

Bubble Chambers for Direct Detection

INT-14-57W Nuclear Aspects of Dark Matter

I. Lawson, E. Vázquez Jáuregui

M. Ardid, M. Bou-Cabo, I. Felis

NORTHWESTERN UNIVERSITY

D. Baxter, C.E. Dahl, M. Jin, J. Zhang

Université m

P. Bhattacharjee. M. Das, S. Seth

de Montréal J.-P. Martin, M.-C. Piro,

A. Plante, O. Scallon, Dahl - Dec 9, 2014 N. Starinski, V. Zacek

Nuclear Aspects of Dark Matter

CZECH TECHNICAL UNIVERSITY IN PRAGUE

F. Debris, M. Fines-Neuschild,

C.M. Jackson, M. Lafrenière,

M. Laurin, L. Lessard,

R. Filgas, S. Pospisil, I. Stekl

Т

Kavli Institute for Cosmological Physics

J.I. Collar, R. Neilson, A.E. Robinson

INDIANA UNIVERSITY

SOUTH BEND

E. Behnke, H. Borsodi, O. Harris,

I. Levine, E. Mann, J. Wells

🛟 Fermilab

S.J. Brice, D. Broemmelsiek, P.S. Cooper, M. Crisler, W.H. Lippincott, M.K. Ruschman, A. Sonnenschein

D. Maurya, S. Priya

C. Amole, M. Besnier, G. Caria, G. Giroux, A. Kamaha, A. Noble

NATIONAL LABORATORY

D.M. Asner, J. Hall

S. Gagnebin, C. Krauss, D. Marlisov, P. Mitra

UNIVERSITY OF TORONTO

K. Clark

LaurentianUniversity Universite Laurentienne

N. Dhungana, J. Farine, R. Podviyanuk, U. Wichoski

Outline

- Bubble Chambers
 - Motivation: Target choice
 - Physics of bubble chambers
 - PICO results from SNOLAB physics runs
 - The future of bubble chambers

Bubble Chamber Targets

- ONLY discriminating detector with odd-proton targets
 - $-C_3F_8$, sensitive to 3-keV Fluorine recoils
 - CF_3I , sensitive to 15-keV lodine recoils
- ANY fluid with a vapor pressure works
 - Go-to technique to characterize WIMP-nucleus interaction, once we see a signal

Bubble Chamber Basics

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses after each event

Bubble Chamber Basics

- Superheated Target
 CF₃I, C₃F₈, ...
- Particle interactions nucleate bubbles
- Cameras and acoustic sensors capture bubbles
- Chamber recompresses after each event

Bubble Chamber Thermodynamics

Reaching the superheated state

Bubble Chamber Thermodynamics

• What does it take to produce critical bubble?

$$E_{T} = 4\pi r_{c}^{2} \left(\sigma - T \left(\frac{\partial \sigma}{\partial T} \right)_{\mu} \right)$$
 1.53 keV
$$+ \frac{4\pi}{3} r_{c}^{3} \rho_{b} (h_{b} - h_{l})$$
 1.81 keV
$$- \frac{4\pi}{3} r_{c}^{3} (P_{b} - P_{l})$$
 -0.15 keV
$$= 3.19 \text{ keV total}$$
 $P_{l} = 30 \text{ psia}, T_{l} = 14^{\circ}\text{C}$

Surface energy, Bulk energy, Reversible Work

Nuclear Recoil Calibration

In-situ AmBe neutron source

Nuclear Aspects of Dark Matter

Beam Recoil Calibrations

- Mono-energetic low-energy neutrons
 - ⁹Be(γ,n)
 - 156 keV (⁸⁸Y), 96 keV (²⁰⁷Bi), 24 keV (¹²⁴Sb)

Nuclear Aspects of Dark Matter

Beam Recoil Calibrations

- Calibrated neutron fluxes
 - ³He counters
 - p and γ flux measurements, plus "known" reaction cross-sections
 - ⁵¹Cr measurements (320-kev γ, 28-day half life)
- Data on- and off- Fluorine resonances

Background Rejection

Neutron

Background Rejection

Neutron

July 28, 2014

SNOLAB

Sudbury, Ontario

Dahl - Dec 9, 2014 Nuclear Aspects of Dark Matter

COUPP-60

- SNOLAB Run 1 completed (June 2013 – May 2014)
- 35-kg CF_3I , upgradable to 80-kg
- >80% livetime (>90% by end of run)
- >4,500 kg-days exposure at 7—20 keV thresholds
- One multi-bubble event (consistent with expected neutron rate)
- Acoustic discrimination in large chamber confirmed

COUPP-60

- SNOLAB Run 1 completed (June 2013 – May 2014)
- 35-kg CF_3I , upgradable to 80-kg
- >80% livetime (>90% by end of run)
- >4,500 kg-days exposure at 7—20 keV thresholds

