Heavy-Nucleus Structure for Dark Matter

J. Engel

December 8, 2014

Nuclear Operators

EFT (Anand, Fitzpatrick, Haxton), to leading order in *^q*:

$$
C_{J=0M} \rightarrow \sum_{i=1}^{A} 1(i)
$$
\n
$$
L_{J=1M}^{5} \sim T_{J=1M}^{el} \rightarrow \sum_{i=1}^{A} \sigma_{1M}(i)
$$
\n
$$
T_{J=1M}^{mag} \rightarrow \frac{q}{m_N} \sum_{i=1}^{A} \ell_{1M}(i)
$$
\n
$$
L_{J=0M} \rightarrow \frac{q}{m_N} \sum_{i=1}^{A} \vec{\sigma}(i) \cdot \vec{\ell}(i)
$$
\n
$$
L_{J=2M} \sim T_{J=2M}^{el} \rightarrow \frac{q}{m_N} \sum_{i=1}^{A} \left[\vec{r}(i) \otimes \left(\vec{\sigma}(i) \times \frac{1}{i} \vec{\nabla} \right) \right]_{2M}
$$

The last of these, as well as higher-*^q* extensions of the rest, take you out of valence shell. **Q:** An issue for the shell model?

Nuclear Operators

EFT (Anand, Fitzpatrick, Haxton), to leading order in *^q*:

$$
C_{J=0M} \rightarrow \sum_{i=1}^{A} 1(i)
$$
\n
$$
L_{J=1M}^{5} \sim T_{J=1M}^{el} \rightarrow \sum_{i=1}^{A} \sigma_{1M}(i)
$$
\n
$$
T_{J=1M}^{\text{mag}} \rightarrow \frac{q}{m_N} \sum_{i=1}^{A} \ell_{1M}(i)
$$
\n
$$
L_{J=0M} \rightarrow \frac{q}{m_N} \sum_{i=1}^{A} \vec{\sigma}(i) \cdot \vec{\ell}(i)
$$
\n
$$
L_{J=2M} \sim T_{J=2M}^{el} \rightarrow \frac{q}{m_N} \sum_{i=1}^{A} \left[\vec{r}(i) \otimes \left(\vec{\sigma}(i) \times \frac{1}{i} \vec{\nabla} \right) \right]_{2M}
$$

The last of these, as well as higher-*^q* extensions of the rest, take you out of valence shell. **Q:** An issue for the shell model?

Chiral EFT, presumably, can give you handle on the body corrections to these operators.

Heavy-Nucleus Proto-Calculation
¹³¹Xe from 1991 $131Xe$ from 1991

 n dependent" R ine form factory "Spin-dependent" *B*-ino form factor:
"

- \blacktriangleright in a few oscillator shells.
- as well. rin spherical bschlator single-particle wave functions xenger particle wave concentrated
and unrelated interaction. in a few oscillator shells,
- lator is not likely to be able to detect recoils below in single-quasiparticle picture and with perturbative
and with perturbative s and m in function $\frac{1}{2}$ perturbative $\frac{1}{2}$ of the events induced by a 100 GeV/c 210 admixtures of three
quasiparticle states (to capture quasiparticle states (to capture
core polarization). and unrelated interaction, core polarization).

.
Much better version of this aeneral framework is in common T se now iviuch better version of this general framework is in common
Wuch better version of this general framework is in common use now.

Current Paradigm for Heavy Process Phases in Beauty DFT.
Particularlu Useful for One-Bodu Operators Particularly Useful for One-Body Operators

