
Nuclear structure calculations for
an atlas of dark matter experiments

Calvin W. Johnson, San Diego State University

Collaborators:
Wick Haxton, UC Berkeley/LBL
Ken McElvain, UC Berkeley/ LBL

Other BIGSTICK collaborators
W. Erich Ormand, LLNL
Plamen G. Krastev, SDSU/Harvard
Hai Ah Nam, SDSU/ ORNL
Michael Kruse, LLNL
Micah Schuster, SDSU

An atlas
of dark matter experiments

Couplings (operators)

To be filled in.....

Potential target nuclides:

12,13C
16,18O

19F

20,21,22Ne

23Na

28,29,30Si
32,33,34S
36,40Ar

40,42,43,44,48Ca

70,72,73,74,76Ge

3	

122,123,124,125,126,128,130Te

127I

128,129,130,131,132,134,136Xe
133Cs
180,182,183,184,186W

A brief glossary

4	

Configuration-interaction: Diagonalizing the many-body Hamiltonian
in an occupation-space basis (Slater determinants)

EXECUTIVE SUMMARY ON THE BIGSTICK CODE

M-scheme: Using a basis with fixed total M=Jz

J-scheme: Using a basis with fixed total J (each state a linear combination
of M-scheme states)
No-core shell model (NCSM): All particles active; usually used with
ab initio interaction, h.o. single-particle states, often (not always) with
Nmax truncation.

Jumps: Instead of storing matrix elements, arrays which encode
< f | a+ a | i >, < f | a+ a+ a a | i > etc. for calculating matrix elements
on-the-fly

5	

EXECUTIVE SUMMARY ON THE BIGSTICK CODE

Uses “factorization” algorithm: Johnson, Ormand, and Krastev,

Comp. Phys. Comm. 184, 2761(2013)

Arbitrary single-particle radial waveforms
Allows local or nonlocal two-body interaction
Three-body forces implemented and validated
Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines
--can run at least dimension 200M+ on desktop
--has done dimension 2 billion+ on supercomputers

45 kilolines of code
Fortran 90 + MPI + OpenMP

Many-fermion code: 2nd generation after REDSTICK code
(started in Baton Rouge, La.)

Inline calculations of one-body density matrices,
single-particle occupations,
(+ options to compute strength functions via Lanczos trick, etc.)

Why configuration-interaction? Why not other many-body methods?

6	

Green’s-function Monte Carlo:
Highly successful ab initio method, works well with “hard” NN interactions
Currently requires local interactions; tops out at around A=12-16;
excited states are difficult

EXECUTIVE SUMMARY ON THE BIGSTICK CODE

Coupled cluster:
Highly successful ab initio method; widely applied in AMO;
works well with “hard” NN interactions; can handle heavier nuclei;
good scaling with number of particles/orbits (only linked diagrams)
Excited states are difficult; works best for closed shell, closed shell +/- 1
Cannot do Nmax truncation

Configuration interaction
Generates excited states easily; works well with mid-shell nuclides
Computational efforts increases exponentially with # particles, orbits
due to “unlinked diagrams”; thus requires a “soft” interaction
which does not connect high and low momentum states

BIGSTICK has run on a number of platforms

7	

It runs easily and routinely on laptops and desktop Linux boxes and Macs.

It has run successfully on large parallel systems:

•  Jaguar PF (ORNL) (MPI) up to about 5000 MPI processes
•  Sierra (LLNL) including in hybrid MPI-OpenMP up to 1000 processes
•  Franklin, Hopper, and Edison (NERSC) (MPI) up to 10,000 MPI procs
•  Stampede (TACC/XSEDE machine) (MPI+OpenMP) up to 200 MPI procs

EXECUTIVE SUMMARY ON THE BIGSTICK CODE

The most recent versions successfully break up the Lanczos vectors:
the biggest dimension achieved so far is over 2 billion basis states
(however, the computational barriers are more complex than just
the dimension of the vectors—more on that in a moment.)

THE BASIC PROBLEM

8	

The	
 basic	
 science	
 question	
 is	
 to	
 model	
 detailed	
 quantum	
 structure	
 of	
 	

many-­‐body	
 systems,	
 such	
 the	
 structure	
 of	
 an	
 atomic	
 nucleus.	

To	
 answer	
 this,	
 we	
 solve	
 Schrödinger’s	
 equation:	

€

ˆ H Ψ = E Ψ
* H is generally a very large matrix – dimensions up to
1010 have been tackled.
* H is generally very sparse.
* We usually only want a few low-lying states

The	
 algorithms	
 described	
 today	
 are	
 best	
 applied	
 to	
 many	
 body	
 systems	
 with	

(a) two	
 “species”	
 (protons	
 and	
 neutrons,	
 or	
 +1/2	
 and	
 -­‐1/2	
 electrons)	

(b) single-­‐particle	
 basis	
 states	
 with	
 good	
 rotational	
 symmetry	
 (j,	
 m)	

	

THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

 Lanczos algorithm

 fundamental operation is matrix-vector multiply

9	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Despite sparsity, nonzero matrix elements can require TB of storage
	

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix

 Lanczos algorithm
 fundamental operation is matrix-vector multiply

10	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

€

ˆ H Ψ = E Ψ

so we use the matrix formalism

€

Ψ = cα α
α

∑

€

Hαβ = α ˆ H β

€

Hαβcβ
β

∑ = Ecα if

€

α β = δαβ

SDSU FEB 8 2001

	

	

Nuclear Hamiltonian: ∑ ∑
<

+∇−=
i ji

jii rrV
M

H),(
2

ˆ 2
2

Solve by diagonalizing H in a basis of many-body states.
The many-body states are Slater determinants, or
anti-symmeterized products of single-particle wfns.

