Nuclear structure calculations for an atlas of dark matter experiments Calvin W. Johnson, San Diego State University

> Collaborators: Wick Haxton, UC Berkeley/LBL Ken McElvain, UC Berkeley/LBL

Other BIGSTICK collaborators W. Erich Ormand, LLNL Plamen G. Krastev, SDSU/Harvard Hai Ah Nam, SDSU/ ORNL Michael Kruse, LLNL Micah Schuster, SDSU

An atlas of dark matter experiments

Potential target nuclides:

 $^{12,13}C$ ^{16,18}O $^{19}\mathrm{F}$ $^{20,21,22}Ne$ ^{23}Na ^{28,29,30}Si 32,33,34**S** ^{36,40}Ar ^{40,42,43,44,48}Ca ^{70,72,73,74,76}Ge

 $^{122,123,124,125,126,128,130}Te$
 ^{127}I
 $^{128,129,130,131,132,134,136}Xe$
 ^{133}Cs
 $^{180,182,183,184,186}W$

A brief glossary

Configuration-interaction: Diagonalizing the many-body Hamiltonian in an occupation-space basis (Slater determinants)

M-scheme: Using a basis with fixed total M=Jz

J-scheme: Using a basis with fixed total J (each state a linear combination of M-scheme states)

No-core shell model (NCSM): All particles active; usually used with *ab initio* interaction, h.o. single-particle states, often (not always) with N_{max} truncation.

Jumps: Instead of storing matrix elements, arrays which encode $< f | a^+ a | i >, < f | a^+ a^+ a a | i > etc.$ for calculating matrix elements on-the-fly

Many-fermion code: 2nd generation after REDSTICK code (started in *Baton Rouge, La*.)

Uses "factorization" algorithm: Johnson, Ormand, and Krastev, Comp. Phys. Comm. **184**, 2761(2013)

Arbitrary single-particle radial waveforms Allows local or nonlocal two-body interaction **Three-body forces implemented and validated** Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines --can run at least dimension 200M+ on desktop --has done dimension 2 billion+ on supercomputers

Inline calculations of one-body density matrices, single-particle occupations,

(+ options to compute strength functions via Lanczos trick, etc.)

45 kilolines of code Fortran 90 + MPI + OpenMP

Why configuration-interaction? Why not other many-body methods?

Green's-function Monte Carlo:

Highly successful *ab initio* method, works well with "hard" NN interactions Currently requires local interactions; tops out at around A=12-16; excited states are difficult

Coupled cluster:

Highly successful *ab initio* method; widely applied in AMO; works well with "hard" NN interactions; can handle heavier nuclei; good scaling with number of particles/orbits (only linked diagrams) Excited states are difficult; works best for closed shell, closed shell +/- 1 Cannot do N_{max} truncation

Configuration interaction

Generates excited states easily; works well with mid-shell nuclides Computational efforts increases exponentially with # particles, orbits due to "unlinked diagrams"; thus requires a "soft" interaction which does not connect high and low momentum states

BIGSTICK has run on a number of platforms

It runs easily and routinely on laptops and desktop Linux boxes and Macs.

It has run successfully on large parallel systems:

- Jaguar PF (ORNL) (MPI) up to about 5000 MPI processes
- Sierra (LLNL) including in hybrid MPI-OpenMP up to 1000 processes
- Franklin, Hopper, and Edison (NERSC) (MPI) up to 10,000 MPI procs
- Stampede (TACC/XSEDE machine) (MPI+OpenMP) up to 200 MPI procs

The most recent versions successfully break up the Lanczos vectors: the biggest dimension achieved so far is over 2 billion basis states (however, the computational barriers are more complex than just the dimension of the vectors—more on that in a moment.)

THE BASIC PROBLEM

The basic *science question* is to model detailed quantum structure of many-body systems, such the structure of an atomic nucleus.

