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• Why (or where) does the SM come in to 
WIMP interactions?

•2

What is Heavy WIMP Effective theory?

FB!D(v0 = v) = 1 + . . .

�(�N ! �N) =?

- hydrogen/deuterium spectroscopy 

- heavy meson B/B* transitions 

- DM interactions

(meZ↵) ⌧ me

⇤QCD ⌧ mb,c

mW ⌧ m�

a manifestation of heavy particle symmetry: 

En = � 1

2n2
me(Z↵)2 + . . .

Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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SM

WIMP

SU(2)WxU(1)Y

SM

WIMP

universal interactions between a 
heavy WIMP and standard 
model particles, like nucleons  

independent of WIMP spin or 
internal structure 

⇒
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What is it good for? 

- simplifies two loop matching (WIMP-nucleus scattering) 

in addition to universality, the effective theory enables 
us to incorporate important effects:

- enables large log(MDM/mW) resummation (WIMP annihilation)

in this talk, focus on WIMP-nucleus scattering.

Consider for definiteness a self-conjugate WIMP, odd under 
stabilizing parity symmetry (includes, but is not limited to SUSY 
neutralinos)

Low-velocity WIMP-nucleon cross section: a basic benchmark, 
but involves surprisingly intricate analysis
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Other ingredients

To examine the implications of heavy WIMP symmetry, 
improvements to standard/simplified treatments are 
necessary:  

- new results in high order perturbative QCD ( αs(mc) expansion )

- systematic treatment of hadronic uncertainties

Aside: theoretical developments have implications beyond 
WIMPs

- atomic physics: Lorentz invariance and high order NRQED

- collider physics: Soft-collinear effective theory: interplay of soft-
collinear singularities and electroweak symmetry breaking
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In the remainder of the talk, 

- motivate the study of heavy WIMP models

- describe “Standard Model anatomy” of WIMP-nucleus 
scattering process, necessary to determine the observable 
implications of heavy WIMP symmetry 

- give (surprising) results for some simple examples

- discuss topics for further study
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Present null results of direct detection and collider 
searches may indicate large WIMP mass scale

6

0

mW

mass spectrum of beyond-
standard model states

mass

If WIMP mass M >> mW , isolation (M’-M >> mW) becomes generic.   Expand in mW/M, mW/(M’-M)  

Large WIMP mass regime is a focus of future experiments in direct, indirect and collider probes 

0

mW

M

M 0

→
lightest BSM multiplet

next-to-lightest BSM 
multiplet

focus here
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energy/
renormalization
scale (GeV)

Five distinct regimes relevant for WIMP scattering on nuclear targets

 EW symmetric “Heavy WIMP effective theory”  

Heavy quark threshold matching

Nucleon matrix elements

Renormalization of composite operators

mW

⇤QCD

Enuclear

mb, mc }quarks/gluons

new physics

nucleons, nuclei

}

}
“SM anatomy” of interactions between weak and hadronic scales

1

5

80
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E.g., PQ/axion mechanism versus specific axion model

– 20–

Figure 3: Exclusion region reported from the
microwave cavity experiments RBF and UF [99]
and ADMX [100]. A local dark-matter density
of 450 MeV cm−3 is assumed.

amplifiers by near quantum-limited low-noise dc SQUID mi-

crowave amplifiers [103], allowing for a significantly improved

sensitivity [104]. This apparatus is also sensitive to other hy-

pothetical light bosons, such as hidden photons or chameleons,

over a limited parameter space [93,105]. Alternatively, a Ry-

dberg atom single-photon detector [106] can in principle evade

the standard quantum limit for coherent photon detection.

Other new concepts for searching for axion dark matter are

also being investigated. Photons from dark matter axions or

ALPs could be focused in a manner similar to a dish antenna

instead of a resonant cavity [107]. The oscillating galactic dark

matter axion field induces extremely small oscillating nuclear

electric dipole moments. Conceivably these could be detected by

exploiting NMR techniques or molecular interferometry [108],

which are most sensitive in the range of low oscillation frequen-

cies corresponding to sub-neV axion masses. The reach of these

techniques in practice remains to be seen.

