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Outline

• Features of strongly-coupled composite dark matter

• Searching for a class of models: guidelines

• Importance of lattice field theory simulations

• Polarizability of composite dark matter
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Outline

• Features of strongly-coupled composite dark matter

• Searching for a class of models: guidelines

• Importance of lattice field theory simulations

• Polarizability of composite dark matter

in the end it’s a nuclear physics problem!
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Strongly-coupled composite dark matter

• Dark matter is a composite 
object

• Composite object is 
electroweak neutral

• Constituents can have 
electroweak charges

• Dark matter is stable thanks to 
a global symmetry (like baryon 
number)
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Strongly-coupled composite dark matter

• Dark matter is a composite 
object

• Composite object is 
electroweak neutral

• Constituents can have 
electroweak charges

• Dark matter is stable thanks to 
a global symmetry (like baryon 
number)

Akin to a technibaryon

Suppressed interactions with SM

Mechanisms to provide 
observed relic abundance

Guaranteed in many models
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What do we have in mind?

• In general we think about a new strongly-coupled gauge sector like QCD with 
a plethora of composite states in the spectrum

• Dark fermions have dark color and also have electroweak charges

• Depending on the model, dark fermions have electroweak breaking masses 
(chiral), electroweak preserving masses (vector) or a mixture

• A global symmetry of the theory naturally stabilizes the dark baryonic 
composite states (e.g. neutron)
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What do we have in mind?

• In general we think about a new strongly-coupled gauge sector like QCD with 
a plethora of composite states in the spectrum

• Dark fermions have dark color and also have electroweak charges

• Depending on the model, dark fermions have electroweak breaking masses 
(chiral), electroweak preserving masses (vector) or a mixture

• A global symmetry of the theory naturally stabilizes the dark baryonic 
composite states (e.g. neutron)

we construct a minimal model with these features
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What do we have in mind?

• In general we think about a new strongly-coupled gauge sector like QCD with 
a plethora of composite states in the spectrum

• Dark fermions have dark color and also have electroweak charges

• Depending on the model, dark fermions have electroweak breaking masses 
(chiral), electroweak preserving masses (vector) or a mixture

• A global symmetry of the theory naturally stabilizes the dark baryonic 
composite states (e.g. neutron)

today focus on the 
general features

5Friday, December 12, 14



“How dark is dark matter?”

• dimension 5 ➥ magnetic dipole

• dimension 6 ➥ charge radius

• dimension 7 ➥ polarizability

Interactions of neutral object with photons

[Pospelov & Veldhuis, Phys. Lett. B480 (2000) 181]
[Weiner & Yavin, Phys. Rev. D86 (2012) 075021]

(�̄�µ⌫�)Fµ⌫

⇤dark

(�̄�)vµ@⌫Fµ⌫

⇤2
dark

(�̄�)Fµ⌫Fµ⌫

⇤3
dark
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“How dark is dark matter?”

• dimension 5 ➥ magnetic dipole

• dimension 6 ➥ charge radius

• dimension 7 ➥ polarizability

Interactions of neutral object with photons

[Pospelov & Veldhuis, Phys. Lett. B480 (2000) 181]
[Weiner & Yavin, Phys. Rev. D86 (2012) 075021]

our guy for today
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O�
F = C�

F �̄�Fµ⌫Fµ⌫

Electromagnetic polarizability

• remove magnetic dipole moment:

• lightest stable baryon is a boson 
with S=0

• remove charge radius:

• 2 flavors with degenerate masses

• polarizability can not be removed 

� �

Nucleus Nucleus

p p0

k k0

` `� q

k + `

q = k0 � k = p� p0
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Electromagnetic polarizability

• remove magnetic dipole moment:

• lightest stable baryon is a boson 
with S=0

• remove charge radius:

• 2 flavors with degenerate masses

• polarizability can not be removed 
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Nucleus Nucleus
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Nuclear
Physics
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Importance of lattice field theory techniques

• lattice simulations are naturally suited for models where dark fermion masses 
are comparable to the confinement scale

• controllable systematic errors and room for improvement

• Naive dimensional analysis and EFT approaches can miss important         
non-perturbative contributions