The algorithms described today are best applied to many body systems with (a)two "species" (protons and neutrons, or +1/2 and -1/2 electrons) (b)single-particle basis states with good rotational symmetry (j, m)

To answer this, we solve *Schrödinger's equation*:

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

- * **H** is generally a very large matrix dimensions up to 10^{10} have been tackled.
- * **H** is generally very sparse.
- * We usually only want a few low-lying states

THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm

fundamental operation is *matrix-vector multiply*

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm

fundamental operation is *matrix-vector multiply*

$$\begin{split} |\Psi\rangle &= \sum_{\alpha} c_{\alpha} |\alpha\rangle \qquad H_{\alpha\beta} = \langle \alpha | \hat{\mathbf{H}} |\beta\rangle \\ \sum_{\beta} H_{\alpha\beta} c_{\beta} &= Ec_{\alpha} \quad \text{if} \quad \langle \alpha |\beta\rangle = \delta_{\alpha\beta} \\ \text{so we use the matrix formalism} \end{split}$$

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

Nuclear Hamiltonian: $\hat{H} = \sum_{i} -\frac{\hbar^2}{2M} \nabla_i^2 + \sum_{i < j} V(r_i, r_j)$

Solve by diagonalizing **H** in a basis of many-body states. The many-body states are *Slater determinants*, or anti-symmeterized products of single-particle wfns.

The single-particle states are defined by a single-particle potential *U*(*r*) (such as harmonic oscillator or Hartree-Fock)

At this point one generally goes to occupation representation:

$$\hat{H} = \sum_{i} \varepsilon_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} + \frac{1}{4} \sum_{ijkl} V_{ijkl} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}$$

Maria Mayer

single-particle energies

two-body matrix elements

When running a fermion shell model code (e.g. MFD, **BIGSTICK**), one enters the following information:

(1) The single-particle valence space (such as *sd* or *pf*); assumes inert core

(2) The many-body model space (number of protons and neutrons, truncations, etc.)

(3) The interaction: single-particle energies and two-body matrix elements $V_{JT}(ab,cd)$

Despite sparsity, nonzero matrix elements can require TB of storage

- How the basis states are represented
 - Product wavefunction ("Slater Determinant")

$$\Psi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}...) = \phi_{(n_{1})}(\vec{r}_{1})\phi_{(n_{2})}(\vec{r}_{2})\phi_{(n_{3})}(\vec{r}_{3})...\phi_{(n_{N})}(\vec{r}_{N})$$

Each many-body state can be *uniquely* determined by a list of "occupied" single-particle states = "occupation representation"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented

44		• 7	,
occupation	representati	10n	
1	1		

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

n _i	1	2	3	4	5	6	7
α=1	1	0	0	1	1	0	1
α=2	1	0	1	0	0	1	1
α=3	0	1	1	1	0	1	0

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented some technical details: $|\alpha\rangle = a$ the "M-scheme"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

label	Ν	I	m _I	
1	1	0 (S)	0	
2	2	0 (S)	0	
3	2	1 (P)	1	
4	2	1 (P)	0	
5	2	1 (P)	-1	

For any Slater determinant, the total M = sum of the m_1 's

Because J_z commutes with H, we can use a basis with M fixed = "M-scheme"

Despite sparsity, nonzero matrix elements can require TB of storage

• Typical dimensions and sparsity

Nuclide	valence space	valence Z	valence N	basis dim	sparsity (%)
20 Ne	"sd"	2	2	640	10
^{25}Mg	"sd"	4	5	44,133	0.5
⁴⁹ Cr	"pf"	4	5	6M	0.01
⁵⁶ Fe	"pf"	6	10	500M	2x10 ⁻⁴

Despite sparsity, nonzero matrix elements can require TB of storage

Nuclide	Space	Basis dim	matrix store
⁵⁶ Fe	pf	501 M	4.2 Tb
⁷ Li	N _{max} =12	252 M	3.6 Tb
⁷ Li	N _{max} =14	1200 M	23 Tb
¹² C	N _{max} =6	32M	0.2 Tb
¹² C	N _{max} =8	590M	5 Tb
¹² C	N _{max} =10	7800M	111 Tb
¹⁶ O	N _{max} =6	26 M	0.14 Tb
¹⁶ O	N _{max} =8	990 M	9.7 Tb

RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

of nonzero matrix elements vs. # unique matrix elements

Nuclide	valence space	valence Z	valence N	# nonzero	# unique
$^{28}\mathrm{Si}$	"sd"	6	6	$26 \ge 10^{6}$	3600
⁵² Fe	"pf"	6	6	$90 \ge 10^9$	21,500

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

We work in an *M*-scheme basis:

Because J^2 and J_z both commute with H, one does not need *all* basis states, but can use many-body basis restricted to the same *M*.