August 21, 2014 13:17

Mechanisms versus models
Effective theories allow us to make predictions 
independent of detailed models

ga�� / E

N
� 2

3

4md +mu

md +mu

electromagnetic anomaly

=
E

N
� 2.01(13)

color anomaly
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Electroweak charged WIMP Mechanism versus WIMP Model 

- SUSY wino

- Weakly Interacting Stable Pion 

- Minimal Dark Matter

x
x

x

xx

Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for
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Mechanisms versus models

- ...

Focus on self-conjugate SU(2) triplet.  Could be: 
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A lot of space remaining...

we’ll end up here
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L = LSM +
1

2
¯̃w(iD/ �M)w̃

L = N†
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2mN
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�+ cSIN
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Start here:  (e.g. fermion or composite boson UV completion)

End up here

L = LSM � 1

4
(Âa

µ⌫)
2 +  ̄(i@/ + ĝÂ/ + g2W/ ) 

“SM anatomy” of interactions between weak and hadronic scales

Fill in here
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Scale separation: 

mW

mb, mc 

ΛQCD

mπ

1/Rnucleus

dark sector 
d.o.f.

# params.SM
d.o.f.

M
Q,Aa

µ,W
i
µ, Bµ

Q,Aa
µ,W

i
µ, Bµ

u, d, s, c, b, Aa
µ

u, d, s, Aa
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n, p

N
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v
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v
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v
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v
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v

�(0)
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0

0

12

8

2

1

N,⇡ 3

(beyond mass)
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Heavy particle symmetry and weak-scale matching

+ + +

= c2 + c1

⇤
+

⌅
+ . . .

Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.

7

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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lines are not displayed.
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where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Heavy WIMP Feynman rules 
drastically simplifiy integrals: 
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Renormalization and heavy quark decoupling

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.
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compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
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1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
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L⌃0,SM =
1

m3
W

⌃�
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q
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c(0)1q O

(0)
1q + c(2)1q vµv⇧O
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⌃
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where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)
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d logµ
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i =

�

j

�(S)
ji c(S)

j

QCD operators are familiar: Lagrangian operators (spin-0) and components 
of QCD stress-energy (spin-2)

Anomalous dimensions known to high order

Determines coefficient solution (within theory of same nf), e.g.  

c(0)2 (µ) = c(0)2 (µt)
�
g [�s(µ)]
�
g [�s(µt)]

c(0)1 (µ) = c(0)1 (µt)� 2[⇥m(µ)� ⇥m(µt)]
c(0)2 (µt)
�
g [�s(µt)]
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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mW (1 + xt)

� 4(12x5
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� 8xt(�3 + 7x2

t )
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t � 1)3

log 2

� 48x6
t + 24x5

t � 104x4
t � 35x3

t + 20x2
t + 13xt + 18

9(x2
t � 1)2(1 + xt)

⇥
. (22)

There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. �s(µ0) logmt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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There is no dependence of c(0)2 or c(2)2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The e�ective theory subtractions are e⇤ciently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW ⇤ 0. Details of this computation will be presented elsewhere.
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employ renormalization group evolution to sum leading logarithms to all orders.
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c1

nf=5 nf=4

{ {

In order to evaluate nucleon matrix elements, need to match onto 3-flavor 
(perhaps 4-flavor) QCD 

Poor convergence of perturbation theory at charm mass leads to strong 
dependence on subleading corrections

The vector currents have trivial matching conditions up to power corrections, while the axial-
vector currents, tensor currents and C-odd spin-two operators receive threshold matching corrections
beginning at O(↵2

s

). Since the latter operator classes have nuclear spin-dependent and/or velocity-
suppressed matrix elements in physical WIMP-nucleon processes at small relative velocity, we restrict
attention to the leading e↵ects of renormalization scale evolution as detailed in the previous section,
and neglect heavy quark threshold matching conditions which are suppressed in each case by a
further power of ↵

s

.9 In terms of Eq. (27), we express these solutions in the basis (u, d, s, . . . |Q) as
the n

f

⇥ (n
f

+ 1) matrix M
ij

= M�
ij

, with i = u, d, s, . . . and j = u, d, s, . . . , Q. The constants M
are collected in Table 6.

