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EXECUTIVE SUMMARY ON THE BIGSTICK CODE

A brief glossary

Configuration-interaction: Diagonalizing the many-body Hamiltonian
In an occupation-space basis (Slater determinants)

M-scheme: Using a basis with fixed total M=Jz

J-scheme: Using a basis with fixed total J (each state a linear combination
of M-scheme states)
No-core shell model (NCSM): All particles active; usually used with

ab initio interaction, h.o. single-particle states, often (not always) with
N .« truncation.

Jumps: Instead of storing matrix elements, arrays which encode

<flata|1> <f| atataa | 1> etc. for calculating matrix elements
on-the-fly



EXECUTIVE SUMMARY ON THE BIGSTICK CODE

Many-fermion code: 2" generation after REDSTICK code
started in Baton Rouge, La.
&

Uses “factorization” algorithm: Johnson, Ormand, and Krastev,

Comp. Phys. Comm. 184, 2761(2013)

Arbitrary single-particle radial waveforms
Allows local or nonlocal two-body interaction

Three-body forces implemented and validated
Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines
—-can run at least dimension 200M+ on desktop
—-has done dimension 2 billion+ on supercomputers

Inline calculations of one-body density matrices,
single-particle occupations,

(+ options to compute strength functions via Lanczos trick, etc.)

45 kilolines of code
Fortran 90 + MPI + OpenMP




EXECUTIVE SUMMARY ON THE BIGSTICK CODE

Why configuration-interaction? Why not other many-body methods?

Green’s-function Monte Carlo:

Highly successful ab initio method, works well with “hard” NN interactions
Currently requires local interactions; tops out at around A=12-16;

excited states are difficult

Coupled cluster:

Highly successful ab initio method; widely applied in AMO;

works well with “hard” NN interactions; can handle heavier nuclei;
good scaling with number of particles/orbits (only linked diagrams)
Excited states are difficult; works best for closed shell, closed shell +/- 1
Cannot do N, truncation

Configuration interaction

Generates excited states easily; works well with mid-shell nuclides
Computational efforts increases exponentially with # particles, orbits
due to “unlinked diagrams”; thus requires a “soft” interaction

which does not connect high and low momentum states



EXECUTIVE SUMMARY ON THE BIGSTICK CODE

BIGSTICK has run on a number of platforms

It runs easily and routinely on laptops and desktop Linux boxes and Macs.

It has run successfully on large parallel systems:

« Jaguar PF (ORNL) (MPI) up to about 5000 MPI processes
Sierra (LLNL) including in hybrid MPI-OpenMP up to 1000 processes

« Franklin, Hopper, and Edison (NERSC) (MPI) up to 10,000 MPI procs
Stampede (TACC/XSEDE machine) (MPI+OpenMP) up to 200 MPI procs

The most recent versions successfully break up the Lanczos vectors:
the biggest dimension achieved so far is over 2 billion basis states
(however, the computational barriers are more complex than just
the dimension of the vectors—more on that in a moment.)



THE BASIC PROBLEM

The basic science question is to model detailed quantum structure of
many-body systems, such the structure of an atomic nucleus.

The algorithms described today are best applied to many body systems with
(a)two “species” (protons and neutrons, or +1/2 and -1/2 electrons)
(b)single-particle basis states with good rotational symmetry (j, m)

To answer this, we solve Schrddinger’s equation:
HY)= E|¥)

* H is generally a very large matrix — dimensions up to
1019 have been tackled.

* H is generally very sparse.
* We usually only want a few low-lying states



THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

Lanczos algorithm

fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers



THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

W)= Yca)  He=(aH|B)

a

EHa/sCﬁ = FEc_ if <05‘/3> = 50:/3
b

so we use the matrix formalism
H|W) = E|¥)
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oY

Nuclear Hamiltonian: H = E — V + E Vr Fis ]

l i<j

Solve by diagonalizing H in a basis of many-body states.
The many-body states are Slater determinants, or
anti-symmeterized products of single-particle wins.