• NDA is not precise enough when confronting experimental results and might 
not work for certain situations
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are comparable to the confinement scale

• controllable systematic errors and room for improvement

• Naive dimensional analysis and EFT approaches can miss important         
non-perturbative contributions

• NDA is not precise enough when confronting experimental results and might 
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Polarizability of DM from lattice simulations

• Background field method: response of 
neutral baryon to external electric field

• Measure the shift of the baryon mass as 
a function of 

• Precise lattice results

[LSD collab., in preparation]

[Detmold, Tiburzi & Walker-Loud, Phys. Rev. D79 (2009) 094505 
and Phys. Rev. D81 (2010) 054502]

preliminary

preliminary
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Nuclear polarizability (Rayleigh scattering)

[Weiner & Yavin, Phys. Rev. D86 (2012) 075021]
[Frandsen et al., JCAP 1210 (2012) 033]

[Pospelov & Veldhuis, Phys. Lett. B480 (2000) 181]

[Ovanesyan & Vecchi, arxiv:1410.0601]

• several attempts to estimate this in the past, with 
increasing level of complexity in a perturbative setup

• multiple scales are probed by the momentum 
transfer in the virtual photons loop

• mixing operators and threshold corrections appear at 
leading order and interference is possible 

• nuclear matrix element has non-trivial excited state 
structure that requires non-perturbative treatment

• similar structure arising in double beta decay matrix 
elements

q

q

q

�� ��

Q Q

Q

g g

A A

A

MM

OM
MM

OM
MM

OM

Figure 1. One-loop Feynman graphs showing the contributions to the DM-nucleus cross section
in the case of OM . Mixing diagram generating OM

q (left), matching contribution giving rise to OM
G

(middle), and matrix element describing the low-energy two-photon scattering of DM on the nucleus
(right). See text for further details.

where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
that the Wilson coe�cient of OM

q vanishes at M⇤.

We now evolve the Wilson coe�cient CM
q from M⇤ down to mt, where we integrate out

the top quark. Removing the heavy quark as an active degree of freedom gives rise to a finite
threshold correction to the Wilson coe�cient of the operator

OM
G = CM

G M̄MG

a,µ⌫
G

a
µ⌫ , (4.3)

where G

a,µ⌫ denotes the field strength tensor of QCD. The relevant leading-order (LO) di-
agram is shown in the middle of Figure 1. The corresponding matching is captured by the
simple replacement [30]

mtM̄Mt̄t CM
t (mt) ! M̄MG

a,µ⌫
G

a
µ⌫ CM

G (mt) , (4.4)

with CM
G given at next-to-leading order (NLO) by

CM
G (mt) = �↵s(mt)

12⇡

�
1 + �t

� CM
t (mt) , (4.5)

where �t = 11↵s(mt)/(4⇡) [31]. Although �t is formally of higher order, we will include such
finite two-loop contributions in our analysis, because they are numerically non-negligible.
Notice that once the top quark has been removed, the Wilson coe�cient CM

t and the corre-
sponding logarithm is frozen at the threshold mt in the EFT.

After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM

q and OM
G . Like OM the operator OM

G mixes into OM
q .

The relevant diagram is the QCD counterpart of the one displayed on the left in Figure 1
with the photons replaced by gluons. As shown in Appendix B, the associated corrections
are subleading and we will neglect them in what follows. The operator OM

G itself evolves like
the QCD coupling constant, so that for scales mb < µ < mt its Wilson coe�cient takes the
form

CM
G (µ) ' ↵

⇡

↵s(µ)

⇡

e

2
t

4

�
1 + �t

�
ln

✓
M

2
⇤

m

2
t

◆
CM (M⇤) . (4.6)

At the scales mb and mc, the bottom and charm quarks are integrated out, which in
full analogy to (4.5) results in finite matching corrections to CM

G . Including all heavy-quark

– 6 –

hA|�̄�Fµ⌫Fµ⌫ |Ai
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EFT treatment for the polarizability operator