For the scalar, pseudoscalar and C-even spin-two operators, threshold matching involving gluon
operators begins at O(↵

s

), and the solution to the matching condition may be expressed in terms of
an (n

f

+ 1)⇥ (n
f

+ 2) matrix in the basis (u, d, s, . . . |Q|g) as

M =

0

B

B

B

B

@

1 0 0
. . .

...
...

1 0 0

0 · · · 0 M
gQ

M
gg

1

C

C

C

C

A

. (28)

This parameterization is su�cient for matching at NLO for scalar operators [47] and at LO for
pseudoscalar and C-even spin-two operators.10 The elements M

ij

are given in Table 6. Scheme
dependence for the heavy quark mass (e.g. pole versus MS) appears at higher order.

Due to the lightness of the charm quark, and correspondingly poorly convergent ↵
s

(m
c

) expansion,
WIMP-nucleon cross sections can depend sensitively on threshold corrections for the scalar operator.

Contributions from matrix elements of the heavy quark operator, i.e., the column vector M (0)

i(nf+1)

,

are known through O(↵3

s

) [48]. In the next section, we employ a sum rule for matrix elements of
scalar operators, derived from the QCD energy momentum tensor, to obtain new relations amongst
the elements of M (0), thus extending the available results at higher-orders.

3.5 Sum rule constraints on scale evolution and heavy quark threshold matching

The equivalence of physical matrix elements determined in theories defined at di↵erent scales or with
di↵erent numbers of active quark flavors, together with the solutions for coe�cient evolution and
matching at heavy quark thresholds given in Eqs. (23) and (27), imply relations between operator
matrix elements:

hO0(S)
i

i(µ
h

) = R(S)

ji

(µ, µ
h

)hO(S)

j

i(µ) , hO0(S)
i

i(µ
b

) = M (S)

ji

(µ
b

)hO(S)

j

i(µ
b

) +O(1/m
b

) , (29)

where h · i ⌘ hN | · |Ni denotes a physical matrix element (for definiteness we consider the matrix
element in a nucleon state |Ni). The first relation links operator matrix elements at di↵erent scales
but with the same number of active quarks, while the second relation links operator matrix elements
at the same scale (here taken to be the bottom threshold for definiteness) but with n

f

+ 1 (primed)
and n

f

(unprimed) active flavors.

The matrix elements hO(S)

i

i are not independent but linked by sum rules derived from the trace
and traceless part of the (symmetric and conserved) QCD energy momentum tensor ✓µ⌫ . Let us

9For explicit results at two and three loop order see [45, 46].
10In the next section we generalize the parameterization of Mij for higher-order matching in the case of scalar

operators.

14

focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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Nucleon matrix elements and hadronic uncertainty

Having evolved to 3-flavor QCD, appeal to lattice QCD or other 
nonperturbative methods for nucleon matrix elements

6 Matrix elements and cross section

Having expressed the lagrangian in terms of operators renormalized at the scale µ0 ⇠ 1GeV,
we require hadronic matrix elements evaluated at this scale.

6.1 Hadronic inputs

Let us define the zero-momentum matrix elements of renormalized operators6

hN |O(0)
1q |Ni ⌘ mNf

(0)
q,N ,

�9↵s(µ)

8⇡
hN |O(0)

2 (µ)|Ni ⌘ mNf
(0)
G,N(µ) ,

hN |O(2)µ⌫
1q (µ)|Ni ⌘ 1

mN

✓
kµk⌫ � gµ⌫

4
m2

N

◆
f (2)
q,N(µ) ,

hN |O(2)µ⌫
2 (µ)|Ni ⌘ 1

mN

✓
kµk⌫ � gµ⌫

4
m2

N

◆
f (2)
G,N(µ) , (26)

where mN is the nucleon mass. Matrix elements refer to a definite (but arbitrary) spin state
of the nucleon.