The single-particle states are defined by
a single-particle potential U(r) (such as
harmonic oscillator or Hartree-Fock)

o

At this point one generally goes to occupation representation:

H=Ne¢aa +1 itata,a
oy Uit
ikl Maria Mayer
single- partlcle energles two-body matrix elements




When running a fermion shell model code (e.g. MFD,
BIGSTICK), one enters the following information:

——————— excluded
(1) The single-particle valence space =~ |~ — "~~~ ~
(such as sd or pf); assumes inert core ——@&———~| ¢ valence space
b
—0——0 -0
0008 CCO-CO-
(2) The many-body model space 0000 - inert core
(number of protons and 0-6--00—
neutrons, truncations, etc.) A EI
T%‘;{E Single Particle Energies Single Particle States
single-particle energiées & ] e — [P0 2152 1 o
1111 10 -1.4151000 10056
and 1111 2 1 -0.0665000
. | B S ——> -2.8842001
two-body matrix elements IR o s —_—
2111 2 1 -0.6142000 ¥
VJT(ab,Cd) 5:1 9 1 30 20337000 (0ds»)
2121 10 -6.5057998 —(0ds)
25 1t 24 1 11 1.0334001
2 1 -




A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented

Product wavefunction (“Slater Determinant”)
W 7y ) =ty (F )y )y (7). iy (7

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

‘OC>=CZ a d ...d

ny ny, nj ny

0)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented

“occupation representation” ‘(x> = &; 2122 21;3 ... &;N O>
n, 1 2 3 4 5 6 /
a=1 |1 0 0 1 1 0 1
a=2 |1 0 1 0 0 1 1
a=3 |0 1 1 1 0 1 0
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented

some technical details:

the “M-scheme”

1 1 0 (S) 0
2 2 0 (S) 0
3 2 1(P) 1
4 2 1(P) 0
5 2 1(P) -1

A4t AN A} A 4
‘a>=anlan2an3...a 0)

ny

For any Slater determinant,
the total M = sum of the m,' s

Because J, commutes with H,

we can use a basis with M fixed
= “M-scheme”

15



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

 Typical dimensions and sparsity

Nuclide | valence Valence Valence ba51s sparsity
space (%)
‘

2)Ne 2

Mg “sd” 4 5 44,133 0.5
wCor  “pf” 4 5 6M 0.01
OFe “pf’ 6 10 500M 2x10*

16



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

S6Fe 501 M 4.2 Tb
Li N__ =12 252 M 3.6 Tb
Li N__=14 1200 M 23 Tb
12c N, =6 32M 0.2 Tb
12 N__=8 590M 5 Tb
2c N__=10 7800M 111 Tb
160 N, =6 26 M 0.14 Tb

max

%0 N__=8 990 M 9.7Tb

max

17



RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

# of nonzero matrix elements vs. # unique matrix elements

Nuclide | wvalence Valence Valence
space nonzero | unique

28Si 26 x 10° 3600
2Fe “pf" 6 6 90 x 10 21,500

18



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

We work in an M-scheme basis:

Because J? and J, both commute with H, one does not
need all basis states, but can use many-body basis
restricted to the same M.

This is easy because M is an additive quantum number
so it is possible for a single Slater determinant to be
a state of good M.

(It’ s possible to work in a J-basis, e.g. OXBASH or NuShell, but each
basis state is generally a complicated sum of Slater determinants).

19



FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

Because the M values are discrete integers or half-integers
(-3,-2,-1,0,1, 2, ...or-3/2,-1/2,+1/2, +3/2....)
we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M =0

M(v) = +4

M,(v) = +3

M, (v) = +2

20



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M =0

M,(v) = +4: 24 SDs

M,(v) = +3: 39 SDs

M,(v) = +2: 60 SDs

48 combined

156 combined

540 combined

21



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

DSl | W)= 4 24sDs | 48 combinec

Vl> ”1>‘V1>
) v v
)X T P
V4> J72>“’2>
‘V24> ‘”1>‘V24>

‘J‘L’2>‘V24> 22



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Proton SDs

o o
L g

a)=|a, )x|a,)
Neutron SDs

Nuclide Basis dim

Example N = Z nuclei

L 4

o o
) 4 \ g v L g

“Ne 640 66

2Mg 28,503 495
283 93,710 924
Cr 1,963,461 4895

2Fe 109,954,620 38,760

%Ni 1,087,455,228 125,970

23

# pSDs (=#nSDs)



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Factorization allows us to keep track of all basis states
without writing out every one explicitly
-- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

