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Semiconductor wire  vs. SO coupled 1d Fermi gas

Lutchyn et al PRL 2010, Oreg et al PRL 2010 Wang, et. al. (Jing Zhang’s) group PRL 2012
+ experiments at Delft, WIS, ... Cheuk et. al. (Zwierlein’s group), PRL 2012
Majorana zero modes =
A \ﬂl‘alctlve Ferm,'_gas B
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* Proximity coupling to SC * Intrinsic attractive interaction
¢ Charge not conserVEd ° Charge is conserved
* Fully gapped * Gapless phonon modes

Is there a topological state in the cold atomic system?
Protected zero modes? If yes, what is their experimental signature?



Essence of the problem: charge is a good quantum number
Fidkowski, Lutchyn, Nayak, Fisher PRB 2011; Sau, Halperin, Flensberg, Das Sarma PRB 2011

cold Fermi-gas ? —

Majorana zero modes implies degeneracy

of ground states with different particle number: E(N + 1) — E(N)
But in a system with compressibility k: E(N+1)—E(N)= i
kL

Possible solution: 1d semiconductors coupled to 1d superconductor.
(Fidkowski et. al. 2011)
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This talk:
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Z, subgroup of spin-symmetry remains: spin-parity = fermion parity.
Integerness of the spin (integer / half-integer) is a good quantum number

1. Topological (Majorana-like) ground state degeneracy
associated with exchanging parity between “topo” domains

2. Observe through a novel topological pumping
induced by slow sweep of the Zeeman field



Low energy description (Bosonization)
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Two phases of a spin-orbit coupled Fermi gas
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U 1

Ho=o- [ du [K_(axe_ﬁ - K((‘?xqb_)z] —gi/dzc cos(20_) — g, /dm cos(2¢_)

1. Interaction dominated - paired

* The “spin- %" field is pinned <€739—>%:|:1 TTROS NI T

(+1 and -1 are gauge equivalent, not distinct states)

* Gap to single fermion excitations (“spin-gap”)

2. Zeeman dominated - unpaired \\\{/ \\/\/\/
e (e Vx>l TR

* Gapless single fermion excitations



Degeneracy in a harmonic trap
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* Degenerate ground states are related by transferring a
spin % (single fermion) between topological domains.

* Backscattering by local impurities splits the degeneracy
Fidkowski et. al. PRB 2011; Sau et. al. PRB 2011  aAE -~ V;vzlx;+c_c_

_lea

e But with smooth potential only exponentially small splitting.



Probing the topological state: quantized pumping in the trap

Slow sweep of the Zeeman field from high value to zero.

Initial state with even particle number:
d, > €50
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0, =0 In the sweep we generate 0 or 2 gapped fermions!

v

Odd initial state: generate 1 fermion

Quantized excess energy per sweep for random even/odd initial state.



Summary of this part

spin %
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v

 Zero modes naturally occur in a SO-coupled Fermi cold gas.
But different from the Kitaev wire.

71 Y4
* Probed by a novel topological pump. ————
LS E
* Protected at low T by the spin gap in ———
the non topological domains. TN 73)(,{4
(coupling to phonons is irrelevant e
at low energy) =0 (Ll






Many-Body localization: new insights
from theory and experiment

Ehud Altman, Weizmann Institute of Science

Collaborators: Ronen Vosk, Mark Fischer (WIS), David Huse (Princeton)

Experiment: Michael Schreiber, Sean Hodgman, Pranjal Bordia,
Henrik Luschen, Ulrich Schneider, Immanuel Bloch (LMU)
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Conventional wisdom:
Quantum mechanics is manifest only close to the ground state

Quantum Hall effect: Topological insulators:

Fermi liquid: T

classical
critical
Ordered
(symmet

broken)




Ergodicity is the enemy of quantum mechanics

Many-body time evolution washes
away quantum correlations.

