The DarkSide program

Andrea Pocar University of Massachusetts, Amherst

(for the DarkSide collaboration)

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Andrea Pocar - UMass Amherst

Nuclear Aspects of Dark Matter - INT Seattle - December 8-12, 2014

DarkSide: the last kid on the block ... or maybe not!

Andrea Pocar - UMass Amherst

Outline

- The DarkSide Program
- DS detector concept
- R&D milestones: DS-10 and SCENE
- First results from DS-50
- Outlook

Dark Matter - modern evidence

Pheline Review Letters, in press

Dark matter detection

χ χ Annihilation **Production Colliders** Q Indirect Detection Direct Scattering Detection

WIMP direct detection rate (SI)

DarkSide program at Gran Sasso

- Direct detection of WIMP dark matter
- Dual-phase Time Projection Chambers (TPCs) with argon target (Ar-40, entirely 0⁺ nuclei)
- Ultra low background design, with active suppression of non-WIMP signals
- Scalable technology \rightarrow very large target mass (?)

Andrea Pocar - UMass Amherst

Nuclear Aspects of Dark Matter - INT Seattle - December 8-12, 2014

USA

Augustana College Black Hills State University University of Chicago University of Hawaii University of Houston University of Massachusetts, Amherst Princeton University Temple University UC Davis UCLA Virginia Tech FNAL, LLNL, PNNL, SLAC

France

Université de Strasbourg APC Université Paris 7 Diderot

Italy

INFN LNGSGran Sasso Science InstituteINFN and Universita degli Studi:Cagliari, Genova, Milano, Napoli,Perugia and Roma 3

Russia

Joint Institute for Nuclear Research SINP, Lomonosov Moscow SU NRC Kurchatov Institute St. Petersburg NPI

Poland - Jagiellonian University

Ukraine - Institute for Nuclear Research

China - IHEP

DarkSide detectors

DS-10

Prototype (2011)

Multi-tonne DS

commissioned October 2013

Dual-phase TPCs

Dual-phase TPCs

Event detection

Nuclear Recoil excites and ionizes the liquid argon, producing scintillation light (S1) that is detected by the photomultipliers

Event detection

The ionized electrons that survive recombination are drifted towards the liquid-gas interface by the electric field

Electron drift lifetime > 5 ms (max. drift time of \sim 375 µs)

Electron drift speed = $0.93 \pm 0.01 \text{ mm/}\mu\text{s}$

Event detection

The electrons are extracted into the gas region, where they induce electroluminescence (S2) (x-y position information)

DarkSide-10

- All PMTs in LAr
- Gas pocket maintained with an inverted jar + bubbler

DS-10 results

Experience with

- TPB evaporation
- ITO electrodes
- Gas pocket
- HV

Scintillation light yield (γ sources: 122 keV - 1275 keV)

 $8.887 \pm 0.003(stat) \pm 0.444(sys) p.e./keV_{ee}$

(>9 p.e./keV_{ee} after Ar purification)

Astroparticle Physics 49 (2013) 44–51

Backgrounds

NUCLEAR RECOILS

μ ~30 evt/m²/day

Radiogenic n ~6x10⁻⁴ evt/kg/day

> α ~10 evt/m²/day

> > [30-200]keVr

Background discrimination

Pulse shape background discrimination (S1)

Electron and nuclear recoils produce different excitation/ionization densities in the argon, leading to different ratios of singlet and triplet Ar_2^* dimer states

Pulse shape background discrimination

F90 parameter (fraction of singlet states)

 $\frac{\text{Light} (t < 90 \text{ ns})}{\text{Light} (tot)}$

Discrimination power strongly dependent on efficient light collection

> $\tau_{singlet} \sim 7 \text{ ns}$ $\tau_{triplet} \sim 1500 \text{ ns}$

Argon-39 background

- Background in atmospheric argon: ³⁹Ar (cosmogenic, 1 Bq/kg)
- Source of underground argon measured to have > 150 times less ³⁹Ar than atmospheric argon
- Key for tonne-scale dual-phase experiment

Multiple S2 signal

Single S1 signal

Event topology

Multiple S2 signal

Coincident signals GAr LAr n Liquid Scintillator

Liquid scintillator detector

- In-situ measurement of neutron background
- Doped with Tri-methylborate (TMB, 50%)
- Goal: 99.5% efficiency

 Initial run had high ¹⁴C content in TMB (98% eff.) (removed, will be replaced)

Čerenkov muon detector

• 80 PMTs

• 99% efficient

• 11 m x 10 m tank

• neutron, γ shield

DS-50: Argon-39 beta spectrum (null E-field)

DS-50: Kr-83m calibration (41.5 keV CE's)

Andrea Pocar - UMass Amherst

First physics results from (arXiv:1410.0653)

- Single-hit interactions in the TPC fiducial volume (36.9 ± 0.6 kg vs 46.4 ± 0.7 kg active)
- No S2/S1 discrimination
- 200 V/cm drift field

First physics results from (arXiv:1410.0653)

WIMP search (SI)

DS-50: 1422 ± 67 kg·days

DS-50: Status and outlook

- Collected ³⁹Ar events equivalent to 19.4 years of UAr
- Demonstrated sustained >5 ms electron lifetime (30 slpm recirculation)
- Light yield = 7.9 p.e./keV_{ee}

- UAr collected and purified at FNAL
- Performed calibration with γ, AmBe sources
- Possible Ar-39 injection
- UAr run in early 2015 (goal is $\sigma \sim 10^{-45} \text{ cm}^2$)
- Perfectioning analysis (particularly S2): more thorough understanding of position-dependent effects

DarkSide outlook

DS-G2: 18 t • yr

Defining the path towards a very massive, beyond G2 argon detector

Andrea Pocar - UMass Amherst

- Form factors for Ar-40 (what operators might be interesting?)
- Detailed comparison with neutron scattering, widely used for detector calibrations
- Inelastic DM, isospin-dependent DM, ...

- Quenching
- Columnar recombination
- Any directional information at "high" energy?

Conclusions

- DS-50 is running steadily at LNGS
- UAr physics run coming soon
- Tool to demonstrate ultimate background rejection for very large argon detectors
- R&D ongoing in parallel

Andrea Pocar - UMass Amherst

extra slides

mono-energetic neutrons:

SCENE data

F90 median for nuclear recoils
 vs recoil energy
 vs drift field

 quenching factor for nuclear recoils
 vs recoil energy
 vs drift field

F90 contours

Model:

W. H. Lippincott, K. J. Coakley, D. Gastler, A. Hime,
E. Kearns, D. N. McKinsey, J. A. Nikkel, and L. C. Stone- hill,
Phys. Rev. C 78, 035801 (2008).
(Note that there is a misprint in the relevant equation 11)

M. G. Boulay et al. (DEAP Collaboration), arxiv:0904.2930.