6.1.1 Spin zero

We recall that the spin-0 operator matrix elements are not independent, being linked by the
relation [18]

mN = (1� �m)
X

q

hN |mq q̄q|Ni+ �

2g
hN |(Ga

µ⌫)
2|Ni , (27)

derived from the trace of the QCD energy-momentum tensor. Here N = p or n. Neglecting
�m, O(↵2

s) contributions to �(g), and power corrections in the above formula, the definitions

(26) ensure that f (0)
G,N(µ) ⇡ 1�P

q=u,d,s f
(0)
q,N . Corrections arising from (27) are included in the

numerical analysis.
For quark operators, define the scale-independent quantities,

⌃⇡N =
mu +md

2
hp|(ūu+ d̄d)|pi , ⌃0 =

mu +md

2
hp|(ūu+ d̄d� 2s̄s)|pi . (28)

In the numerical analysis, we will neglect the small contributions proportional to |Vtd|2 and

|Vts|2, so that c(0)1u = c(0)1d . Neglecting also the small contribution [19] (md�mu)hp|(ūu�d̄d)|pi ⇠
2MeV, and using approximate isospin symmetry, we then require, for N = p or n,

mN(f
(0)
u,N + f (0)

d,N) ⇡ ⌃⇡N , mNf
(0)
s,N =

ms

mu +md

(⌃⇡N � ⌃0) = ⌃s . (29)

6
We use nonrelativistic normalization for nucleon states, hN(p)|N(p0

)i = (2⇡)3�3(p� p0
).
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)i = (2⇡)3�3(p� p0
).
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6 Matrix elements and cross section

Having expressed the lagrangian in terms of operators renormalized at the scale µ0 ⇠ 1GeV,
we require hadronic matrix elements evaluated at this scale.

6.1 Hadronic inputs

Let us define the zero-momentum matrix elements of renormalized operators6

hN |O(0)
1q |Ni ⌘ mNf

(0)
q,N ,

�9↵s(µ)

8⇡
hN |O(0)

2 (µ)|Ni ⌘ mNf
(0)
G,N(µ) ,

hN |O(2)µ⌫
1q (µ)|Ni ⌘ 1

mN

✓
kµk⌫ � gµ⌫

4
m2

N

◆
f (2)
q,N(µ) ,

hN |O(2)µ⌫
2 (µ)|Ni ⌘ 1

mN

✓
kµk⌫ � gµ⌫

4
m2

N

◆
f (2)
G,N(µ) , (26)

where mN is the nucleon mass. Matrix elements refer to a definite (but arbitrary) spin state
of the nucleon.

6.1.1 Spin zero

We recall that the spin-0 operator matrix elements are not independent, being linked by the
relation [18]

mN = (1� �m)
X

q

hN |mq q̄q|Ni+ �

2g
hN |(Ga

µ⌫)
2|Ni , (27)

derived from the trace of the QCD energy-momentum tensor. Here N = p or n. Neglecting
�m, O(↵2

s) contributions to �(g), and power corrections in the above formula, the definitions

(26) ensure that f (0)
G,N(µ) ⇡ 1�P

q=u,d,s f
(0)
q,N . Corrections arising from (27) are included in the

numerical analysis.
For quark operators, define the scale-independent quantities,

⌃⇡N =
mu +md

2
hp|(ūu+ d̄d)|pi , ⌃0 =

mu +md

2
hp|(ūu+ d̄d� 2s̄s)|pi . (28)

In the numerical analysis, we will neglect the small contributions proportional to |Vtd|2 and

|Vts|2, so that c(0)1u = c(0)1d . Neglecting also the small contribution [19] (md�mu)hp|(ūu�d̄d)|pi ⇠
2MeV, and using approximate isospin symmetry, we then require, for N = p or n,

mN(f
(0)
u,N + f (0)

d,N) ⇡ ⌃⇡N , mNf
(0)
s,N =

ms

mu +md

(⌃⇡N � ⌃0) = ⌃s . (29)