$$
E_{\text{Skyrme}}[\rho] = \sum_{t=0,1} \int d^3r \left\{ C_t^{\rho}[\rho_0] \rho_t^2(\vec{r}) + C_t^{\Delta \rho} \rho_t(\vec{r}) \Delta \rho_t(\vec{r}) + C_t^{\tau} [\rho_t(\vec{r}) \tau_t(\vec{r}) - \vec{j}_t^2(\vec{r})] + C_t^{\text{S}}[\rho_0] \vec{s}_t^2(\vec{r}) + C_t^{\Delta \text{s}} \vec{s}_t(\vec{r}) \cdot \Delta \vec{s}_t(\vec{r}) + C_t^{\tau} [\vec{s}_0(\vec{r}) \cdot \vec{T}_t(\vec{r}) - \vec{j}_t^2(\vec{r})] + C_t^{\nabla J} [\rho_t(\vec{r}) \vec{\nabla} \cdot \vec{J}_t(\vec{r}) + \vec{s}_t(\vec{r}) \cdot \vec{\nabla} \times \vec{j}_t(\vec{r})] \right\}
$$

with $\rho_t(\vec{r}) = \rho_t(\vec{r}, \vec{r})$ and

$$
\vec{S}_t(\vec{r}) = \vec{S}_t(\vec{r}, \vec{r}), \qquad \tau_t(\vec{r}) = \vec{\nabla} \cdot \vec{\nabla}' \rho_t(\vec{r}, \vec{r}')|_{\vec{r} = \vec{r}'}
$$
\n
$$
\vec{T}_t(\vec{r}) = \vec{\nabla} \cdot \vec{\nabla}' \vec{S}_t(\vec{r}, \vec{r}')|_{\vec{r} = \vec{r}'}
$$
\n
$$
\vec{J}_t(\vec{r}) = -\frac{i}{2}(\vec{\nabla} - \vec{\nabla}')_i s_{t,j}(\vec{r}, \vec{r}')|_{\vec{r} = \vec{r}'} \qquad \vec{j}_t(\vec{r}) = \sum_{ij = xyz} J_{t,ij}^2
$$
\n
$$
\vec{J}_t(\vec{r}) = -\frac{i}{2}(\vec{\nabla} - \vec{\nabla}') \times \vec{S}_t(\vec{r}, \vec{r}')|_{\vec{r} = \vec{r}'}
$$

Effective Interaction from Energy Functional

$$
\bar{V}_{\text{Skyrme}}^{\text{eff}} = (a_0 + b_0 \vec{\sigma} \cdot \vec{\sigma}' + c_0 \vec{\tau} \cdot \vec{\tau}' + d_0 \vec{\sigma} \cdot \vec{\sigma}' \vec{\tau} \cdot \vec{\tau}') \delta(\vec{r} - \vec{r}')
$$
\n
$$
+ (a_1 + b_1 \vec{\sigma} \cdot \vec{\sigma}' + c_1 \vec{\tau} \cdot \vec{\tau}' + d_1 \vec{\sigma} \cdot \vec{\sigma}' \vec{\tau} \cdot \vec{\tau}')
$$
\n
$$
\times (\vec{k}^{\dot{\tau}2} \delta(\vec{r} - \vec{r}') + \delta(\vec{r} - \vec{r}') \vec{k}^2)
$$
\n
$$
+ (a_2 + b_2 \vec{\sigma} \cdot \vec{\sigma}' + c_2 \vec{\tau} \cdot \vec{\tau}' + d_2 \vec{\sigma} \cdot \vec{\sigma}' \vec{\tau} \cdot \vec{\tau}') \vec{k} \vec{\tau} \cdot \delta(\vec{r} - \vec{r}') \vec{k}
$$
\n
$$
+ (a_3 + b_3 \vec{\sigma} \cdot \vec{\sigma}' + c_3 \vec{\tau} \cdot \vec{\tau}' + d_3 \vec{\sigma} \cdot \vec{\sigma}' \vec{\tau} \cdot \vec{\tau}') \rho_{00}^{\alpha}(\vec{r}) \delta(\vec{r} - \vec{r}')
$$
\n
$$
+ [e_3 \rho_{10}(\vec{r}) (\tau^{(0)} + \tau'^{(0)}) + g_3 \vec{s}_{00}(\vec{r}) \cdot (\vec{\sigma} + \vec{\sigma}')
$$
\n
$$
+ m_3 \vec{s}_{10}(\vec{r}) \cdot (\vec{\sigma} \tau^{(0)} + \vec{\sigma}' \tau'^{(0)})] \rho_{00}^{\alpha - 1}(\vec{r}) \delta(\vec{r} - \vec{r}')
$$
\n
$$
+ [f_3 \rho_{10}^2(\vec{r}) + h_3 \vec{s}_{00}^2(\vec{r}) + n_3 \vec{s}_{10}^2(\vec{r})] \rho_{00}^{\alpha - 2}(\vec{r}) \delta(\vec{r} - \vec{r}')
$$
\n
$$
+ (a_4 + c_4 \vec{\tau} \cdot \vec{\tau}') (\vec{\sigma} + \vec{\sigma}') \cdot \vec{k} \vec{r} \times \delta(\vec{r} - \vec{r}') \vec{k}
$$

