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An atlas  
of dark matter experiments 

 

Couplings (operators) 

To be filled in..... 



Potential target nuclides: 
 
12,13C 
16,18O 

19F 

20,21,22Ne 

23Na 

28,29,30Si 
32,33,34S 
36,40Ar 

40,42,43,44,48Ca 

70,72,73,74,76Ge 
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122,123,124,125,126,128,130Te 

127I 

128,129,130,131,132,134,136Xe 
133Cs 
180,182,183,184,186W 

 



A brief glossary 
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Configuration-interaction: Diagonalizing the many-body Hamiltonian  
in an occupation-space basis  (Slater determinants) 

EXECUTIVE SUMMARY ON THE BIGSTICK CODE 

M-scheme: Using a basis with fixed total M=Jz 

J-scheme: Using a basis with fixed total J (each state a linear combination 
of M-scheme states) 
No-core shell model (NCSM):   All particles active; usually used with  
ab initio interaction, h.o. single-particle states, often (not always) with  
Nmax truncation.  

Jumps:  Instead of storing matrix elements, arrays which encode  
< f | a+ a | i >, < f | a+ a+ a a | i > etc. for calculating matrix elements  
on-the-fly 
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EXECUTIVE SUMMARY ON THE BIGSTICK CODE 

Uses “factorization” algorithm:  Johnson, Ormand, and Krastev,  

Comp. Phys. Comm. 184, 2761(2013) 

Arbitrary single-particle radial waveforms 
Allows local or nonlocal two-body interaction 
Three-body forces implemented and validated 
Applies to both nuclear and atomic cases 

Runs on both desktop and parallel machines 
--can run at least dimension 200M+ on desktop 
--has done dimension 2 billion+ on supercomputers 

45 kilolines of code 
Fortran 90 + MPI + OpenMP 

Many-fermion code: 2nd generation after REDSTICK code 
(started in Baton Rouge, La.) 

Inline calculations of one-body density matrices,  
single-particle occupations,  
(+ options to compute strength functions via Lanczos trick, etc.) 



Why configuration-interaction? Why not other many-body methods? 
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Green’s-function Monte Carlo: 
Highly successful ab initio method, works well with “hard” NN interactions 
Currently requires local interactions; tops out at around A=12-16; 
excited states are difficult 

EXECUTIVE SUMMARY ON THE BIGSTICK CODE 

Coupled cluster: 
Highly successful ab initio method; widely applied in AMO;  
works well with “hard” NN interactions; can handle heavier nuclei; 
good scaling with number of particles/orbits (only linked diagrams) 
Excited states are difficult; works best for closed shell, closed shell +/- 1 
Cannot do Nmax truncation 

Configuration interaction 
Generates excited states easily; works well with mid-shell nuclides 
Computational efforts increases exponentially with # particles, orbits  
due to “unlinked diagrams”; thus requires a “soft” interaction 
which does not connect high and low momentum states 



BIGSTICK has run on a number of platforms 
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It runs easily and routinely on laptops and desktop Linux boxes and Macs. 
 
It has run successfully on large parallel systems: 
 
•  Jaguar PF (ORNL) (MPI) up to about 5000 MPI processes 
•  Sierra (LLNL) including in hybrid MPI-OpenMP up to 1000 processes 
•  Franklin, Hopper, and Edison (NERSC) (MPI)  up to 10,000 MPI procs 
•  Stampede (TACC/XSEDE machine) (MPI+OpenMP) up to 200 MPI procs 

EXECUTIVE SUMMARY ON THE BIGSTICK CODE 

The most recent versions successfully break up the Lanczos vectors: 
the biggest dimension achieved so far is over 2 billion basis states  
(however, the computational barriers are more complex than just  
the dimension of the vectors—more on that in a moment.) 



THE BASIC PROBLEM 
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The	
  basic	
  science	
  question	
  is	
  to	
  model	
  detailed	
  quantum	
  structure	
  of	
  	
  
many-­‐body	
  systems,	
  such	
  the	
  structure	
  of	
  an	
  atomic	
  nucleus.	
  