6
We use nonrelativistic normalization for nucleon states, hN(p)|N(p0

)i = (2⇡)3�3(p� p0
).
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Parameter Value Reference

|Vtd| ⇤ 0 -

|Vts| ⇤ 0 -

|Vtb| ⇤ 1 -

mu/md 0.49(13) [20]

ms/md 19.5(2.5) [20]

�lat
�N 0.047(9)GeV [21]

�lat
s 0.050(8)GeV [22]

��N 0.064(7)GeV [23]

�0 0.036(7)GeV [24]

mW 80.4GeV [20]

mt 172 GeV [15]

mb 4.75 GeV [15]

mc 1.4 GeV [15]

mN 0.94 GeV -

�s(mZ) 0.118 [20]

�2(mZ) 0.0338 [20]

Table 1: Inputs to the numerical analysis.

We consider “traditional” values ��N = 64 ± 7MeV [23] and �0 = 36 ± 7MeV [24], but
investigate also the lattice determinations, �lat

�N = 47±9MeV [21] and �lat
s = 50±8MeV [22].7

We adopt PDG values [20] for light-quark mass ratios. A summary of numerical inputs is
presented in Table 1.

6.1.2 Spin two

The matrix elements of spin-two operators can be identified as

f (2)
q,p (µ) =

⇥ 1

0

dx x[q(x, µ) + q̄(x, µ)] , (30)

where q(x, µ) and q̄(x, µ) are parton distribution functions evaluated at scale µ. Neglecting
power corrections, the sum of spin two operators in (20) is the traceless part of the QCD

energy momentum tensor, hence independent of scale we have f (2)
G,p(µ) ⌅ 1�

�
q=u,d,s f

(2)
q,p (µ).

Using approximate isospin symmetry we set

f (2)
u,n = f (2)

d,p , f (2)
d,n = f (2)

u,p , f (2)
s,n = f (2)

s,p . (31)

7The latter quantity arises from a naive averaging of �s = 31 ± 15MeV [21] and �s = 59 ± 10MeV [25].
See also [26, 27, 28].

10

spin-0:

spin-2:

Gluon matrix elements determined by quark matrix elements + sum rules 

hN |O(0)
q |Ni ⌘ mNf

(0)
q,N

hN(k)|O(2)µ⌫
q |N(k)i = 1

mN

✓
kµk⌫ � gµ⌫

4
m2

N

◆
f
(2)
q,N (µ)
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Q: Why bother with naively subleading corrections? 

A: They matter, especially with amplitude-level cancellations

� / |M (0) +M (2)|2
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Figure 4: Breakdown of contributions to the matrix element Mp using the representative
values mh = 120GeV and ⌃lat

⇡N = 47(9)MeV. The labels u(S), d(S), s(S) and g(S) refer to spin-
S up, down, strange and gluon operator contributions, respectively. The thickness represents
the 1� uncertainty from perturbative QCD. The left-hand vertical band corresponds to the
lattice value ⌃lat

s = 50(8)MeV and the right-hand vertical band corresponds to the range
⌃s = 366(142)MeV deduced from ⌃⇡N and ⌃0 in Table 1.

induced by electroweak symmetry breaking, and of the cross section for scattering on nuclear
matter. Subleading terms in the 1/M expansion can be studied systematically using (4).

Our focus has been on the case of an isotriplet real scalar [1]. For this case, relic abun-
dance estimates [8] indicate that M . fewTeV in order to not overclose the universe. This
mass range, combined with the universal cross section, provides a target for future search
experiments.

We have presented a complete matching at first nonvanishing order in ↵s, and at leading
order in small ratios mW/M , mb/mW and ⇤QCD/mc. We performed renormalization group
improvement to sum leading logarithms to all orders. The residual dependence on the high
matching scale µt ⇠ mt ⇠ mW represents uncertainty due to uncalculated higher-order per-
turbative corrections. Assuming the hadronic input ⌃lat

s from Table 1, this scale variation is
the largest remaining uncertainty on the cross section; its reduction would require higher loop
order calculations.

