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Detection

Direct Detection

DM particle scatters otf nuclei inside detector
Measure recoil spectrum
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Colliders p X Indirect detection

Produce it Particle annihilates in galaxy
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Direct Detection of Dark Matter

Dark matter particle scatters off nucler in detectors

Measure nuclear recoil spectrum
[Counts/kg day/keV]

Multiply by exposure [kg day]



Event Rates

Local DM density ~ 0.3 GeV/cm?3
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“Dark Sector’” Picture of VWWIMPs

Visible matter is complex.
Why shouldn’t dark matter be?

Dark
Sector

Dark Atoms



Simple Example

Dark matter could be a neutral bound
object, with charged constituents

Interacts through a “charge
radius” interaction

At low momentum:
interaction shuts off

Remember, (almost) all of your mass is in
neutral bound states!



Momentum-Dependence

Recoil energy uniquely tells us the
momentum transter
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Range relevant for direction

detection experiments is
qg ~ 15 MeV - 150 MeV




A Gap in Energy Scales

We usually think about models in a “top-down” approach, based on
UV models.

But it is equally important to take a complementary “bottom-up” approach
where we just ask what is consistent within the low-energy theory:.

A
UV (ultra-violet ,

. ( ) Theory: TeV scale A) We can never know if we have

% (electroweak) missed important classes of UV theories.

S

o

: B) Once/if dark matter is detected, the
IR (infra-red) | g first step in characterizing its

Experiment: 55 100 MeV- 5 hteractions will be to constrain the low-

energy EFT.



Goal of EFT approach

® Jenore UV model
prejudice

® Parameterize theory in
terms of IR quantities,
with direct connection to
experimental observables

® Constrain these low-energy parameters
directly

Some important previous ~ ospelov, Veldhuis (2000)

approaches: Fan, Reece, Wang (2010)



Our Goal

Once we write theory this way, we can answer two
important questions:

1) What are all possible WIMP-

nucleon interactions?
2) What are all the ways different

elements can respond?




Basics of the VWIMP-nucleon

Effective Theory
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Basics of the Effective
Theory: Hermiticity

Haxton, ALF, Katz,
Lubbers, Xu

So, all interactions should be built out of
J_ — —
2 CL S X 9 S N

Momentum—dependence is crucial! Without ¢
and U %cmly allowed interactions are
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“contact”, or “SI” “spin-spin”, or “SD”



The Effective Theory

All possible operators in the effective theory: just put the
four building blocks together in all ways possible

There are many such combinations.
However there are basically only six different macroscopic responses
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Nucleons vs. Nuclei

4+ MSSM? Extra-dims?

UV: TeV scale (electroweak)
momentum
How do nuclei respond?
Il,p
Nucleons: ~ GeV
E Na, Ge, I, etc.
Experiment: < 100 MeV




Nuclear responses

This is a concrete problem for nuclear physics -
what are the form factors for all interactions?

proton neutron

Nuclear form factor




Additional Form Factors

Input internal structure of the
nucleus to calculate cross-sections for
all operators in the effective theory.




Additional Form Factors

Velocity operator acting inside the nucleus produces
angular-momentum-dependence
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Some Nuclear Structure
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Additional Form Factors

All possible cross-sections can be worked out in terms of a
few response functions:
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Additional Form Factors

All possible cross-sections can be worked out in terms of a
few response functions:
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Different Responses Favor
Different Elements!

Protons Neutrons
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Kinematics also matter:
Lisht Dark Matter

Proton mDM=4GeV Neutrons
DTN Emn ~1keV

Z (I) (I) Z q) q)

ar

a




Different Responses Favor
Different Elements!

Much of this variation can be captured by
two “generalized SI”
and two “generalized SD” interactions
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DMFormFactor: A
Mathematlca Package
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Conclusions

Attention has been focused on a very small
piece of all possible WIMP scattering
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Write theory in terms of IR quantities- this makes it much
clearer what all possible interactions are.

Gives a concrete set of physical quantities that we need
nuclear physics input to calculate.



The End