3,584 WIMP-like events NOT WIMPS

COUPP-60 Background Characteristics

Acoustic Distribution

Dahl - Dec 9, 2014 Nuclear Aspects of Dark Matter

COUPP-60 Background Characteristics

- Acoustic Distribution
- Spatial Distribution
- Time Correlations

- Run 1 complete:
 Sept 2013 May 2014
- 3-kg C₃F₈,
 3-8 keV thresholds
- 211.6 kg-day exposure
- No multi-bubble events

PICO-2L

Dahl - Dec 9, 2014 Nuclear Aspects of Dark Matter Run 1 complete:
 Sept 2013 – May 2014

12 WIMP-like events ALSO NOT WIMPS

PICO-2L WIMP candidates

- Acoustic distribution consistent with calibration data
- Time-since-previous-bubble is anomalous
 - Identified as key discriminant in 2012 COUPP-4kg result

Dark Matter Limits: Spin-Dependent

 World-leading direct-detection limit on spin-dependent WIMP-proton coupling

Dark Matter Limits: Spin-Independent

 Competitive at *low masses* in spindependent searches

Dark Matter Limits: Spin-Independent

 Competitive at *low masses* in spindependent searches

Background Events...

- We see events which are *not* caused by:
 - WIMPs
 - Anomalous timing correlations, acoustic signature, and spatial distribution
 - Neutrons
 - No multi-bubble events
 - Electron recoils
 - In-situ Gamma calibration studies
 - Bulk Alpha-decays
 - In-situ ²²²Rn studies
 - Chemical reactions
 - Background seen in both CF₃I and C₃F₈

Leading Background Suspect...

Alpha-decays from particulate suspended in target fluid

Leading Background Suspect...

Alpha-decays from particulate suspended in target fluid

- Alpha-decays in bulk see bubble nucleation by both the "cannonball" (alpha particle) and the recoiling "cannon" (*e.g.* 112-keV ²¹⁴Pb nucleus)
- Alpha-decays from >100nm particulate give only the cannonball
- PICASSO has seen in droplet detectors that acoustic discrimination is effective against the former, but not the latter

Particulate in the Chambers

- Are there particulate in chambers?
 - Samples taken in July answer is YES.

Nuclear Aspects of Dark Matter

Particulate in the Chambers

• What are these particulate? Where do they come from? Are they radioactive?

Filter sample from PICO-2L ultrasonic wash

Particulate in the Chambers

Quartz – O(1) ppb ²³⁸U if from walls O(100) ppb ²³⁸U if from jar flange

Oxidized Stainless Steel – *O*(1) ppb ²³⁸U from most inner surfaces (maybe not welds...)

Dahl - Dec 9, 2014 Nuclear Aspects of Dark Matter

Natural Quartz the culprit?

- It would take ~100mg of flange material to generate COUPP-60 background
- ~100µg recovered on filters, without aggressive cleaning (no ultrasonic)
- Stresses at jar seal may generate particulate
- Easy fix: Use synthetic fused silica (jar wall material) for flange!

PICO-2L Run 2

- New jar with synthetic fused silica flange
- Inner vessel assembled, going to SNOLAB next month
- Will test if quartz flange is *dominant* source of background events

COUPP-60 Run 2

- Installing target- and buffer-fluid recirculation system in COUPP-60 in early 2015
 - Addresses all (radioactive and non-radioactive)
 particulate background sources
- Starting procurement of new COUPP-60 vessel with synthetic fused silica flange – installation late 2015

Background Studies

- Can we reproduce these backgrounds?
 - Tests underway in 10-ml chamber at Northwestern University
 - Fast (2-day) turnaround to study variety of particulate samples
 - 2nd 10-ml chamber being assembled at Queen's
 - Testing alpha-emitting vs radioclean particulate, pending further guidance from PNNL assays

Dahl - Dec 9, 2014 Nuclear Aspects of Dark Matter

A few "bright" ideas

- Optical (laser) fluid interrogation
 - Measure bulk particulate density?
 - Targeted interrogation after events?
- Scintillating Target Fluid
 - Works like normal PICO chamber, but with PMTs
 - Easiest with liquid xenon
 - Instant leverage against
 - Alpha-decays (in or out of particulate)
 - Non-radioactivity-induced backgrounds (chemistry, nonradioactive particulate, ...
 - More information *always* key to fighting pathological backgrounds

The future

- PICO-250L engineering underway
- Only direct-detection proposal with spindependent proton sensitivity
- Multiple targets key to understanding future signal

Summary

- PICO-2L has produced world-best SD WIMPproton limit from direct detection
- Currently background limited
- *Testable* hypothesis for background source
- Future still bright (or even scintillating!)