Our high-scale matching results for quark operators (21) and spin-zero gluon operators
agree with mW/M ! 0 results presented by Hisano et al. [30], under the identification µt =
µb = µc, i.e., a one-step matching onto the nf = 3 theory.9 This approach neglects large
logarithms appearing in coe�cient functions; no attempt was made in [30] to estimate the
uncertainty on the obtained cross section. Our results for matching onto spin-two gluon

9
To make the comparison to the scattering amplitude for a heavy Majorana fermion with � = �c

, we use

� =

p
2e�imv·x

(h
v

+H
v

) =

p
2eimv·x

(hc

v

+Hc

v

), where h
v

and H
v

are spinor fields with (1�v/ )h
v

= (1+v/ )H
v

=

0.

13

M (2) =
X

q

M (2)
q +M (2)

g > 0

M (0) =
X

q

M (0)
q +M (0)

g > 0

am
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Illustrate with SU(2)W triplet (e.g. “wino”)
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Strong dependence on both perturbative and hadronic corrections
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Figure 1: Spin-independent cross section for low-velocity scattering on the proton as a func-
tion of mh for the pure triplet. Labels refer to inclusion of LO, NLO, NNLO and NNNLO
corrections in the running from µc to µ0 and in the spin-0 gluon matrix element. Bands repre-
sent 1� uncertainty from neglected higher order pQCD corrections. Subleading perturbative
corrections significantly a↵ect the prediction near the region of strong cancellation.

simplicity we here denote ↵1 ⇠ ↵2 for the U(1)Y and SU(2)W couplings). For mixed states,
tree-level Higgs boson exchange is allowed, implying quark and gluon matching contributions
of O(↵0

s↵
1
2) and O(↵1

s↵
1
2), respectively. We systematically neglect subleading corrections in-

volving light quark masses and contributions to �m induced by electroweak symmetry breaking
(EWSB), which are suppressed by powers of 1/mW .

4 QCD analysis

Having encoded physics of the heavy WIMP sector in the matching coe�cients of (2), the
remaining analysis is independent of theM � mW assumption, and consists of renormalization
group running to a low scale µ0 < mc, matching at heavy quark thresholds, and evaluating
hadronic matrix elements. This module is systematically improvable in subleading corrections
and is applicable to generic direct detection calculations. Renormalization group evolution
accounts for perturbative corrections involving large logarithms, e.g., ↵s(µ0) logmt/µ0.

The cross section predictions are numerically insensitive to the choice of µ0, provided that
the running from µc to µ0 and the spin-0 gluon matrix element, linked to spin-0 quark matrix
elements by (neglecting 1/mq power corrections)

mN = (1� �m)
X

q

hN |mq q̄q|Ni+ �

2g
hN |(Ga

µ⌫)
2|Ni , (5)

are evaluated with NNNLO corrections. We include NLO corrections in the running from
µt to µc and in threshold matching for bottom and charm. Higher order pQCD corrections
are estimated by varying matching scales m2

W/2  µ2
t  2m2

t , m2
b/2  µ2

b  2m2
b , and

m2
c/2  µ2

c  2m2
c , adding uncertainties in quadrature. The cross section and fractional error

are significantly impacted by these subleading perturbative corrections as shown in Fig. 1.

3

mHiggs(GeV)

Perturbative matching and renormalization corrections:

�
sp

in
in
d
ep

en
d
en

t(
cm

2
)

19



20

SpNlat, Sslat

SpN, S0
100 120 140 160 180 200

10-49

10-48

10-47

10-46

mhHGeVL

s
Hcm

2 L

Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1� uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1� uncertainty from hadronic inputs.

heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order ↵s(mc)⇤2

QCD/m
2
c ; typical numerical prefactors appearing in the coe�cients of

the corresponding power-suppressed operators [18] suggest that these e↵ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

