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OUTLINI

L4

¢ Model independent approach to

inelastic dark matter scattering

¢ Modifty Fitzpatrick et al. Mathematica
code to calculate form factors

% Revisit inelastic explanations of DAMA
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DM modulation is expected due to modulating Earth
velocity through Galactic rest frame
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INELASTIC DARK MATTER

Proposed by D. Tucker-Smith, N. Weiner to ('o1)
to explain DAMA modulation signal's consistency
with limits from CDMS
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INELASTIC EFFECTS

Minimum velocity to scatter altered by kinematics
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Three Important Effects
A

Raises velocity required leads to Inelastic

i) suppressed rates for lighter nuclei
ii) larger modulation amplitudes
iii) Energy spectra change

Elastic

Nuclear Recoil
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¢ Germanium and lighter targets no issue for IDM

¢ Xenon is heavier than DAMA's iodine, so
XENONI00, LUX limits place stringent constraints
if form factors are similar

% Jodine experiments should have robust constraints, so
KIMS and COUPP limits are hardest to avoid

% At any rate, inelastic dark matter is interesting and we

need to analyze it properly
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MODEL INDEPENDENT ANALYSIS

% Recently, effective theories of elastic scattering
have been proposed (Fan et al., Fitzpatrick et al.)

% Model indpt. approach shows there are new form
factors beyond spin independent, dependent cases

% Anand et al. provide Mathematica code to
calculate form factors

% Lets see how to modify the Fitzpatrick approach
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GALILEAN INVARIANTS

Following Fitzpatrick, nonrelativistic scattering
is categorized by galilean invariants

Inelastic kinematic modifies velocity by a shift
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NONRELATIVISTIC OPS.

Just need to
change to new
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FORM FACTORS

Iodine Spectra for Fermion Operators
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FORM FACTORS

Iodine Rates for Fermion Operators
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REVISIT OF MAGNETIC INELASTIC DARK
MATTER (SC, WEINER, YAVIN)

A dark matter magnetic moment transition is
naturally oft diagonal for split Majorana fermions

ji— %XQOuyxlFMV aF -

Large dipole of iodine (3.3 un) relative to xenon
(0.8 un) and tungsten (0.08 pn)
suppresses other heavy targets

At the time, we had an ad hoc form of form factor
but now we can calculate it!
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BRIEF ASIDE ON QUENCHING FACTORS

Not all of nuclear recoil energy is picked up requiring a

quenching factor

keNR- =) keV .

Iodine quenching factor in Nal and CsI has normally been

taken to be .09-.11

Recent measurements are

about half as big (J. Collar) g |
Strong eftect on where :
scattering events occur

ooooooooooo

energy (keVnr)
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Magnetic IDM with QOn, = 0.09

Magnetic IDM with On,r = 0.04
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Magnetic IDM with Ong; = 0.04
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WHY Q MATTERS (XENON)
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WHY Q MATTERS (KIMS)

KIMS Spectrum for Magnetic IDM KIMS Spectrum for Magnetic IDM
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Just changing iodine quenching in CsI crystal,
moves spectrum around, potentially
below KIMS threshold
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COUPP
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MODEL INDEPENDENT SURVEY

Consider relativistic operators which couple only to
protons to negate xenon constraints

We find that operators involving proton spin
are particularly suppressed, so that even
larger XENON100, LUX energy range analysis
would be allowed
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EXAMPLE, SD PROTON DM

ORIGINALLY CONSIDERED KOPP ET AL, JCAP1002

1/my; (GeV)

Fermion Op. 15 with Ona; = 0.09

0.030[

:0.0307
0025 ; 0025 -

:0.020—
0020 ,,.2~7 1>

| 100 105 110 115 @)

1 =

0015 1 &
0.010
0005 ===

0 20 40 60 80 100 120

0 (keV)

Fermion Op. 15 with Oy, = 0.04
0030~ g7 1 :

F 0030 F

| 0028}
- 0026 |
0.025

| 0024 |
| 0022}

r 0.020

L 0018 & . . . . d
150 155 160 165 170 175

0 (keV)

Xenon experiments are not an issue
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FUTURE THEORY INPU'

¢ Cesium and tungsten form factors need to be
implemented in Mathematica code (untreated
currently)

% Estimates of uncertainties on form factors

% Model building DAMA survivors (currently in
progress)
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EXPT. INPU]
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¢ lodine experiments are robust (up to quenching
factors) and IDM explanations of DAMA will be
seen in next COUPP release

% Existing high energy data at XENONI100, LUX is

sensitive to some scenarios (constraints?, excesses?)

% Quenching factors need to be pinned down
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THANKS!
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