O�
q = C�

q mq �̄�q̄q O�
G = C�

G �̄�Gµ⌫Gµ⌫ O�
F = C�

F �̄�Fµ⌫Fµ⌫

[Frandsen et al., JCAP 1210 (2012) 033]
[Ovanesyan & Vecchi, arxiv:1410.0601]
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Figure 1. One-loop Feynman graphs showing the contributions to the DM-nucleus cross section
in the case of OM . Mixing diagram generating OM

q (left), matching contribution giving rise to OM
G

(middle), and matrix element describing the low-energy two-photon scattering of DM on the nucleus
(right). See text for further details.
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where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
that the Wilson coe�cient of OM

q vanishes at M⇤.
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t and the corre-
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After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM

q and OM
G . Like OM the operator OM

G mixes into OM
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The relevant diagram is the QCD counterpart of the one displayed on the left in Figure 1
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are subleading and we will neglect them in what follows. The operator OM

G itself evolves like
the QCD coupling constant, so that for scales mb < µ < mt its Wilson coe�cient takes the
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EFT treatment for the polarizability operator
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[Frandsen et al., JCAP 1210 (2012) 033]
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G

(middle), and matrix element describing the low-energy two-photon scattering of DM on the nucleus
(right). See text for further details.
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EFT treatment for the polarizability operator
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where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
that the Wilson coe�cient of OM

q vanishes at M⇤.

We now evolve the Wilson coe�cient CM
q from M⇤ down to mt, where we integrate out

the top quark. Removing the heavy quark as an active degree of freedom gives rise to a finite
threshold correction to the Wilson coe�cient of the operator
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µ⌫ , (4.3)

where G

a,µ⌫ denotes the field strength tensor of QCD. The relevant leading-order (LO) di-
agram is shown in the middle of Figure 1. The corresponding matching is captured by the
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where �t = 11↵s(mt)/(4⇡) [31]. Although �t is formally of higher order, we will include such
finite two-loop contributions in our analysis, because they are numerically non-negligible.
Notice that once the top quark has been removed, the Wilson coe�cient CM

t and the corre-
sponding logarithm is frozen at the threshold mt in the EFT.

After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM
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At the scales mb and mc, the bottom and charm quarks are integrated out, which in
full analogy to (4.5) results in finite matching corrections to CM

G . Including all heavy-quark
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EFT treatment for the polarizability operator
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where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
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q vanishes at M⇤.
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OM
G = CM

G M̄MG

a,µ⌫
G

a
µ⌫ , (4.3)

where G
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where �t = 11↵s(mt)/(4⇡) [31]. Although �t is formally of higher order, we will include such
finite two-loop contributions in our analysis, because they are numerically non-negligible.
Notice that once the top quark has been removed, the Wilson coe�cient CM

t and the corre-
sponding logarithm is frozen at the threshold mt in the EFT.

After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM

q and OM
G . Like OM the operator OM

G mixes into OM
q .

The relevant diagram is the QCD counterpart of the one displayed on the left in Figure 1
with the photons replaced by gluons. As shown in Appendix B, the associated corrections
are subleading and we will neglect them in what follows. The operator OM

G itself evolves like
the QCD coupling constant, so that for scales mb < µ < mt its Wilson coe�cient takes the
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full analogy to (4.5) results in finite matching corrections to CM
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where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
that the Wilson coe�cient of OM

q vanishes at M⇤.

We now evolve the Wilson coe�cient CM
q from M⇤ down to mt, where we integrate out

the top quark. Removing the heavy quark as an active degree of freedom gives rise to a finite
threshold correction to the Wilson coe�cient of the operator
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where G

a,µ⌫ denotes the field strength tensor of QCD. The relevant leading-order (LO) di-
agram is shown in the middle of Figure 1. The corresponding matching is captured by the
simple replacement [30]

mtM̄Mt̄t CM
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µ⌫ CM
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with CM
G given at next-to-leading order (NLO) by

CM
G (mt) = �↵s(mt)

12⇡
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� CM
t (mt) , (4.5)

where �t = 11↵s(mt)/(4⇡) [31]. Although �t is formally of higher order, we will include such
finite two-loop contributions in our analysis, because they are numerically non-negligible.
Notice that once the top quark has been removed, the Wilson coe�cient CM

t and the corre-
sponding logarithm is frozen at the threshold mt in the EFT.