�p(mh = 120GeV) = 0.7±0.1+0.9
�0.3⇥10�47cm2 , �p(mh = 140GeV) = 2.4±0.2+1.5

�0.6⇥10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⌃lat
s and ⌃lat

⇡N from Table 1, and the
second error represents the e↵ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⌃s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e↵ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e↵ective la-
grangian (4) through 1/M3, we demonstrated matching conditions for subleading operators in
a simple model. Using the e↵ective theory, we demonstrated universality of the mass splitting

12

Strong dependence on both perturbative and hadronic corrections

Hadronic uncertainties:

mHiggs(GeV)

lattice QCD inputs

SU(3) baryon spectroscopy inputs
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Summary for WIMP benchmarks:
SU(2) W triplet “wino”

SU(2) W doublet, hypercharge-1/2  “higgsino”

Hill, Solon (2014)

3
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
pert

doublet

triplet

20 40 60 80 100 12010-51

10-50

10-49
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hN |mcc̄c|Ni (MeV)

�
S
I
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,

T a =

0

B@
0 · ·
· ⌧a

4
�i⌧a

4

· i⌧a

4
⌧a

4

1

CA� c.c. , Y =

0

B@
0 · ·
· 02

�i12
2

· i12
2 02

1

CA . (6)

The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
iH ! H

1 ! 2

#
+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

mHiggs(GeV)
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

wino: dimensional estimate
Cirelli, Fornengo, Strumia (2005)
Essig (2009)

this work}
higgsino: Snowmass CF1 (2013)
          (MicrOMEGAs)

SM

SM

LHC pushing us into new regime: MDM ≫ mW

Not quibbling about percents 
(example 1: heavy WIMP scattering)
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Not quibbling about percents 
(example 2: light WIMPs)

SM

SM

Hill, Solon (2014)
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Figure 1: The ratio f
n

/f
p

of the e↵ective WIMP-neutron (f
n

) and WIMP-proton (f
p

) couplings in
terms of the parameters b

i

in Eq. (91). For b
g

= 0 (left panel), f
n

/f
p

is independent of ⇤ and depends
on only the ratio b

u

/b
d

. The uncertainty bands are from variation of the matrix element ⌃� (gray)
and the ratio R

ud

= m
u

/m
d

(red), with ranges given in (58) and (60). We illustrate the e↵ect of
non-zero b

g

in the right panel, with b
d

= �b
u

= 0.01 and ⇤ = 400GeV. The solid (dashed) line is the
prediction assuming that the coe�cients b

i

are defined at a high (low) scale µ ⇠ m
t

(µ ⇠ m
c

). The
inset shows the curves over the same vertical range, including uncertainty bands for the solid line
from variation of ⌃� (gray) and R

ud

(red). In both cases the variation from ⌃
⇡N

is subdominant.

6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by

L
�v , SM = �̄

v

�
v

⇢

X

q=u,d,s,c,b



c(0)
q

O(0)

q

+ c(2)
q

v
µ

v
⌫

O(2)µ⌫

q

�

+ c(0)
g

O(0)

g

+ c(2)
g

v
µ

v
⌫

O(2)µ⌫

g

�

+ . . . , (92)

where the scalar and C-even spin-two operators, O(0)

q,g

and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
completeness:19
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19 Spin-0 results were also obtained in [80].
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19 Spin-0 results were also obtained in [80].
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cf. bu/bd=-1.08 from “isospin-violating” DM

Assumed one-to-one mapping between bu/bd and fn/fp invalid

Nontrivial mapping from colliders to direct detection
23



8 Implications

Having completed the high scale matching (71), RG running (79) and finally low scale matching (90),

we may proceed to use the Hamiltonian to compute interesting physical observables and investigate

the impact of perturbative corrections.

� � � � ��

��-��

��-��

��-��

��-��

��-��

��-��

��-��

M
⇥

TeV
⇤

�
v
⇥

cm
3
/s
⇤

Figure 10: Sommerfeld enhanced WIMP annihilation cross sections for � � ! � � employing three
approximations. The fixed O(↵2) result is shown in dotted blue. The fixed O(↵3) result, including
the first non-vanishing O(↵4) contribution to w

00

, is shown in dashed green. The LL resummed
result, including one-loop matching coe�cients at the high and weak scales and resummation of the
collinear anomaly contribution, is shown in solid red.

