Nuclear structure calculations for an atlas of dark matter experiments Calvin W. Johnson, San Diego State University

> Collaborators: Wick Haxton, UC Berkeley/LBL Ken McElvain, UC Berkeley/ LBL

Other BIGSTICK collaborators W. Erich Ormand, LLNL Plamen G. Krastev, SDSU/Harvard Hai Ah Nam, SDSU/ ORNL Michael Kruse, LLNL Micah Schuster, SDSU

An atlas of dark matter experiments

Potential target nuclides:

12,13_C 16,18O 19F 20,21,22Ne 23Na 28,29,30Si 32,33,34S 36,40Ar 40,42,43,44,48Ca 70,72,73,74,76Ge

122,123,124,125,126,128,130Te 127I $128,129,130,131,132,134,136$ Xe 133Cs 180,182,183,184,186W

A brief glossary

Configuration-interaction: Diagonalizing the many-body Hamiltonian in an occupation-space basis (Slater determinants)

M-scheme: Using a basis with fixed total M=Jz

J-scheme: Using a basis with fixed total J (each state a linear combination of M-scheme states)

No-core shell model (NCSM): All particles active; usually used with *ab initio* interaction, h.o. single-particle states, often (not always) with N_{max} truncation.

Jumps: Instead of storing matrix elements, arrays which encode $\leq f$ | a⁺ a | i >, $\leq f$ | a⁺ a⁺ a a | i > etc. for calculating matrix elements on-the-fly

Many-fermion code: 2nd generation after REDSTICK code (started in *Baton Rouge, La.*)

Uses "factorization" algorithm: Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761(2013)

Arbitrary single-particle radial waveforms Allows local or nonlocal two-body interaction **Three-body forces implemented and validated** Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines **--can run at least dimension 200M+ on desktop --has done dimension 2 billion+ on supercomputers**

Inline calculations of one-body density matrices, single-particle occupations,

(+ options to compute strength functions via Lanczos trick, etc.)

45 kilolines of code Fortran 90 + MPI + OpenMP

Why configuration-interaction? Why not other many-body methods?

Green's-function Monte Carlo:

Highly successful *ab initio* method, works well with "hard" NN interactions Currently requires local interactions; tops out at around A=12-16; excited states are difficult

Coupled cluster:

Highly successful *ab initio* method; widely applied in AMO; works well with "hard" NN interactions; can handle heavier nuclei; good scaling with number of particles/orbits (only linked diagrams) Excited states are difficult; works best for closed shell, closed shell +/- 1 Cannot do N_{max} truncation

Configuration interaction

Generates excited states easily; works well with mid-shell nuclides Computational efforts increases exponentially with # particles, orbits due to "unlinked diagrams"; thus requires a "soft" interaction which does not connect high and low momentum states

BIGSTICK has run on a number of platforms

It runs easily and routinely on laptops and desktop Linux boxes and Macs.

It has run successfully on large parallel systems:

- Jaguar PF (ORNL) (MPI) up to about 5000 MPI processes
- Sierra (LLNL) including in hybrid MPI-OpenMP up to 1000 processes
- Franklin, Hopper, and Edison (NERSC) (MPI) up to 10,000 MPI procs
- Stampede (TACC/XSEDE machine) (MPI+OpenMP) up to 200 MPI procs

The most recent versions successfully break up the Lanczos vectors: the biggest dimension achieved so far is over 2 billion basis states (however, the computational barriers are more complex than just the dimension of the vectors—more on that in a moment.)

THE BASIC PROBLEM

The basic *science question* is to model detailed quantum structure of many-body systems, such the structure of an atomic nucleus.

The algorithms described today are best applied to many body systems with (a)two "species" (protons and neutrons, or $+1/2$ and $-1/2$ electrons) (b) single-particle basis states with good rotational symmetry (i, m)

To answer this, we solve *Schrödinger*'*s equation*:

$$
\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle
$$

- *** H** is generally a very large matrix dimensions up to 1010 have been tackled.
- * **H** is generally very sparse.
- * We usually only want a few low-lying states

THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm

fundamental operation is *matrix-vector multiply*

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused. Reuse of matrix elements understood through *spectator* particles.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

THE BASIC PROBLEM

 Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm

fundamental operation is *matrix-vector multiply*

$$
|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\alpha\rangle \qquad H_{\alpha\beta} = \langle \alpha | \hat{\mathbf{H}} | \beta \rangle
$$

$$
\sum_{\beta} H_{\alpha\beta} c_{\beta} = E c_{\alpha} \quad \text{if} \quad \langle \alpha | \beta \rangle = \delta_{\alpha\beta}
$$

so we use the matrix formalism

$$
\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle
$$

Nuclear Hamiltonian: $\hat{H} = \sum -\frac{\hbar}{2M} \nabla_i^2 + \sum$ $\overline{}$ $= \sum_{i} -\frac{1}{2!} \nabla_i^2 +$ \overline{i} *ZIVI* $\overline{i} < \overline{j}$ \sum_{i}^{2} + $\sum_{i}^{2} V(r_{i}, r_{j})$ $\hat{H} = \sum_{i} -\frac{\hbar^2}{2M} \nabla_i^2 + \sum_{i < i} V(r_i, r_j)$

Solve by diagonalizing **H** in a basis of many-body states. The many-body states are *Slater determinants*, or anti-symmeterized products of single-particle wfns.

