Nucleonic EFT for Direct Detection

Liam Fitzpatrick Stanford University

0908.2991, 0910.0007, 1007.5325 Feldstein, ALF, Katz, Tweedie, Zurek 1203.3542, 1211.2818, 1308.6288 Anand,Haxton, ALF, Katz, Lubbers, Xu

Direct Detection of Dark Matter

Multiply by exposure [kg day]

Scattering cross-section

"Dark Sector" Picture of WIMPs

Visible matter is complex. Why shouldn't dark matter be?

Dark Sector

C Mopic * www.ClipartOf.com/97849

Dark Atoms

Simple Example

Dark matter could be a neutral bound object, with charged constituents

Interacts through a "charge radius" interaction

> At low momentum: interaction shuts off

Remember, (almost) all of your mass is in neutral bound states!

Momentum-Dependence

Recoil energy uniquely tells us the momentum transfer $E_R =$ *q*2 2*m^T*

Range relevant for direction detection experiments is $q \sim 15 \text{ MeV}$ - 150 MeV

A Gap in Energy Scales We usually think about models in a "top-down" approach, based on UV models.

But it is equally important to take a complementary "bottom-up" approach where we just ask what is consistent within the low-energy theory.

(ultra-violet)

Theory: TeV scale (electroweak)

A) We can never know if we have missed important classes of UV theories.

Experiment: $\lesssim 100$ MeV IR (infra-red)

B) Once/if dark matter is detected, the first step in characterizing its interactions will be to constrain the lowenergy EFT.

Goal of EFT approach

- Ignore UV model prejudice
- Parameterize theory in terms of IR quantities, with direct connection to experimental observables
- Constrain these low-energy parameters directly

Fan, Reece, Wang (2010) Some important previous approaches: Pospelov, Veldhuis (2000)

Our Goal

Once we write theory this way, we can answer two important questions:

1) What are all possible WIMP-

nucleon interactions?

2) What are all the ways different

elements can respond?

Basics of the WIMP-nucleon Effective Theory

By momentum-conservation and inertial-frame-independence: only two independent momenta

 $\vec{q} = \vec{p} - \vec{p}'$ $\vec{v} = \vec{v}_{\chi, \text{in}} - \vec{v}_{N, \text{in}}$

Basics of the Effective Theory: Hermiticity

So, all interactions should be built out of

$$
i\vec{q},\vec{v}^\perp,\vec{S}_\chi,\vec{S}_N^{(\vec{v}^\perp\cdot \vec{q}=0)}
$$

Momentum-dependence is crucial! Without and \vec{v} , only allowed interactions are $i\bar{q}$

and
"contact", or "SI" right" \bar{S} χ *· S* $\bar{\vec S}$ and $S_\chi \cdot S_N$ "spin-spin", or "SD"

Lubbers, Xu

The Effective Theory

All possible operators in the effective theory: just put the four building blocks together in all ways possible

There are many such combinations.

However there are basically only six different macroscopic responses

·

Nuclear responses

This is a concrete problem for nuclear physics what are the form factors for all interactions?

Additional Form Factors

Input internal structure of the nucleus to calculate cross-sections for all operators in the effective theory.

Additional Form Factors

Velocity operator acting inside the nucleus produces angular-momentum-dependence

$$
\int d^3r e^{iq \cdot r} \psi^{\dagger}(r) (\vec{v}^{\perp})^i \psi(r)
$$
\n
$$
\sim \int d^3r \psi^{\dagger}(r) (iq^j r^j \frac{P^i}{m}) \psi(r)
$$
\n
$$
\sim \frac{\vec{q}}{m} \times \int d^3r \psi^{\dagger}(r) \vec{L} \psi(r)
$$

Some Nuclear Structure

 $-1s_{1/2}$ 2 2 $1s$

Additional Form Factors

All possible cross-sections can be worked out in terms of a few response functions:

 $\Bigg)$

Additional Form Factors

All possible cross-sections can be worked out in terms of a few response functions:

Different Responses Favor Different Elements!

Different Responses Favor Different Elements!

Much of this variation can be captured by two "generalized SI" and two "generalized SD" interactions

DMFormFactor: A Mathematica Package

EventRate $[N_T,\!\rho_\chi,\!q,\!b,\!v_e,\!v_0(,\!v_{\rm esc})]$

Conclusions

Attention has been focused on a very small piece of all possible WIMP scattering

$$
\begin{array}{cccc}\n\mathbf{1} & \vec{S}_{\chi} \cdot \vec{S}_{N} & \vec{S}_{\chi} \cdot \vec{g}_{N} & i\vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{q}) \\
\mathbf{1} & \vec{S}_{\chi} \cdot \vec{S}_{N} & v \mathbf{s} & i\vec{S}_{\chi} \cdot (\vec{g} \times \vec{v}) & i\vec{S}_{N} \cdot \vec{v}^{\perp} \\
& i\vec{S}_{\chi} \cdot (\vec{q} \times \vec{v}) & \vec{S}_{\chi} \cdot \vec{v}^{\perp} \\
& \cdots\n\end{array}
$$

Write theory in terms of IR quantities- this makes it much clearer what all possible interactions are.

Gives a concrete set of physical quantities that we need nuclear physics input to calculate.

The End