$$
\vec{k} = -\frac{i}{2}(\vec{\nabla} - \vec{\nabla}')
$$
 acting to right,

$$
\vec{k}^{\dagger} = \frac{i}{2}(\vec{\nabla} - \vec{\nabla}')
$$
 acting to left.

Basic Features of Framework

- → All nucleons active, complete single-particle space used.
▶ Effective interaction (density dependent) and one-body
- mean field completely self consistent.
- \triangleright Lots of work on determining good functionals, with improvements under active development.
- Phenomenology $-$ masses, one-body observables such as θ density distributions — reproduced well.
- \blacktriangleright Some weaknesses that I won't mention. Some weaknesses that I won't mention.

Densities Densities

Zr-102: normal density and pairing density HFB, 2-D lattice, SLy4 + volume pairing

Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005)

HFB: $β_2$ ^(p)=0.43

% 2/26/10 Contract the Contract of Contrac

Applied Everywhere

Related Theories

- Improved Skyrme DFT, derived in part from ab initio
	- \triangleright Densitu-matrix expansion leads to logarithmic dependence of energy on densities.
- of energy on densities. Gogny DFT, based on finite-range density-dependent
- potential
Density-independent effective interactions with three (and **Density-independent encourt interactions with three (and** more, a say terms (Bennaceur, Bennaceur, Bennac, Benner, Duguet et al.)

Can expect improvement in quality.

Odd Nuclei

Much of elastic response vanishes in even nuclei. Much of elastic response vanishes in even nuclei.

Core polarization in odd system:

Can do

- self-consistent odd-A calculation self-consistent odd-A calculation
- explicit RPA core polarization

The are nearly equivalent and include most of the important corrections to single-particle picture.

 D exchanges and Angular-Momentum Restoration If deformed state $|\Psi_K\rangle$ has good intr. $J_z = K$, angle average gives:

$$
|J,M\rangle = \frac{2J+1}{8\pi^2} \int D_{MK}^{J*}(\Omega) R(\Omega) | \Psi_K \rangle \ d\Omega
$$

Matrix elements:

$$
\langle J, M | \hat{O}_m | J', M' \rangle \propto \int \int \sum_j d\Omega \, d\Omega' \times \text{(some D-functions)}
$$

$$
\times \langle \Psi_K | R^{-1}(\Omega') \hat{O}_n R(\Omega) | \Psi_K \rangle
$$

For expectation value of, e.g., vector operator in $J = \frac{1}{2}$ state:

$$
\langle \hat{O} \rangle = \langle \hat{O}_z \rangle_{J=\frac{1}{2},M=\frac{1}{2}} \Longrightarrow \begin{cases} \langle \hat{O} \rangle_{\text{intr.}} & \text{spherical nucleus} \\ \frac{1}{3} \langle \hat{O} \rangle_{\text{intr.}} & \text{rigidly deformed nucleus} \end{cases}
$$

Exact answer somewhere in between.

DM-Detector Nuclei Often Have Complex Structure

⇐⁼ Potential-energy surface in *^β*-*^γ* plane Nomura, Shimizu, Otsuka, PRC 81, 044307 (2010).

DM-Detector Nuclei Often Have Complex Structure

⇐⁼ Potential-energy surface in *^β*-*^γ* plane Nomura, Shimizu, Otsuka, PRC 81, 044307 (2010).