The single-particle states are defined by a single-particle potential *U(r)* (such as harmonic oscillator or Hartree-Fock)

At this point one generally goes to occupation representation:

$$
\hat{H} = \sum_{i} \hat{\varepsilon}_{i} \hat{a}_{i}^{+} \hat{a}_{i} + \frac{1}{4} \sum_{ijkl} \hat{V}_{ijkl} \hat{a}_{i}^{+} \hat{a}_{j}^{+} \hat{a}_{l} \hat{a}_{k}
$$

Maria Mayer

single-particle energies two-body matrix elements

When running a fermion shell model code (e.g. MFD, BIGSTICK), one enters the following information:

(1) The single-particle valence space (such as *sd* or *pf*); assumes inert core

(2) The many-body model space (number of protons and neutrons, truncations, etc.)

(3) The interaction: single-particle energies and two-body matrix elements $V_{TT}(ab,cd)$

Despite sparsity, nonzero matrix elements can require TB of storage

- •How the basis states are represented
	- Product wavefunction ("Slater Determinant")

$$
\Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3 \ldots) = \phi_{\widehat{n_1}}(\vec{r}_1) \phi_{\widehat{n_2}}(\vec{r}_2) \phi_{\widehat{n_3}}(\vec{r}_3) \ldots \phi_{\widehat{n_N}}(\vec{r}_N)
$$

Each many-body state can be *uniquely* determined by a list of "occupied" single-particle states = "occupation representation"

$$
|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle
$$

Despite sparsity, nonzero matrix elements can require TB of storage

•How the basis states are represented

$$
|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle
$$

Despite sparsity, nonzero matrix elements can require TB of storage

some technical details: the "M-scheme" •How the basis states are represented

$$
\left|\alpha\right\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ \left|0\right\rangle
$$

For any Slater determinant, the total $M = sum of the m₁'s$

Because J_z commutes with H, we can use a basis with M fixed = "M-scheme"

Despite sparsity, nonzero matrix elements can require TB of storage

•Typical dimensions and sparsity

Despite sparsity, nonzero matrix elements can require TB of storage

RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.

Reuse of matrix elements understood through *spectator* particles.

of nonzero matrix elements vs. # unique matrix elements

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

We work in an *M*-scheme basis:

Because J^2 and J_z both commute with **H**, one does not need *all* basis states, but can use many-body basis restricted to the same *M*.

This is easy because *M* is an additive quantum number so it is possible for a single Slater determinant to be a state of good *M*.

(It's possible to work in a *J*-basis, e.g. OXBASH or NuShell, but each basis state is generally a complicated sum of Slater determinants).

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Because the M values are discrete integers or half-integers $(-3, -2, -1, 0, 1, 2, \ldots$ or $-3/2, -1/2, +1/2, +3/2 \ldots)$ we can organize the basis states in discrete *sectors*

Example: 2 protons, 4 neutrons, total $M = 0$

$$
M_z(\pi) = -4
$$

\n $M_z(\pi) = -3$
\n $M_z(\pi) = -2$
\n $M_z(\pi) = -2$
\n $M_z(\pi) = -2$
\n $M_z(\pi) = -2$
\n $M_z(\pi) = -2$

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total $M = 0$

$$
M_z(\pi) = -4
$$
: 2 SDs $M_z(v) = +4$: 24 SDs ⁴⁸ combined
\n $M_z(\pi) = -3$: 4 SDs $M_z(v) = +3$: 39 SDs ¹⁵⁶ combined
\n $M_z(\pi) = -2$: 9 SDs $M_z(v) = +2$: 60 SDs ⁵⁴⁰ combined

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

22

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Factorization allows us to keep track of all basis states without writing out every one explicitly -- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

There are potentially 48 × 48 matrix elements But for H_{pp} at most 4 \times 24 are nonzero and we only have to look up 4 matrix elements

Advantage: **we can store 98 matrix elements as 4 matrix elements** and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Advantage: **we can store 98 matrix elements as 4 matrix elements** and avoid 2000+ zero matrix elements. € €

Reuse can be **exploited using exact factorization**

enforced through *additive/multiplicative quantum numbers*

Comparison of nonzero matrix storage with factorization

"It's not enough to just show up. You have to have a business plan."

"easy" with standard spaces and interactions

> 122,123,124,125,126,128,130Te 127I $128,129,130,131,132,134,136$ Xe 133Cs 180,182,183,184,186W

Single-particle space: $1s_{1/2}$ $0d_{3/2}$ $0f_{7/2}$ $1p_{3/2}$ $1p_{1/2}$

Comment: Moderately easy but need to tune interaction

Single-particle space: $1p_{3/2} 1p_{1/2} 0f_{5/2} 0g_{9/2}$

Comment: Moderately easy; JUN45 interaction mostly tuned

Single-particle space: $2s_{1/2} 1d_{3/2} 1d_{5/2} 0g_{7/2} 0h_{11/2}$

Comment: Challenging, interaction must be tuned

*Abundance = 1.91% ; can truncate to 1.35 B

Single-particle space: $0h_{11/2}$ $0h_{9/2}$ $1f_{7/2}$ $1f_{5/2}$ $2p_{3/2}$ $2p_{1/2}$ $0i_{11/2}$

Comment: Very challenging; need interaction

*Abundance = $0.12%$; can truncate