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address the intensity frontier

Targets are nuclel (C, Fe, Si, Ar, Ge, Xe, Pb, CH,, H2O, steel)

Extraction of neutrino mass hierarchy and

mixing parameters at LBNF requires knowing

energles/fluxes to high accuracy
Nuclear axial & transition form factors
Nuclear structure in neutrino DIS

~ 0% uncertainty on oscillation
parameters [C Mariani, INT workshop 201 3]

v, CC evts/GeV/10kT/MW.yr

v, CC spectrum at 1300 km, Am3 = 2.4e-03 eV ?
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The intensity frontier

http://www.hep.ucl.ac.uk/darkMatter/




Laboratory searches for new physics

Dark matter detection: nuclear recoils as signal
Nuclear matrix elements of exchange current

ule conversion expt: similar requirements

[f(when) we detect dark matter or u—e, we
will need precise nuclear matrix elements with fully
quantified uncertainties to discern what it Is




Laboratory searches for new physics

Dark matter detection: nuclear recoils as signal
Nuclear matrix elements of exchange current

ule conversion expt: similar requirements

[f(when) we detect dark matter or u—e, we
will need precise nuclear matrix elements with fully
quantified uncertainties to discern what it Is

Nuclear physics is the new flavour physics!

Must be based on the Standard Model
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We need to develop the tools for precision predictions
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Exploit effective degrees of freedom

Establish quantrtative control through
inkages between different methods ,
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QCD forms a foundation ==
determines few body
interactions & matrix = S Shell model,

L

elements T S coupled cluster;
= configuration-interaction
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Match existing EFT and

many body techniques

onto QCD Exact many body:

GEMC, NCSM,
lattice EF T



Lattice QCD: tool to deal with quarks
and gluons

Formulate problem as functional integral
over quark and gluon d.o.f. on R4

<O> — /dAlu,dqd(jO[Q, q, A]Q—SQCD[Q,J, Al
Discretise and compactity system

Finite but large number of d.o.f (10'9)

Integrate via importance sampling
(average over important configurations)

Undo the harm done In previous steps




How do we measure the proton mass!

Create three quarks at a source: and annihilate the three quarks
at sink far from source

QCD adds all the quark anti-quark pairs and gluons
automatically: only eigenstates with correct g#'s propagate

time >




Spectroscopy

Correlation decays
exponentially with distance
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QCD spectrum

After 30 years of developments

2 Ground state hadron spectrum
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QCD spectrum
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¥ Precise isospin mass splittings in QCD+QED
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QCD (+EW) describes nuclear physics

Can compute the mass of
lead nucleus ... In principle

In practice: a hard problem

At least two exponentially
difficult challenges

Noise: probabilistic method
so statistical uncertainty grows
exponentially with A

Contraction complexity grows factorially




QCD for Nuclear Physics

“ Quarks need to be tied together in all possible ways

O Ncontractions — Nu!Nd!Ns!

= Managec USiﬂg algorithmic trickery [WD & Savage, WD & Orginos; Doi & Endres]

“ Study up to N=7/2 pion systems, A=5 nuclei



AE (MeV)

Light nuclel

Light hypernuclear spectrum @ 800 MeV
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Combining LQCD and nuclear EFT (pionless EFT)

Heavy quark universe

[Barnea et al. 131 1.4966]

For heavy quarks, even spectroscopy requires QCD matching:
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Equally important for matrix elements

In a world
@ m, = 800 MeV






External currents and nucle
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Current-nucleus interaction

Born approximation — interacts with a single
nucleon

o ~ |AAN]J|N)*

known from expt/LQCD

—D4—>
N

Interact non-trivially with multiple nucleons

o~ |A (N|JIN)+a (NN|J|NN) +...|?
unknown/poorly known!

Second term may be significant

May shift cross sections

May scale differently with Z and A

Leads to significant uncertainty o




[Martinez-Pinedo et al,, Phys. Rev. C53,2602 (1996)]
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Nuclear matrix elements

For deeply bound nuclel, use the techniques as for single hadron
matrix elements

permutations

3 pt function 2 pt function

At large time separations gives ground-state matrix element of
current

For near threshold states, need to be careful with volume effects

Calculations of matrix elements of currents in light nucler just
beginning for A<5



Background field method

Hadron/nuclear two-point functions are
modified in presence of fixed eternal fields

Fo: fixed B field: modified exponential behaviour

B
EB) = M + ‘Q;W’ ~ 4B

— 27’(’5]\/_[0 ‘B|2 — 27T5M2Tz'jBiBj -+ ...

QCD spectroscopy with multiple fields enable
extraction of coefficients of response

Eg: magnetic moments, polarisabllities, ...

Not restricted to simple EM fields (axial,
twist-2,...)



Nuclear magnetic moments

R(B)
SR=EN

Magnetic moments from spin splittings

R(B)
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Nuclear magnetic moments

\ Energy shift vs B - B
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Nuclear magnetic moments
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Nuclear magnetic moments

Numerical values are surprisingly

Interesting 4r D A
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Nuclear magnetic moments

Numerical values are surprisingly 47
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One possible DM interaction is through scalar exchange

Accessible via Feynman-Hellman theorem

At hadronic/nuclear level

1 1
L — Gpxx <Z<O|§q\0> Tr a2l + af%] + Z<J\ugqu\f>J\mvTr s + alY]
1
_ Z<
Contributions:

NigrqlN) (N'NTr [asS' + abZ] — 4NTageN) + )




Previous work suggested scalar dark matter couplings to nuclel
have O(50%) uncertainty arising from MECS [Prezeau et al 2003)

Quark mass dependence of nuclear binding energies bounds
such contributions

(Z,N(gs)| uu + dd|Z, N(gs)) 1 m, d
00zZN = — = -1 == Bz N
’ A (N| uu + dd|N) Aoy 2 dm, =

Lattice calculations + physical point suggest such
contributions are O(10%) or less for light nuclel (A<4)
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Nuclel are under serious study directly from QCD

Spectroscopy of light nuclel and exotic nuclel (strange,

charmed, ...)
Nuclear properties/matrix elements

Prospect of a quantitative connection to QCD
makes this a very excrting time for nuclear physics

Critical role in current and upcoming intensity
frontier experimental program

Learn many interesting things about nuclear
physics along the way
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