To	
  answer	
  this,	
  we	
  solve	
  Schrödinger’s	
  equation:	
  

€ 

ˆ H Ψ = E Ψ
* H is generally a very large matrix – dimensions up to 
1010 have been tackled.  
* H is generally very sparse. 
* We usually only want a few low-lying states 

The	
  algorithms	
  described	
  today	
  are	
  best	
  applied	
  to	
  many	
  body	
  systems	
  with	
  
(a) two	
  “species”	
  (protons	
  and	
  neutrons,	
  or	
  +1/2	
  and	
  -­‐1/2	
  electrons)	
  
(b) single-­‐particle	
  basis	
  states	
  with	
  good	
  rotational	
  symmetry	
  (j,	
  m)	
  
	
  



THE KEY IDEAS 

Basic problem: find extremal eigenvalues of  very large, very 
sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 
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Despite sparsity, nonzero matrix elements can require TB of  storage 
	
  

Only a fraction of  matrix elements are unique; most are reused. 
Reuse of matrix elements understood through spectator particles. 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 



THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 
     fundamental operation is matrix-vector multiply 
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€ 

ˆ H Ψ = E Ψ

so we use the matrix formalism 

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα if 

€ 

α β = δαβ
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Nuclear Hamiltonian: ∑ ∑
<

+∇−=
i ji

jii rrV
M

H ),(
2

ˆ 2
2

Solve by diagonalizing H in a basis of many-body states. 
The many-body states are Slater determinants, or 
anti-symmeterized products of single-particle wfns. 

The single-particle states are defined by 
a single-particle potential U(r)  (such as 

harmonic oscillator or Hartree-Fock) 

At this point one generally goes to occupation representation: 

klji
i ijkl

ijkliii aaaaVaaH ˆˆˆˆˆˆˆ
4
1 +++∑ ∑+= ε

single-particle energies two-body matrix elements 

Maria Mayer 
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When running a fermion shell model code (e.g. MFD, 
BIGSTICK), one enters the following information: 

(1)  The single-particle valence space  
(such as sd or pf); assumes  inert core 

(2) The many-body model space  
(number of protons and  
neutrons, truncations, etc.) 

(3) The interaction:  
single-particle energies  
and  
two-body matrix elements 
VJT(ab,cd) 
 

inert core 

excluded 

valence space } 



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• How the basis states are represented 

  

€ 

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N )

Product wavefunction (“Slater Determinant”) 

Each many-body state can be uniquely determined  
by a list of “occupied” single-particle states 
= “occupation representation”  

  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0
ni 1 2	
   3	
   4	
   5	
   6	
   7	
  
α=1	
   1	
   0	
   0	
   1	
   1	
   0	
   1	
  
α=2	
   1	
   0	
   1	
   0	
   0	
   1	
   1	
  
α=3	
   0	
   1	
   1	
   1	
   0	
   1	
   0	
  

• How the basis states are represented 



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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some technical details: 
the “M-scheme”   

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

label	
   N	
   l	
   ml	
  

1	
   1	
   0	
  (S)	
   0	
  

2	
   2	
   0	
  (S)	
   0	
  

3	
   2	
   1	
  (P)	
   1	
  

4	
   2	
   1	
  (P)	
   0	
  

5	
   2	
   1	
  (P)	
   -­‐1	
  

For any Slater determinant, 
the total M = sum of the ml’s 
 
Because Jz commutes with H, 
we can use a basis with M fixed 
= “M-scheme” 

• How the basis states are represented 



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• Typical dimensions and sparsity 

Nuclide
 valence

space


valence 
Z


valence 
N


basis

dim


sparsity

(%)


20Ne
 “sd”
 2
 2
 640
 10

25Mg
 “sd”
 4
 5
 44,133
 0.5

49Cr
 “pf”
 4
 5
 6M
 0.01

56Fe
 “pf”
 6
 10
 500M
 2x10-4




 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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Nuclide	
   Space	
   Basis	
  dim	
   matrix	
  store	
  