Figure 10 shows the Sommerfeld enhanced annihilation cross section to line photons for three

approximations, taking � = 0.17 GeV and v = 10�3 as above. The blue dotted and green dashed

lines are fixed order results at O(↵2) and O(↵3), respectively, with the latter also including the first

non-vanishing O(↵4) contribution to w
00

. The red solid line is the result including LL resummation,

one-loop matching coe�cients at the high and weak scales, and resummation of the collinear anomaly

contribution. The uncertainty from scale variation would not be resolved on this log plot, hence we

only show the central value and discuss perturbative uncertainties below. As previously discussed

the fixed O(↵3) result (green dashed) becomes negative for M & 6 TeV, indicating a breakdown in

perturbation theory, while the resummed result does not lead to a negative cross section for the range

of masses plotted here.

There is a robust suppression of the resummed result due to the LL correction from the (universal)
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resummed
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Figure 4: Sommerfeld enhanced annihilation cross sections for two fixed order approximations. The
blue dotted curve truncates the w factors at O(↵2), while the green dashed line is the one-loop result
including O(↵3) contributions in w± and w±00

and the first non-vanishing O(↵4) contribution in w
00

.
Note that for M & 6 TeV, the one-loop cross section becomes negative due to the presence of a large
Sudakov logarithm with a negative coe�cient. For illustration we include the orange dot-dashed line
which gives the naive cross section computed from w

00

neglecting wave function enhancements. In
this plot v = 10�3 and � = 0.17 GeV.

3.5 Fixed Order Results

Armed with the Sommerfeld matrix sij , and the elements of the W matrix given in (32), we are in

a position to compute the dark matter annihilation cross section to line photons at both tree-level

(by simply truncating the ↵ expansion in (32)) and one loop. The results of these two calculations

are shown in Fig. 4, where we have taken � = 0.17 GeV and the relative velocity v = 10�3 for the

numerical evaluation of the Sommerfeld enhancement. Clearly the one-loop result is suppressed with

respect to the tree-level result. Specifically, we find that at M = 3 TeV (a mass of interest for the

thermal wino), the ratio �
tree

/�
1-loop

⇠ 5. However the perturbative expansion is not under control,

as seen from the fact that the fixed order ↵3 cross section becomes negative for M & 6 TeV (due to

the large Sudakov logarithm, and a further mixing induced contribution from w±;00

).

These considerations motivate introducing an EFT description in order to separate the scales

mW from 2M and resum the large logarithms, regaining control over the perturbative expansion.

The first step will be to derive an appropriate EFT description that captures all of the relevant

momentum regions of the full theory. This is the topic of the next section.
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Topics for further study:

1) power corrections in mW/MDM

3) multinucleon effects with tensor vs. scalar 
operators

4) systematic incorporation of running, matching in 
collider vs. direct detection

5) Lorentz vs. Galilean symmetry, total-momentum 
operators: leading spin-dep vs. subleading spin-indep

2) mass constraints: relic abundance, annihilation

25
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- LHC, direct detection constraints, relic abundance may point to 
heavy WIMP

- introduced heavy WIMP effective theory, and improvements to QCD 
analysis necessary to determine the observable implications of heavy WIMP 
symmetry 

- direct detection: generic cancellation shifts standard MSSM 
benchmarks ~order of magnitude (downward)

- indirect detection: large perturbative logarithms in heavy WIMP annihilation 
must be resummed: factor ~3 Sudakov suppression relative to tree level 

Summary

- in this limit, observables become universal

- collider scale vs. hadronic scale: ~orders of magnitude shift in predicted 
fn/fp due to hadronic/scale uncertainties

- sample results: 
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Discussion: Heavy WIMPs
and 

quark and gluons vs. nucleons 

1) MSSM vs. quarks and gluons vs. nucleon and pions 
vs. nuclei

2) scalar vs. tensor

3) Lorentz vs. Galilean invariance 

5) connection to EFT for annihilation?

4) connection between collider and direct detection?
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