Quantum information stored in local

objects is rapidly lost as these get ; > /¥ ¥
entangled with the rest of the system. " t m* - “:

The only remaining structures of
information are slow order parameter

fields and conserved densities. » Classical hydrodynamic
description (e.g. diffusion).

To see guantum phenomena at long times need breaking of ergodicity!



Well known example: integrability

Failure to thermalize due to constraints imposed by
many conservation rules

Quantum newton’s cradle experiment with cold atoms.
Weiss, Nature 2010
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But integrability is fragile! Only special points in parameter space.
Are there more generic non-thermal states?



Anderson localization

Single particle (Anderson 1958):

Vanishing probability of resonances.

Many particle states: UcJr cg C~Cs

At high energies interaction connects between ~2" localized states !
Can localization survive ?



Many-Body Localization

Basko, Aleiner, Altshuler (2005); Gornyi, Mirlin, Polyakov (2005):
Insulating phase stable below a critical T or E; metal above it.

System with bounded spectrum: Disorder tuned transition at 7=
Oganesyan and Huse (2007), Pal and Huse (2010)

T, E
delocalized

thermalizing

Localized (k =0, 0 =0)
non ergodic phase

Disorder strength

Many questions:

Nature of the dynamics in the localized phase?
At the critical point? Experiments?



The eignestate perspective:
Eigenstate thermalization hypothesis (ETH)
Deutsch 91, Srednicki 94

High energy eigenstate of an ergodic
system appears thermal:

1 SH e
— —6_ A
PA 7

Von-Neuman (entanglement) entropy:

Sa=tr|palnpa] x L4

Anderson localization is

an example where ETH fails: WW\N\Q/\/\./\/

“Area law” entropy even in high
. g Ld—l
energy eigenstates A X

Many body localization = stability of such localized states to interactions



A tale of two paradigms

Thermalization Many-body localization
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Quantum correlations in local d.o.f are Local quantum information
rapidly lost as these get entangled with persists indefinitely.
the rest of the system.

3 $

Classical hydro description of remaining Need a fully quantum description
slow modes (conserved quantities, and of the long time dynamics!
order parameters).
?
® >
The many-body elusive interface between

localization transition = guantum and classical worlds



The eigenstate perspective

Thermalizing Many-body localized

Energy eigenstates are

Eigenstates have low
highly entangled:

entanglement
erER T ta e oo o8I0 0 6EV 000
Sa~ LY (volume law) p Sa ~ L1 (area law)

@ >

Localization transition: fundamental change in entanglement pattern.
More radical than in any other phase transition we know !




Outline

* New insights from theory
— Dynamics in the many-body localized (MBL) phase
— Phase transition from MBL to a thermal liquid

e Confronting theory and experiment
Collaboration with I. Bloch’s LMU group, U. Schneider and co.
— MBL of fermions in quasi-periodic lattice
— Outlook to future experiments



RG Solution of time evolution

R. Vosk and EA PRL (2013); PRL (2014)
H=Y"[Jioioi, + hio? + Jfofoly +...] ¢ [ %)
W) = HHlHHHHHTHTHTTHTT@THTH@HH
Pick out largest couplings € = max (J7, h;) Flrast

Short times (t =1/Q): System evolves according to H,,,,
Other spins essentially frozen on this timescale.

Longer times (t >>1/Q): Eliminate fast modes (order Q) perturbatively
to obtain effective evolution for longer timescales.

Similar to standard strong disorder RG, Dasgupta-Ma (1980), D. Fisher (1992)
But here we target low frequency instead of low absolute energy



Outcome of RG: integrals of motion = (frozen spins)

R. Vosk and EA PRL (2013); PRL (2014); Pekker, Refael et. al. PRX (2014)

Example: strong transverse field Jr  Jr

H = Z [Jianf+1 + hio; +Vz'(7?0§c+1] * t +

H.g = e_iSHeiS

J= JJn/0
= o se x| JLIR o oq
* V‘v +

In this RG scheme degrees of freedom are not eliminated but rather frozen into
quasi-local integrals of motion:

o; = Zo; + exponential tail

~.