56Fe	
   pf	
   501	
  M	
   4.2	
  Tb	
  
7Li	
   Nmax=12	
   252	
  M	
   3.6	
  Tb	
  
7Li	
   Nmax=14	
   1200	
  M	
   23	
  Tb	
  
12C	
   Nmax=6	
   32M	
   0.2	
  Tb	
  
12C	
   Nmax=8	
   590M	
   5	
  Tb	
  
12C	
   Nmax=10	
   7800M	
   111	
  Tb	
  
16O	
   Nmax=6	
   26	
  M	
   0.14	
  Tb	
  
16O	
   Nmax=8	
   990	
  M	
   9.7	
  Tb	
  



RECYCLED MATRIX ELEMENTS 
Only a fraction of  matrix elements are unique; most are reused. 

Reuse of matrix elements understood through spectator particles. 
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# of nonzero matrix elements vs. # unique matrix elements 

Nuclide
 valence 
space


valence

Z


valence

N 


# 
nonzero


# 
unique


28Si
 “sd”
 6
 6
 26 x 106
 3600

52Fe
 “pf”
 6
 6
 90 x 109
 21,500




FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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We work in an M-scheme basis: 
 
Because J2 and Jz both commute with H, one does not  
need all basis states, but can use many-body basis  
restricted to the same M.   
 
This is easy because M is an additive quantum number 
so it is possible for a single Slater determinant to be  
a state of good M. 
 
(It’s possible to work in a J-basis, e.g. OXBASH or NuShell, but each 
basis state is generally a complicated sum of Slater determinants). 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Because the M values are discrete integers or half-integers 
(-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2....) 
we can organize the basis states in discrete sectors 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4 Mz(υ) = +4 

Mz(π) = -3 Mz(υ) = +3 

Mz(π) =-2 Mz (υ) = +2 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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In fact, we can see an example of factorization here because 
all proton Slater determinants in one M-sector must combine 
with all the conjugate neutron Slater determinants 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Mz(π) = -3: 4 SDs Mz(υ) = +3: 39 SDs 156 combined 

Mz(π) = -2: 9 SDs Mz(υ) = +2: 60 SDs 540 combined 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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In fact, we can see an example of factorization here because 
all proton Slater determinants in one M-sector must combine 
with all the conjugate neutron Slater determinants 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

€ 

π1
π 2

  

€ 

ν1
ν 2
ν 3
ν 4


ν 24

× = 

  

€ 

π1 ν1
π 2 ν1
π1 ν 2
π 2 ν 2


π1 ν 24
π 2 ν 24



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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np ααα ×=
Neutron SDs 

P
ro

to
n 

S
D

s 

20Ne 640 66 

24Mg        28,503               495 

28Si          93,710               924 

48Cr      1,963,461           4895 

52Fe    109,954,620       38,760 

56Ni   1,087,455,228   125,970 

Example N = Z nuclei 
Nuclide   Basis dim       # pSDs (=#nSDs) 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Factorization allows us to keep track of all basis states 
without writing out every one explicitly 
-- we only need to write down the proton/neutron components 

The same trick can be applied to matrix-vector multiply 

€ 

ˆ H = ˆ H pp + ˆ H nn + ˆ H pn
Move 2 protons; 
neutrons are  
spectators 

Move 2 neutrons; 
protons are  
spectators 

Move 1 proton + 
1 neutron; 
rest are  
spectators 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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€ 

ˆ H pp
Move 2 protons; 
neutrons are  
spectators 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

There are potentially 48 × 48 matrix elements 
But for Hpp at most 4  × 24 are nonzero 
and we only have to look up 4 matrix elements 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 

€ 

π1
π 2

  

€ 

ν1
ν 2
ν 3
ν 4


ν 24€ 

Hpp =
H11 H12

H21 H22

" 

# 
$ 

% 

& 
' 

  