This is easy because M is an additive quantum number so it is possible for a single Slater determinant to be a state of good M.

(It's possible to work in a *J*-basis, e.g. OXBASH or NuShell, but each basis state is generally a complicated sum of Slater determinants).

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Because the M values are discrete integers or half-integers (-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2...) we can organize the basis states in discrete *sectors*

Example: 2 protons, 4 neutrons, total M = 0

$$M_{z}(\pi) = -4 \qquad M_{z}(\upsilon) = +4$$

$$M_{z}(\pi) = -3 \qquad M_{z}(\upsilon) = +3$$

$$M_{z}(\pi) = -2 \qquad M_{z}(\upsilon) = +2$$

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

$$M_z(\pi) = -4: 2 \text{ SDs}$$
 $M_z(\upsilon) = +4: 24 \text{ SDs}$
 48 combined

 $M_z(\pi) = -3: 4 \text{ SDs}$
 $M_z(\upsilon) = +3: 39 \text{ SDs}$
 156 combined

 $M_z(\pi) = -2: 9 \text{ SDs}$
 $M_z(\upsilon) = +2: 60 \text{ SDs}$
 540 combined

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

M _z (π) = -4: 2 SDs	M _z (υ) = +4: 24 SDs	48 combined
$egin{array}{c} \pi_1 angle \ \pi_2 angle \qquad igwedge \ igwed \ igwed \ igwed \ igwed \ igwed \ igwed \$	$egin{array}{c c} v_1 angle \ v_2 angle \ v_3 angle \ v_4 angle \ dots \ v_{24} angle \end{array}$	$egin{aligned} & \pi_1 angle & u_1 angle \ & \pi_2 angle & u_1 angle \ & \pi_1 angle & u_2 angle \ & \pi_2 angle & u_2 angle \ &dots &d$

22

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

		Ex	ample N = Z nu	clei
	$ \alpha\rangle = \alpha_p\rangle \times \alpha_n\rangle$	Nuclide	Basis dim	<u># pSDs (=#nSDs)</u>
	Neutron SDs	²⁰ Ne	640	66
•		²⁴ Mg	28,503	495
•		²⁸ Si	93,710	924
on SDs		⁴⁸ Cr	1,963,461	4895
Prote		⁵² Fe	109,954,620	38,760
		⁵⁶ Ni	1,087,455,228	125,970
•				

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Factorization allows us to keep track of all basis states without writing out every one explicitly -- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

There are potentially 48×48 matrix elements But for H_{pp} at most 4×24 are nonzero and we only have to look up 4 matrix elements

Advantage: **we can store 98 matrix elements as 4 matrix elements** and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

M _z (π) = -4: 2 SDs	M _z (υ) =	= +4: 24 SDs	48 combined	
$ \begin{vmatrix} \pi_1 \\ \pi_2 \end{vmatrix} \qquad H_{pp} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} $	$egin{aligned} egin{aligned} egi$	$H_{pp} \pi_{1}\rangle \nu_{1}\rangle =$ $H_{pp} \pi_{2}\rangle \nu_{1}\rangle =$ $H_{pp} \pi_{1}\rangle \nu_{2}\rangle =$ $H_{pp} \pi_{2}\rangle \nu_{2}\rangle =$ \vdots $H_{pp} \pi_{1}\rangle \nu_{24}\rangle$ $H_{pp} \pi_{2}\rangle \nu_{24}\rangle$	$= H_{11} \pi_1\rangle \nu_1\rangle + H_{12}$ $= H_{12} \pi_1\rangle \nu_1\rangle + H_{22}$ $= H_{11} \pi_1\rangle \nu_2\rangle + H_{12}$ $= H_{12} \pi_1\rangle \nu_2\rangle + H_{22}$ $= H_{12} \pi_1\rangle \nu_2\rangle + H_{22}$	$egin{aligned} & \pi_2 angle & u_1 angle \ &_2 & \pi_2 angle & u_1 angle \ &_2 & \pi_2 angle & u_2 angle \ &_{22} & \pi_2 angle & u_2 angle \ &_{12} & \pi_2 angle & u_{24} angle \ &_{22} & \pi_2 angle & u_{24} angle \end{aligned}$