Similar softness, plus triantal deformation and shape coexistence, in Ge isotopes.

Generator Coordinate

 $\sum_{i=1}^{n}$ shape transitions, shape coexistence from BMF calculations, shape coexistence from BMF calculations $\sum_{i=1}^{n}$ nate, e.g. $\langle Q_m \rangle \equiv \langle \sum_i r_i^2 Y_i^{2,m} \rangle$. Minimize

$$
\langle H' \rangle = \langle H \rangle - \lambda_0 \langle Q_0 \rangle - \lambda_2 \langle Q_2 \rangle
$$

for a whole range of $\langle Q_0 \rangle \propto \beta \cos \gamma$ and $\langle Q_2 \rangle \propto \beta \sin \gamma$. Then diagonalize *^H* in space of *^A*- and *^J*-projected quasiparticle vacua with different *β, γ*.

Generator Coordinate

 $\sum_{i=1}^{n}$ shape transitions, shape coexistence from BMF calculations, shape coexistence from BMF calculations $\sum_{i=1}^{n}$ nate, e.g. $\langle Q_m \rangle \equiv \langle \sum_i r_i^2 Y_i^{2,m} \rangle$. Minimize

$$
\langle H' \rangle = \langle H \rangle - \lambda_0 \langle Q_0 \rangle - \lambda_2 \langle Q_2 \rangle
$$

for a whole range of $\langle Q_0 \rangle \propto \beta \cos \gamma$ and $\langle Q_2 \rangle \propto \beta \sin \gamma$. Then diagonalize *^H* in space of *^A*- and *^J*-projected quasiparticle vacua with different *β, γ*.

Density dependence spoils GCM in Skyrme DFT; need alternative effective interactions or regularization procedures.

Similar (but Harder): Schiff Moment of 225 Ra
No GCM, Just Single Odd-A Mean Field

No GCM, Just Single Odd-A Mean Field

$$
S \propto \sum_i e_i r_i^2 z_i + \dots
$$

 V_{PT} = perturbative *T*-violating *^π*-exchange potential

Calculated ²²⁵Ra density

Ground state $|0\rangle$ has nearly-degenerate partner $|0\rangle$ with opposite parity and same intrinsic structure, so:

$$
\langle S \rangle \approx \frac{\langle 0 | S | \bar{0} \rangle \langle \bar{0} | V_{PT} | 0 \rangle}{E_0 - E_{\bar{0}}} + c.c.
$$
 rigid limit $\frac{1}{3} \frac{\langle S \rangle_{\text{intr.}} \langle V_{PT} \rangle_{\text{intr.}}}{E_0 - E_{\bar{0}}}$

reduced by tying $\langle S \rangle_{intr.}$ to data.

Similar (but Harder): Schiff Moment of 225 Ra
No GCM, Just Single Odd-A Mean Field

No GCM, Just Single Odd-A Mean Field

$$
S \propto \sum_i e_i r_i^2 z_i + \dots
$$

 V_{PT} = perturbative *T*-violating *^π*-exchange potential

Calculated ²²⁵Ra density

Ground state $|0\rangle$ has nearly-degenerate partner $|0\rangle$ with opposite parity and same intrinsic structure, so:

$$
\langle S \rangle \approx \frac{\langle 0 | S | \bar{0} \rangle \langle \bar{0} | V_{PT} | 0 \rangle}{E_0 - E_{\bar{0}}} + c.c. \quad \xrightarrow{\text{rigid limit}} \quad \frac{1}{3} \frac{\langle S \rangle_{\text{intr.}} \langle V_{PT} \rangle_{\text{intr.}}}{E_0 - E_{\bar{0}}}
$$

reduced by tying $\langle S \rangle_{intr.}$ to data.

Can tie dark-matter expectation values to other data, e.g. magnetic moments. spin-orbit splittings (**Q:** What else?)

Finally. . .

Q: How accurate need these matrix elements be?

Finally. . .

Q: How accurate need these matrix elements be?

Thanks for your kind attention.