IA{ = %A + : + [{‘A
Move 2 protons; @ \

neutrons are
spectators

Move 2 neutrons;
protons are
spectators

Move 1 proton +
1 neutron;

rest are
spectators

24



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

A\

Move 2 protons;

neutrons are Example: 2 protons, 4 neutrons, total M =0

spectators
RSl [ W)= 4:245Ds | 48 combined

There are potentially 48 x 48 matrix elements
But for H, ) at most 4 x 24 are nonzero
and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

25



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

M,_(v) = +4: 24 SDs

48 combined

v,)
)
T, 21 22 V4>

Vi)

v,)

S

pp

S

pp

pp

X =

pp

Hll"ﬂ;l ‘V1> + HIZ“TE2>‘V1>

)
70,)|Vi) = Hy| )| Vi) + Hyp|7,)[vy)
NVa) = Hy|m)|vy) + Hylm, )|v,)

”2>‘V2> le‘”1>“’2> + sz‘”2>“’2>

)|V,

<

pr‘”1>‘vz4> = Hll‘”1>“’24> + le‘”2>“’24>
pr‘”2>“’24> = H,|m,)|Vay )+ Hop| 7, )| V)

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Comparison of nonzero matrix storage with factorization

C DT T

S6Fe 501 M 290 Gb 0.72 Gb
Li N__ =12 252 M 3600 Gb 96 Gb
Li N__=14 1200 M 23 Tb 624 Gb
12c N__=6 32M 196 Gb 3.3 Gb
2 N__=8 590M 5000 Gb 65 Gb
12c N__ =10 7800M 111 Tb 1.4Tb
160 N, =6 26 M 142 Gb 3.0 Gb

max

0 N__=8 990 M 9700 Gb 130 Gb

max
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Potential target nuclides and M-scheme dimensionalities

/ 12,13 \ \\easyn

16,18() with standard

19F spaces and interactions

20,21,22N e 122,123,124,125,126,128,130Ta

23Na 127I

28’29’3()Si 128,129,130,131,132,134,136Xe
\_ 8233348 ) 133Cg

180,182,183,184, 186\
36,40 A -

40,42,43,44,4SCa

70,72,73,74,76 (3@
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Potential target nuclides and M-scheme dimensionalities

Single-particle space: 1sy, 0dgs 0f;)5 1ps5 1D

S6Ay 1.1 million

WOAy 25 million

0Ca o60M
2Ca 190 M
43Ca 250M
“4Ca 276 M
48Ca 60M

Comment: Moderately easy but need to tune interaction



Potential target nuclides and M-scheme dimensionalities

Single-particle space: 1pg, 1pq)5 0f55 089

Ge 140M
2Ge 140M
BGe 108 M
“Ge T0M
®Ge 17M

Comment: Moderately easy; JUN45 interaction mostly tuned
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Potential target nuclides and M-scheme dimensionalities

Single-particle space: 2s,,, 1dg, 1d5, 0g-/5 Ohyy)s

122Te 2.8 Billion 128Xe* 9 Billion 2] 1.3 Billion
123Te 1.6 B 129%e 3B 133Cs 198 million
124Te 820 Million 130Xe 850 Million

125Te 360 M 131Xe 198 M

126Te 141 M 132Xe 3.7TM

128Te 13 M 134¥Xe 0.6 M

130Te 0.6 M 136Xe 1504

Comment: Challenging, interaction must be tuned

*Abundance = 1.91%; can truncate to 1.35 B 32



Potential target nuclides and M-scheme dimensionalities

Nuclide | dimension __

180\ * 187 Billion

182W 2.5B

185W 206 Million
184W 13 M

186\ 12301

Comment: Very challenging; need interaction

*Abundance = 0.12%; can truncate