After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM

q and OM
G . Like OM the operator OM

G mixes into OM
q .

The relevant diagram is the QCD counterpart of the one displayed on the left in Figure 1
with the photons replaced by gluons. As shown in Appendix B, the associated corrections
are subleading and we will neglect them in what follows. The operator OM

G itself evolves like
the QCD coupling constant, so that for scales mb < µ < mt its Wilson coe�cient takes the
form
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full analogy to (4.5) results in finite matching corrections to CM
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Naive dimensional analysis of

• it is hard to extract the momentum 
dependence of this nuclear form factor

• similarities with the double-beta decay 
nuclear matrix element could suggest 
large uncertainties ~

• to asses the impact of uncertainties on 
the total cross section we start from 
naive dimensional analysis

• we allow a “magnitude” factor         to 
change from 1 to 25 fA

F ⇠ Z2↵
MA
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q

q

q

�� ��

Q Q

Q

g g

A A

A

MM

OM
MM

OM
MM

OM

Figure 1. One-loop Feynman graphs showing the contributions to the DM-nucleus cross section
in the case of OM . Mixing diagram generating OM

q (left), matching contribution giving rise to OM
G

(middle), and matrix element describing the low-energy two-photon scattering of DM on the nucleus
(right). See text for further details.

where eq is the electric charge of the quark q and mt < µ < M⇤. Notice that we have assumed
that the Wilson coe�cient of OM

q vanishes at M⇤.

We now evolve the Wilson coe�cient CM
q from M⇤ down to mt, where we integrate out

the top quark. Removing the heavy quark as an active degree of freedom gives rise to a finite
threshold correction to the Wilson coe�cient of the operator

OM
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µ⌫ , (4.3)

where G

a,µ⌫ denotes the field strength tensor of QCD. The relevant leading-order (LO) di-
agram is shown in the middle of Figure 1. The corresponding matching is captured by the
simple replacement [30]
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where �t = 11↵s(mt)/(4⇡) [31]. Although �t is formally of higher order, we will include such
finite two-loop contributions in our analysis, because they are numerically non-negligible.
Notice that once the top quark has been removed, the Wilson coe�cient CM

t and the corre-
sponding logarithm is frozen at the threshold mt in the EFT.

After the top quark has been integrated out, we then have to consider the mixing of
the set of three operators OM , OM

q and OM
G . Like OM the operator OM

G mixes into OM
q .

The relevant diagram is the QCD counterpart of the one displayed on the left in Figure 1
with the photons replaced by gluons. As shown in Appendix B, the associated corrections
are subleading and we will neglect them in what follows. The operator OM
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the QCD coupling constant, so that for scales mb < µ < mt its Wilson coe�cient takes the
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At the scales mb and mc, the bottom and charm quarks are integrated out, which in
full analogy to (4.5) results in finite matching corrections to CM

G . Including all heavy-quark
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Summary and future directions

• strongly-coupled composite dark matter is an interesting scenario that should 
not be overlooked

• within this space of theories it is not hard to find regions where all interactions 
with SM are suppressed up to dimension-7 operators

• dimension-7 EM polarizability can not be eliminated in any case

• lattice simulations can calculate the EM form factors of the composite object 
with controllable errors (using mature LQCD techniques)

• nuclear physics input is needed and nuclear matrix elements have the largest 
uncertainties that should be assessed
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Questions
?

YES.
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• Q: How much does the nuclear matrix element influence the conclusions?

• we tried to estimate this and it seems a O(25) change could affect results

• Q: What methods can be used to evaluate the nuclear matrix element?

• can we learn something from double-beta decays? or electron-nuclei 
scattering?

• Q: Are there experimental limits that can bound the matrix element?