Effective Hamiltonian (fixed point theory)

Depends only on the quasi-local integrals of motion:

Hep = St + Vot + 3 Vauafojoi +
7 17k
Vij ~ Ve~ i —x5|/€

Independently postulated as a phenomenological description of the
many-body localized phase.

Oganesyan & Huse (2013); Serbyn, Papic & Abanin (2013)

Surprisingly rich dynamics in MBL phase:
* Slow log(t) growth of the entanglement entropy.
 Quantum coherence revealed by spin echoes

* Distinct localized phases (glassy, paramagnetic, topological ...)

This scheme cannot access the localization phase transition!



Theory of the many-body localization transition
Vosk, Huse and E.A. arXiv:1412.3117

UMYy ! ()

Spin chain fragmented into puddles of different types:
incipient insulators and incipient metals.
Modeled as coupled random matrices: A, Iy = g =T/
AZ- Mean level spacing in the block

Fi_l = T; Time for entanglement to spread across the block

gi < 1 “insulating block” g; >> 1 “thermalizing block”

(Poisson level statistics) (Wigner-Dyson statistics)

RG flow: itteratively join matrices that entangle with each other at

running cutoff scale. At the end of the flow we are left with one big
block that is either insulating or thermalizing



Outcome of the RG flow
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Next, characterize the transition:
(i) in terms of dynamics; (ii) in terms of eigenstate entanglement
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RG results | — dynamical scaling for transport

Relation between transport time 7. and length / of blocks:

Diffusion: Ttr — 12 lir = (DT)w

Delocalized, but not diffusion
A
(@) 1 v . Y

log(t/ tg)



RG results | —dynamical scaling for transport

Relation between transport time 7. and length / of blocks:

0.5
: e 3
Surprise! The transition is from =, |
. ) . c v
localized to anomalous diffusion. 2
S 0.3}
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Seen also in recent ED studies: w 0.2
Bar-Lev et al 2014; Agarwal et al 2014 E
s 0.1
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Result of Griffiths effects. long insulating inclusions inside the metal are exponentially
rare but give exponentially large contribution to the transport time.
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=) Relaxation with slow power-law tails



Eigenstate entanglement turns out to be the natural
scaling variable of this RG scheme !
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Eigenstate entanglement turns out to be the natural
scaling variable of this RG scheme !
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* Infinite randomness fixed point characterized by broad entanglement distribution

* Universal jump to full thermal entropy the Griffiths phase is thermal



Many-body localized Thermalizing
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Experimental study of MBL:
fermions in a quasi-random optical lattice

arXiv:1501.05661
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Collaboration with With:
Immanuel Bloch’s group (Munich)
Mark Fischer and Ronen Vosk (Weizmann)



Michael Schreiber
Pranjal Bordia
Henrik Lischen

Sean Hodgman

Ulrich Schneider
Immanuel Bloch

LMU & MPQ Miinchen

Mark Fischer
Ronen Vosk
EA

Weizmann




Previous experiments

Anderson localization:

Expansion in disordered potential

Billy et al. (Aspect) Nature (2008)
Roati (Inguscio) PRL (2008)

Many-body localization (?): 08
Transport in a trap (response to impulse) - %{:}»
Kondov et al. (DeMarco) preprint 2013 -

)

Vem (MmM/sec




Previous experiments

Many body localization (?) :

o
®

In-trap transport (following impulse)

)

Vem (Mm/sec
o o
N ~

o
o

The Problems with such a global probe:

* Very slow probe (finite size time scale by definition)
e Sensitive to inhomogeneity.
e.g. Mott shells can block transport

Qur solution: Use a fast local observable




Quantum quench protocol

1. Fermions in optical lattice prepared in period-2 CDW
$¢ JUPN . BK ¢
\/ WW/ V\/
e 0] e o e o e o e
2. Evolve the state with the 1d lattice Hamiltonian:

B==J% (d,tirothe) + A cos(2nfi+9)el oo +U Y iti it

Incommensurate potential

W (t)) = e |w(0))

I TRT VAW INUN.
AL\

Numerics suggest that this model shows generic MBL ( lyer et. al. PRB 2013)



What to measure?