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Comparison of nonzero matrix storage with factorization

Nuclide	Space	Basis dim	matrix store	factorization
⁵⁶ Fe	pf	501 M	290 Gb	0.72 Gb
⁷ Li	N _{max} =12	252 M	3600 Gb	96 Gb
⁷ Li	N _{max} =14	1200 M	23 Tb	624 Gb
¹² C	N _{max} =6	32M	196 Gb	3.3 Gb
¹² C	N _{max} =8	590M	5000 Gb	65 Gb
¹² C	N _{max} =10	7800M	111 Tb	1.4 Tb
¹⁶ O	N _{max} =6	26 M	142 Gb	3.0 Gb
¹⁶ O	N _{max} =8	990 M	9700 Gb	130 Gb

"It's not enough to just show up. You have to have a business plan."

^{12,13} C
^{16,18} O
$^{19}\mathrm{F}$
$^{20,21,22}{ m Ne}$
²³ Na
$^{28,29,30}\mathrm{Si}$
$^{32,33,34} m S$
$^{36,40}{ m Ar}$
^{40,42,43,44,48} Ca
70,72,73,74,76Ge

"easy" with standard spaces and interactions

 $^{122,123,124,125,126,128,130}Te$ ^{127}I $^{128,129,130,131,132,134,136}Xe$ ^{133}Cs $^{180,182,183,184,186}W$

Single-particle space: $1s_{1/2} 0d_{3/2} 0f_{7/2} 1p_{3/2} 1p_{1/2}$

Nuclide	dimension
³⁶ Ar	1.1 million
⁴⁰ Ar	25 million
⁴⁰ Ca	60 M
⁴² Ca	190 M
⁴³ Ca	$250 \mathrm{M}$
⁴⁴ Ca	$276 \mathrm{M}$
⁴⁸ Ca	60 M

Comment: Moderately easy but need to tune interaction

Single-particle space: $1p_{3/2} \ 1p_{1/2} \ 0f_{5/2} \ 0g_{9/2}$

Nuclide	dimension
70 Ge	140 M
$^{72}\mathrm{Ge}$	$140 \mathrm{M}$
⁷³ Ge	$108 \mathrm{M}$
74 Ge	$70 \mathrm{M}$
$^{76}\mathrm{Ge}$	$17 \mathrm{M}$

Comment: Moderately easy; JUN45 interaction mostly tuned

Single-particle space: $2s_{1/2} 1d_{3/2} 1d_{5/2} 0g_{7/2} 0h_{11/2}$

Nuclide	dimension	Nuclide	dimension	Nuclide	dimension
¹²² Te	2.8 Billion	128 Xe*	9 Billion	127I	1.3 Billion
$^{123}\mathrm{Te}$	1.6 B	$^{129}\mathrm{Xe}$	3 B	$^{133}\mathrm{Cs}$	198 million
$^{124}\mathrm{Te}$	820 Million	130 Xe	850 Million		
$^{125}\mathrm{Te}$	360 M	131 Xe	198 M		
$^{126}\mathrm{Te}$	141 M	132 Xe	$3.7 \mathrm{M}$		
$^{128}\mathrm{Te}$	13 M	134 Xe	0.6 M		
$^{130}\mathrm{Te}$	$0.6 \mathrm{M}$	136 Xe	1504		

Comment: Challenging, interaction must be tuned

*Abundance = 1.91%; can truncate to 1.35 B

Single-particle space: $0h_{11/2} 0h_{9/2} 1f_{7/2} 1f_{5/2} 2p_{3/2} 2p_{1/2} 0i_{11/2}$

Nuclide	dimension
180 W*	187 Billion
$^{182}\mathrm{W}$	$2.5 \mathrm{B}$
$^{183}\mathrm{W}$	206 Million
$^{184}\mathrm{W}$	$13 \mathrm{M}$
186W	12301

Comment: Very challenging; need interaction

*Abundance = 0.12%; can truncate