• not sure at the moment.
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Asymmetric dark matter
S. Barr, R. S. Chivukula, and E. Farhi, Phys. Lett. B241 (1990) 387
D. B. Kaplan, Phys. Rev. Lett. 68 (1992) 741
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Asymmetric dark matter

• It is an observational fact that the number density for dark matter and 
baryonic matter are of the same order of magnitude

⌦DM ⇡ 5 ⌦B

[Planck and ESA]

S. Barr, R. S. Chivukula, and E. Farhi, Phys. Lett. B241 (1990) 387
D. B. Kaplan, Phys. Rev. Lett. 68 (1992) 741

S. Nussinov, Phys. Lett. B165 (1985) 55

18Friday, December 12, 14



Asymmetric dark matter

• It is an observational fact that the number density for dark matter and 
baryonic matter are of the same order of magnitude

• This can be explained in Technicolor theories where dark                                          
matter is a baryon of a new strongly-coupled sector which                                 
shares an asymmetry with standard baryonic matter

⌦DM ⇡ 5 ⌦B

nDM � n̄DM ⇡ nB � n̄B
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baryonic matter are of the same order of magnitude
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matter is a baryon of a new strongly-coupled sector which                                 
shares an asymmetry with standard baryonic matter

⌦DM ⇡ 5 ⌦B
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FIG. 1: The ratio of dark matter energy density ⇢
DM

to baryon energy density ⇢B as a function of dark matter mass mX in
units of the temperature at which the B �X transfer decouples TD, for labeled values of TD. As light solution (corresponding
to mX/TD ⇠ 0 is not shown. See Section II and Eq. (6) for detailed explanation. The observed ratio of ⇢

DM

/⇢B is 5.86 [21].

These mechanisms have been successfully applied to generate the relevant energy densities in the context of an
existing baryon asymmetry being transferred to light dark matter, though mechanisms named darkogenesis [17] and
hylogenesis [18] have also been suggested which transfer the asymmetry in the opposite direction. If, on the other
hand, dark matter is not relativistic at the temperature TD at which the X-transfer operators decouple, then the
number density of dark matter is suppressed. In general, we find when the ratio mX/TD is about 10, we get the
required density of dark matter compared to baryons in the Universe. This thermal suppression is a generic feature,
allowing heavy dark matter in many scenarios of Xogenesis.

We also discuss two other reasons that dark matter number density might be suppressed relative to baryon number
so that dark matter can naturally be weak scale in mass.. In the first, the SU(2)L sphaleron transfer is only active for
a bounded temperature range between the masses of two doublets whose net number density would cancel if they were
degenerate [22]. In the second, excess X-number is bled o↵ into leptons. That is, even after the baryon asymmetry
is established (possibly at the sphaleron temperature where a lepton asymmetry gets transferred into an asymmetry
in the baryon sector), X- and lepton-number violating operators are still in thermal equilibrium allowing X number
density to be reduced while lepton number density is increased. Both these mechanisms cause the transfer to baryons
to not be active for the entire temperature range down to TD when the X-number violating operators decouple.

Xogenesis models must also remove the symmetric thermally produced dark matter component, so that the asym-
metric component dominates. When the transfer mechanism is due to higher order operators, the operators necessary
to transfer the asymmetry may also lead to the annihilation of this component. In other examples, new interactions
are assumed, which in some cases also lead to detectable signatures. A new non-abelian W 0 with masses much below
mW allows the dark matter to annihilate into dark gauge bosons, but with few – if any – direct detection constraints
and probably no visible signatures in the near future. Annihilation via a light Z 0 that mixes with the photon allows
the chance for direct detection, depending on the size of the mixing parameter. While not strictly necessary, the
photon-Z 0 mixing is a generic property, and may be accessible in beam experiments [23].

We also note one additional constraint that applies to supersymmetric models in which higher dimension operators
link X to L or B via the lepton or baryon superpartners. In these cases, the neutralinos that come from the
superpartner decay must also be eliminated via self-annihilation. This generally implies that the neutralino should
be primarily wino so that the annihilation cross section is su�ciently large to make the neutralino component of dark
matter a small percentage of the total.

[Buckley & Randall, JHEP1109 (2011)]
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higher dimensional operators

nDM ⇡ nB ! MDM ⇡ 5 MB

sphaleron processes

MDM � MB ! nB � nB ⇡ e�MDM/T?