<Ne B NO>

L
Relaxation of the CDW with time: _ i Z
N

il N. + N,
7j=1

time: 0 —->
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If the system is localized, the CDW operator has finite overlap with
an integral of motion.

=) (/) will relax to a non-vanishing value

Macroscopic order parameter of the MBL phase



Imbalance Z

Experimental results

Non interacting Aubry-André:

o
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T
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0.6
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0
-0.2
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Time (1)

Ergodicity is broken,
as expected, for A/J>2

With interactions:

Imbalance Z
o o o o
N EN » (0 0]
1

o

| |
6 U/=4.7(1)
6,0 U/=10.3(1)

Ergodicity is broken even with
interactions!

Direct signature of MBL!




Experimental phase diagram

Imbalance Z

T T T T
O Experiment

ED - no trap
——— ED -incl. trap

Broadening of transition due to
inhomogeneity (average over many
1d tubes with different parameters)

But inhomogeneity unimportant
deep in the localized phase.



Imbalance Z

Dependence on initial state

» A//=5: Localized phase o
] | | . . | | - o8 ° 'O Oo;
I & 0 { O attractive % -
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S -4 0 4 O Scattering Length During Loading (a,)
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© = non-interacting Fermions
0.2 |
] ] ] ] ]
-20 -10 0) 10 20
u/J

Small U: no dependence on doublon fraction.
Large U: isolated doublons localize easily because Jp ~ J*/U

M. Schreiber et al. arXiv:1501.05661
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Phase diagram
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Measurement times are sufficiently long to have the
logarithmic growth of entanglement

DMRG calculation: Variation of the slope with interaction U
S(t) = So + s4 log(t) correlated with variation of the imbalance
A L ! L | ! v
a 14L UiJ=0 B 0.5 0.65
9 Ui =1 y
= B Uid=25 0.4
0 4l — UU=35 @ 0.60
qE; — U=7 . o= 0.55 &
3 06 1 02 [
S
c - . —_
£ € 0.1 0.50
5 0.2 | | - L o
100 10" | ! | L 0.45

un

Is there an observable with a direct relation to
the entanglement entropy?



fluctuations: effective model P =

o effective model: 0; = (n2; — Ngiy1) wep T = Z<Uf>
7
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fluctuations: effective model  "*“P=“

» effective model: 0. = (ng; — No;11) P 7 — Z(J
)
RIS WL

number of
frequencies
Ny ~ eS(t)

~ s, log(t)

1

z . 2
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0T, (1) ~ \}Z(;t)



o Fluctuations of the imbalance:
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Temporal fluctuations of the imbalance

&0

Expect them to decay as: 1/(Ut)
B . . . . ———— ———
c ° S 107 Ud=1.0 — U =3.5 -
S o) Entanglement. En'tropy lope . : Ud=25 — UiJ=4.0 T
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0 5 10 15 20 Time (1)
und

Temporal fluctuations carry similar information as the
entanglement growth yet are measurable!
But will require experiment with single site resolution

Vasseur, Parameswaran and Moore 2014, Serbyn, Papic and Abanin 2014



Very long time behavior

* At very long times, both atom number and Imbalance decay to zero.
* Photon scattering / Light induced collisions

* Coupling between tubes / influence of higher bands
 QOther sources?

Slow decay of the imbalance at long times:
|

|
U/J=4.7(1)

0.8 0,0 UrJ=10.3(1) .
™ 0.6 %00 4
P o © o o) o
0.4 S
3 U |
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Time (1)



Outlook

Much more to be done!

Control coupling to environment
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N AA localized ©
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Address critical point: finite time scaling

Measure local observables: fluctuaitons

Two and three dimensions

True disorder

Measure dynamic response

Topological-localized states (?)
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