The single-particle states are defined by
a single-particle potential U(r) (such as

harmonic oscillator or Hartree-Fock)

At this point one generally goes to occupation representation:

klji
i ijkl

ijkliii aaaaVaaH ˆˆˆˆˆˆˆ
4
1 +++∑ ∑+= ε

single-particle energies two-body matrix elements

Maria Mayer

SDSU FEB 8 2001

	

	

When running a fermion shell model code (e.g. MFD,
BIGSTICK), one enters the following information:

(1)  The single-particle valence space
(such as sd or pf); assumes inert core

(2) The many-body model space
(number of protons and
neutrons, truncations, etc.)

(3) The interaction:
single-particle energies
and
two-body matrix elements
VJT(ab,cd)

inert core

excluded

valence space }

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

13	

• How the basis states are represented

€

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N)

Product wavefunction (“Slater Determinant”)

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

14	

“occupation representation”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0
ni 1 2	
 3	
 4	
 5	
 6	
 7	

α=1	
 1	
 0	
 0	
 1	
 1	
 0	
 1	

α=2	
 1	
 0	
 1	
 0	
 0	
 1	
 1	

α=3	
 0	
 1	
 1	
 1	
 0	
 1	
 0	

• How the basis states are represented

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

15	

some technical details:
the “M-scheme”

€

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

label	
 N	
 l	
 ml	

1	
 1	
 0	
 (S)	
 0	

2	
 2	
 0	
 (S)	
 0	

3	
 2	
 1	
 (P)	
 1	

4	
 2	
 1	
 (P)	
 0	

5	
 2	
 1	
 (P)	
 -­‐1	

For any Slater determinant,
the total M = sum of the ml’s

Because Jz commutes with H,
we can use a basis with M fixed
= “M-scheme”

• How the basis states are represented

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

16	

• Typical dimensions and sparsity

Nuclide
 valence

space

valence
Z

valence
N

basis

dim

sparsity

(%)

20Ne
 “sd”
 2
 2
 640
 10

25Mg
 “sd”
 4
 5
 44,133
 0.5

49Cr
 “pf”
 4
 5
 6M
 0.01

56Fe
 “pf”
 6
 10
 500M
 2x10-4

 A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

17	

Nuclide	
 Space	
 Basis	
 dim	
 matrix	
 store	

56Fe	
 pf	
 501	
 M	
 4.2	
 Tb	

7Li	
 Nmax=12	
 252	
 M	
 3.6	
 Tb	

7Li	
 Nmax=14	
 1200	
 M	
 23	
 Tb	

12C	
 Nmax=6	
 32M	
 0.2	
 Tb	

12C	
 Nmax=8	
 590M	
 5	
 Tb	

12C	
 Nmax=10	
 7800M	
 111	
 Tb	

16O	
 Nmax=6	
 26	
 M	
 0.14	
 Tb	

16O	
 Nmax=8	
 990	
 M	
 9.7	
 Tb	

RECYCLED MATRIX ELEMENTS
Only a fraction of matrix elements are unique; most are reused.

Reuse of matrix elements understood through spectator particles.

18	

of nonzero matrix elements vs. # unique matrix elements

Nuclide
 valence
space

valence

Z

valence

N

nonzero

unique

28Si
 “sd”
 6
 6
 26 x 106
 3600

52Fe
 “pf”
 6
 6
 90 x 109
 21,500

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

19	

We work in an M-scheme basis:

Because J2 and Jz both commute with H, one does not
need all basis states, but can use many-body basis
restricted to the same M.

This is easy because M is an additive quantum number
so it is possible for a single Slater determinant to be
a state of good M.

(It’s possible to work in a J-basis, e.g. OXBASH or NuShell, but each
basis state is generally a complicated sum of Slater determinants).