€ 

Hpp π1 ν1 = H11 π1 ν1 + H12 π 2 ν1

Hpp π 2 ν1 = H12 π1 ν1 + H22 π 2 ν1

Hpp π1 ν 2 = H11 π1 ν 2 + H12 π 2 ν 2

Hpp π 2 ν 2 = H12 π1 ν 2 + H22 π 2 ν 2


Hpp π1 ν 24 = H11 π1 ν 24 + H12 π 2 ν 24

Hpp π 2 ν 24 = H12 π1 ν 24 + H22 π 2 ν 24



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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Nuclide	
   Space	
   Basis	
  dim	
   matrix	
  store	
   factoriza6on	
  

56Fe	
   pf	
   501	
  M	
   290	
  Gb	
   0.72	
  Gb	
  
7Li	
   Nmax=12	
   252	
  M	
   3600	
  Gb	
   96	
  Gb	
  
7Li	
   Nmax=14	
   1200	
  M	
   23	
  Tb	
   624	
  Gb	
  
12C	
   Nmax=6	
   32M	
   196	
  Gb	
   3.3	
  Gb	
  
12C	
   Nmax=8	
   590M	
   5000	
  Gb	
   65	
  Gb	
  
12C	
   Nmax=10	
   7800M	
   111	
  Tb	
   1.4	
  Tb	
  
16O	
   Nmax=6	
   26	
  M	
   142	
  Gb	
   3.0	
  Gb	
  
16O	
   Nmax=8	
   990	
  M	
   9700	
  Gb	
   130	
  Gb	
  

Comparison of nonzero matrix storage with factorization 



Will do 
shell  
model 
4 food 



Potential target nuclides 
 
12,13C 
16,18O 

19F 

20,21,22Ne 

23Na 

28,29,30Si 
32,33,34S 
36,40Ar 

40,42,43,44,48Ca 

70,72,73,74,76Ge 

29	
  

122,123,124,125,126,128,130Te 

127I 

128,129,130,131,132,134,136Xe 
133Cs 
180,182,183,184,186W 

 

and M-scheme dimensionalities 

“easy”  
with standard  
spaces and interactions 
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and M-scheme dimensionalities 

Single-particle space:  1s1/2 0d3/2 0f7/2 1p3/2 1p1/2 

Nuclide	
   dimension	
  
36Ar 1.1 million 
40Ar 25 million 
40Ca 60 M 
42Ca 190 M 
43Ca 250 M 
44Ca 276 M 
48Ca 60 M 

Comment: Moderately easy but need to tune interaction 

Potential target nuclides 
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and M-scheme dimensionalities 

Single-particle space:  1p3/2 1p1/2 0f5/2 0g9/2 

Nuclide	
   dimension	
  

70Ge  140 M 
72Ge 140 M 
73Ge  108 M 
74Ge  70 M 
76Ge  17 M 

Comment: Moderately easy; JUN45 interaction mostly tuned 

Potential target nuclides 
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and M-scheme dimensionalities 

Single-particle space:  2s1/2 1d3/2 1d5/2 0g7/2 0h11/2 

Nuclide	
   dimension	
  

122Te  2.8 Billion 
123Te  1.6 B 
124Te  820 Million 
125Te  360 M 
126Te 141 M 
128Te  13 M 
130Te  0.6 M 

Comment: Challenging, interaction must be tuned 

Potential target nuclides 
 

Nuclide	
   dimension	
  

128Xe* 9 Billion 
129Xe 3 B 
130Xe 850 Million 
131Xe 198 M 
132Xe  3.7 M 
134Xe  0.6 M 
136Xe 1504 

Nuclide	
   dimension	
  

127I 1.3 Billion 
133Cs 198 million 

*Abundance = 1.91%; can truncate to 1.35 B  
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and M-scheme dimensionalities 

Single-particle space:  0h11/2 0h9/2 1f7/2 1f5/2 2p3/2 2p1/2 0i11/2 

Nuclide dimension 

180W*  187 Billion 
182W  2.5 B 
183W  206 Million 
184W  13 M 
186W  12301 

Comment: Very challenging; need interaction 

Potential target nuclides 
 

*Abundance = 0.12%; can truncate  