S. Nussinov, Phys. Lett. B165 (1985) 55

18Friday, December 12, 14



A composite dark matter model

• Let’s focus on a SU(N) dark 
gauge sector with N=4
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the SM Higgs and obtain 
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the hypercharge. The electric charge Q = T

3

+Y for the fermion
components is shown for completeness.

yet have the ability to simulate on the lattice. Naive di-
mensional analysis applied to the annihilation rate suggests
the dark matter mass scale should be >⇠ 10-100 TeV, but a
more precise estimate is not possible at this time. In any
case, for dark matter with mass below this value, there is
an underproduction of dark matter through the symmet-
ric thermal relic mechanism, and so this does not restrict
consideration of dark matter mass scales between the elec-
troweak scale up to this thermal abundance bound.

CONSTRUCTING A VIABLE MODEL

[placeholder for a description of how a viable model
with interactions with the Higgs can be constructed while
satisfying the various (gross) experimental constraints]

We consider a new, strongly-coupled SU(N)

D

gauge
group with fermionic matter in the vector-like representa-
tions shown in Table I.

This is not the only possible choice for the charges, but
the requirement for the presence of Higgs Yukawa cou-
plings, along with extremely strong bounds on the ex-
istence of stable fractionally-charged particles based on
searches for rare isotopes [? ], greatly constrains the num-
ber of possible models.

DARK FERMION INTERACTIONS AND MASSES
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transform under a global U(4) ⇥
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this large global symmetry, one SU(2) (diagonal) sub-
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, one U(1) subgroup

will be identified with U(1)
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, and one U(1) will be iden-
tified with dark baryon number. The total fermionic con-
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up to become 4 Dirac fermions in the fundamental or
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with electric
charges of Q ⌘ T
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+ Y = ±1/2. We use the notation
where the superscript u and d (as in F u, F d and later  u,
 d,  u,  d) to denote a fermion with electric charge of
Q = 1/2 and Q = �1/2 respectively.
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of the U(1)’s is identified with U(1)
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. (In the special case
when Mu
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, the global symmetry is accidentally en-
hanced to SU(2)⇥U(1), where the global SU(2) acts as a
custodial symmetry.) Thus, after weakly gauging the elec-
troweak symmetry and writing arbitrary vector-like mass
terms, the unbroken flavor symmetry is thus U(1)⇥U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2, +1/2) representation. They are given by
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where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =

(0 v/
p
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T , with v ' 246 GeV. Inserting the vev
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Higgs exchange cross section

• Need to non-perturbatively 
evaluate the σ-term of the dark 
baryon (scalar nuclear form factor)

• Effective Higgs coupling non-trivial 
with mixed chiral and vector-like 
masses

• Model-dependent answer for the 
cross-section in this channels

• A non-negligible vector mass is 
needed to evade direct detection 
bounds

mf (h) = m+
yhp
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[LSD collab., Phys. Rev. D89 (2014) 094508]
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LEP bound on charged pseudoscalar mesons
LHC could be do better here. LUX bound

[Phys. Rev. Lett. 112 (2014)]

[LSD collab., Phys. Rev. D89 (2014) 094508]
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Magnetic moment and charge radius of DM

• Need non-perturbative 
calculation of form-factors for 
DM composite object

• Negligible dependence on 
constituent mass and 
number of flavors

• Magnetic moment dominates 
for masses > 25GeV

Magnetic moment  dominates for MB & 25 GeV

—Dashed lines show charge radius
⌦
r2↵ contribution to full rate

—Suppressed by 1/M2
B relative to magnetic moment contribution
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XENON100 [1207.5988], 95% CL exclusion

XENON100 results
only sensitive to

⌦
r2↵

for MB . 0.5 TeV

Estimate MB . O(0.01) TeV
sensitive to polarizability

 = 0 automatically for SU(N) gauge theories with even N. . .

Composite dark matter on the lattice Theory Seminar, 24 March 2014 13 / 20

[LSD collab., Phys. Rev. D88 (2013) 014502]

without magnetic 
moment contribution Excludes dark matter 

mass below 10 TeV!

SU(3) model: DM is neutral baryon
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EFT operator treatment for polarizability

[Frandsen et al., JCAP 1210 (2012) 033]
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