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

20	

Because the M values are discrete integers or half-integers
(-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2....)
we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4 Mz(υ) = +4

Mz(π) = -3 Mz(υ) = +3

Mz(π) =-2 Mz (υ) = +2

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

21	

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

Mz(π) = -3: 4 SDs Mz(υ) = +3: 39 SDs 156 combined

Mz(π) = -2: 9 SDs Mz(υ) = +2: 60 SDs 540 combined

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

22	

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

€

π1
π 2

€

ν1
ν 2
ν 3
ν 4


ν 24

× =

€

π1 ν1
π 2 ν1
π1 ν 2
π 2 ν 2


π1 ν 24
π 2 ν 24

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

23	

np ααα ×=
Neutron SDs

P
ro

to
n

S
D

s

20Ne 640 66

24Mg 28,503 495

28Si 93,710 924

48Cr 1,963,461 4895

52Fe 109,954,620 38,760

56Ni 1,087,455,228 125,970

Example N = Z nuclei
Nuclide Basis dim # pSDs (=#nSDs)

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

24	

Factorization allows us to keep track of all basis states
without writing out every one explicitly
-- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

€

ˆ H = ˆ H pp + ˆ H nn + ˆ H pn
Move 2 protons;
neutrons are
spectators

Move 2 neutrons;
protons are
spectators

Move 1 proton +
1 neutron;
rest are
spectators

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

25	

€

ˆ H pp
Move 2 protons;
neutrons are
spectators

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

There are potentially 48 × 48 matrix elements
But for Hpp at most 4 × 24 are nonzero
and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

26	

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

€

π1
π 2

€

ν1
ν 2
ν 3
ν 4


ν 24€

Hpp =
H11 H12

H21 H22

"

$

%

&
'

€

Hpp π1 ν1 = H11 π1 ν1 + H12 π 2 ν1

Hpp π 2 ν1 = H12 π1 ν1 + H22 π 2 ν1

Hpp π1 ν 2 = H11 π1 ν 2 + H12 π 2 ν 2

Hpp π 2 ν 2 = H12 π1 ν 2 + H22 π 2 ν 2


Hpp π1 ν 24 = H11 π1 ν 24 + H12 π 2 ν 24

Hpp π 2 ν 24 = H12 π1 ν 24 + H22 π 2 ν 24

FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

27	

Nuclide	
 Space	
 Basis	
 dim	
 matrix	
 store	
 factoriza6on	

56Fe	
 pf	
 501	
 M	
 290	
 Gb	
 0.72	
 Gb	

7Li	
 Nmax=12	
 252	
 M	
 3600	
 Gb	
 96	
 Gb	

7Li	
 Nmax=14	
 1200	
 M	
 23	
 Tb	
 624	
 Gb	

12C	
 Nmax=6	
 32M	
 196	
 Gb	
 3.3	
 Gb	

12C	
 Nmax=8	
 590M	
 5000	
 Gb	
 65	
 Gb	

12C	
 Nmax=10	
 7800M	
 111	
 Tb	
 1.4	
 Tb	

16O	
 Nmax=6	
 26	
 M	
 142	
 Gb	
 3.0	
 Gb	

16O	
 Nmax=8	
 990	
 M	
 9700	
 Gb	
 130	
 Gb	

Comparison of nonzero matrix storage with factorization

Will do
shell
model
4 food

Potential target nuclides

12,13C
16,18O

19F

20,21,22Ne

23Na

28,29,30Si
32,33,34S
36,40Ar

40,42,43,44,48Ca

70,72,73,74,76Ge

29	

122,123,124,125,126,128,130Te

127I

128,129,130,131,132,134,136Xe
133Cs
180,182,183,184,186W

and M-scheme dimensionalities

“easy”
with standard
spaces and interactions

30	

and M-scheme dimensionalities

Single-particle space: 1s1/2 0d3/2 0f7/2 1p3/2 1p1/2

Nuclide	
 dimension	

36Ar 1.1 million
40Ar 25 million
40Ca 60 M
42Ca 190 M
43Ca 250 M
44Ca 276 M
48Ca 60 M

Comment: Moderately easy but need to tune interaction

Potential target nuclides

31	

and M-scheme dimensionalities

Single-particle space: 1p3/2 1p1/2 0f5/2 0g9/2

Nuclide	
 dimension	

70Ge 140 M
72Ge 140 M
73Ge 108 M
74Ge 70 M
76Ge 17 M

Comment: Moderately easy; JUN45 interaction mostly tuned

Potential target nuclides

32	

and M-scheme dimensionalities

Single-particle space: 2s1/2 1d3/2 1d5/2 0g7/2 0h11/2

Nuclide	
 dimension	

122Te 2.8 Billion
123Te 1.6 B
124Te 820 Million
125Te 360 M
126Te 141 M
128Te 13 M
130Te 0.6 M

Comment: Challenging, interaction must be tuned

Potential target nuclides

Nuclide	
 dimension	

128Xe* 9 Billion
129Xe 3 B
130Xe 850 Million
131Xe 198 M
132Xe 3.7 M
134Xe 0.6 M
136Xe 1504

Nuclide	
 dimension	

127I 1.3 Billion
133Cs 198 million

*Abundance = 1.91%; can truncate to 1.35 B

33	

and M-scheme dimensionalities

Single-particle space: 0h11/2 0h9/2 1f7/2 1f5/2 2p3/2 2p1/2 0i11/2

Nuclide dimension

180W* 187 Billion
182W 2.5 B
183W 206 Million
184W 13 M
186W 12301

Comment: Very challenging; need interaction

Potential target nuclides

*Abundance = 0.12%; can truncate

