" = cos

2 ✓i/2 (25)
⇢̃## = sin

2 ✓i/2 (26)

⇢̃"# = ⇢̃⇤#" = sin ✓i

2

4 1

Nf (t)

Nf (t)X

n=1

e�i!nt

3

5 , (27)

where !n = E[", {�}]� E[#, {�0}]. {�} and {�0} represent states of
all other sites except site i. The number of frequencies involved Nf (t) is
roughly 2

l(t), i.e. all possible interactions between the l(t) spins that are
significantly entangled with the observed spin at time t. More precisely,
the number of frequencies Nf (t) = eS(t) ⇡ es⇤ ln(Ut/~) measures the
size of the entangled Hilbert space at the observation time.

To find the time dependence of the CDW we have to transform back
from the basis of �̃z

i eigenvalues to the basis of �z
i . This is achieved

with a rotation around the �̃y axis by ✓i

h�z
(t)i = Tr(⇢(t)�z

) = cos

2 ✓i + sin

2 ✓i
1

Nf (t)

Nf (t)X

n=1

cos(!nt).

(28)
Hence, the fluctuations of the local imbalance between an even site and
neighboring odd site behaves as

��z
rms

(t) ⇠ e�
1
2S(t) ⇠

⇣ ~
Ut

⌘ 1
2 s⇤

, (29)

while the fluctuation of the global imbalance (CDW order) is further
suppressed by a factor of 1/

p
L

�I
rms

(t) ⇠ 1p
L

⇣ ~
Ut

⌘ 1
2 s⇤

. (30)

We see that the decay of the fluctuations is intimately connected to the
ln t/⌧ growth of the entanglement entropy, as it also ‘measures’ the
number of spins coupled through the interactions after time t.
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Figure 13: Decay of imbalance oscillations and entanglement entropy

growth. A shows the time evolution of the imbalance with decreasing oscillation
amplitudes for different interaction strengths for a system with 30% doublons,
exhibiting a power law decay. B shows the connection of the decay exponents of
the imbalance oscillation amplitudes and the slope of the logarithmic growth of
entanglement entropy as a function of interaction strength.

The above analysis is of a simplified effective model. However,
the main conclusions are supported by direct simulation of the Hub-
bard model on the quasi-periodic lattice using time dependent DMRG.
Fig. 13A shows the temporal noise of the imbalance as a function of the
time for different values of the interaction strength U/J . The fluctua-
tions are measured by averaging them over a time window of T = 7 ⌧
around the time t. The results fit well to a power law decay. Fig. 13B
compares the fitted exponent s⇤ to the slope of the logarithmic growth
of the entanglement entropy showing the direct correspondence between
the two.

Thus, we conclude that measurements of the temporal fluctuations
of the CDW order provide a viable experimental route to determine the
bare localization length ⇠⇤ and distinguish the many-body localized state
from an Anderson localized state of non-interacting particles. In the
present experiment, this is, however, not possible, as the unavoidable
averaging over many tubes suppresses the fluctuations below the detec-
tion limit after only few oscillations. For future experiments, a single
tube, or even single-site resolution would be desirable to overcome this
limitation. We also note that the temporal fluctuations of the expectation
value are different from shot-to-shot fluctuations at a given time which
reflect the quantum uncertainty of the observable and would be finite
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Very	  long	  Jme	  behavior	  

Slow	  decay	  of	  the	  imbalance	  at	  long	  Jmes:	  
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•  At	  very	  long	  <mes,	  both	  atom	  number	  and	  Imbalance	  decay	  to	  zero.	  
•  Photon	  scaKering	  /	  Light	  induced	  collisions	  
•  Coupling	  between	  tubes	  /	  influence	  of	  higher	  bands	  
•  Other	  sources?	  



Outlook	  

•  Control	  coupling	  to	  environment	  

•  Address	  criJcal	  point:	  finite	  Jme	  scaling	  

•  Measure	  local	  observables:	  fluctuaitons	  

•  Two	  and	  three	  dimensions	  

•  True	  disorder	  
•  Measure	  dynamic	  response	  

•  Topological-‐localized	  states	  (?)	  

Much	  more	  to	  be	  done!	  
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