

The XENON1T experiment

Ranny Budnik Weizmann Institute of Science

For the XENON collaboration

INT, Seattle, Dec. 2014

R. Budnik (WIS)

The XENON1T experiment

Direct detection with xenon

- The XENON project
- XENON1T/nT

Quick introduction and reminder

The Galaxy rotates around the center (bulge)

DM is almost stationary – but has a virial velocity dispersion that depends on the position in the Galaxy

This means that we are "flying" through a cloud of DM, with a local density of ~0.3 GeV/cm³

We are here

Some thumb rules for the interaction

- Assuming an isothermal halo $\rho_{DM} \approx 0.3 \ {\rm GeV/cm^3}$
- Velocity of the sun around the Galaxy "rest frame" $v_0 \sim 230 \text{ km/s}$, escape velocity $\sim 550 \text{ km/s}$
- Recoil energy of a nucleus by elastic scattering:

 $E_{r,\max} = \frac{p_{\chi}}{2m_N} \sim \frac{(100 \text{GeV/c}^2 \times 10^{-3} c)^2}{2 \times 100 \text{GeV/c}^2} \approx 50 \text{ keV} \Rightarrow \text{Low energy detectors}$

Coherent scattering

$$rac{\mathrm{DeBroglie}}{2\pi} = rac{\hbar}{p} pprox 1 \mathrm{fm} pprox r_{\mathrm{nuc}} \Rightarrow \sigma_{SI} \propto A^2$$

- Rate of interactions:
 - $$\label{eq:GeV} \begin{split} \Gamma = \Phi \sigma_{\chi,N} N_{\rm Detector} A^2 \text{, for } \sigma_{\chi,N} = 10^{-45} \ {\rm cm}^2, m_\chi = 100 \ {\rm GeV}^{\bigstar} \\ \Gamma \sim 100 \ {\rm events/ton/yr} \end{split}$$

Of course, reality is a bit more complicated...

True for elastily!

Dark Matter Direct Detection

Goal: Observe WIMP interactions with some target material

- Only those WIMPs with velocity above threshold $v_{min} = \sqrt{\frac{m_N E_{nr}}{2 \mu^2}}$ will contribute to that energy
- For Spin Independent interactions the cross section is enhanced by a factor A² (coherent scattering)

Nuclear form factor

Large nucleus gains an A² factor for coherent scattering

However, nuclear form factor due to nuclear structure and first nuclear excitations complicate the picture

Therefore, it is customary to consider low momentum transfers, ~<40 keV

Helm Form Factor is typically adequate

X E N O N Dark Matter Project Liquid Xenon for Dark Matter Search

- Large atomic number A~131 best for SI interactions (σ~A²).
 Need low threshold.
- ~50% odd isotopes: SD interactions
 If DM detected: probe physics with the same
 detector using isotopically enriched media.
- No[#] long-lived Xe isotopes.
 But control Kr-85, Rn-222. #Xe-136 2vββ
- High Z (54) and density: compact & self-shielding
- Scalability to large mass.
- "Easy" cryogenics (-100°C).
- Efficient and fast scintillator.
- Good ionization medium, long drift.
- Background discrimination in TPC.
 - Ionization/Scintillation
 - 3D imaging of TPC

H	Periodic Table of the Elements															He ²		
Li	Be		hydro alkali alkali	igen metal earth	s metal	s	 poor metals nonmetals noble gases 					B	C	N ⁷	08	F	Ne	
Na	12 Mg	-	transi	ition m	netals		rare earth metals					13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
19 K	Ca ²⁰	SC 21	Ti Ti	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu Cu	Zn Zn	Ga ³¹	Ge ³²	³³ As	se Se	35 Br	36 Kr	
Rb	³⁸ Sr	39 Y	Zr Zr	41 Nb	Mo ⁴²	43 TC	Ru Ru	Rh ⁴⁵	Pd Pd	Ag	Cd 48	49 In	50 Sn	Sb	Te ⁵²	57 	Xe ⁵⁴)
Cs	Ba	La La	Hf	Ta	W74	Re Re	OS OS	Ir	Pt	Au	Hg	81 Ti	Pb	83 Bi	84 Po	At 85	Rn	
87 Fr	88 Ra	AC	Unq	Unp	Unh	107 Uns	108 Uno	Une	110 Unn	1								

INT, Seattle, Dec. 2014

R. Budnik (WIS)

8

Dual Phase TPC

Dual Phase TPC

3d Vertex Reconstruction

Signal/Background Discrimination

INT, Seattle, Dec. 2014

R. Budnik (WIS)

The XENON program

XENON10

XENON100

${\sf XENON1T}/{\sf XENONnT}$

INT, Seattle, Dec. 2014

The XENON collaboration

Today, about 100 scientists from 18 institutions

INT, Seattle, Dec. 2014

R. Budnik (WIS)

XENON100 Astropart. Phys. 35, 573 (2012)

INT, Seattle, Dec. 2014

Unblinding of 225 live days

(1.0 ± 0.2) events expected **2 events observed**

 \rightarrow 26.4% probability that background fluctuated to 2 events

 \rightarrow PL analysis cannot reject the background only hypothesis

No significant excess due to a signal seen in XENON100 data.

INT, Seattle, Dec. 2014

R. Budnik (WIS)

Alternative interpretation: Spin Dependent interaction

Assume that the WIMP couples to the nuclear spin:

Russel and Dean 1997 Toivanen et. Al 2009 Menendez, Gazit, and Schwenk 2012 PRL 111, 021301 (2013, XENON100)

Results of direct detection – today's frontier

INT, Seattle, Dec. 2014

R. Budnik (WIS)

Alternative interpretation: Putting constraints on axions

РП И

Look for axion-electron interaction:

$$\sigma_{Ae} = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A} \frac{3E_A^2}{16\pi \,\alpha_{em} \,m_e^2} \left(1 - \frac{\beta_A^{2/3}}{3}\right) \qquad \overset{\text{gg10}^2}{\longrightarrow}$$

EDELWEISS best limit

Expected Mean Recoil Energy [keV]

XENON100 still has an interesting future

More to come soon:

- Inelastic scattering off ¹²⁹Xe
- Annual modulation of e-recoil
- > DAMA inspired models
- Low mass WIMPS with S2-only
- YBe for low mass sensitivity
- Extra 70% with new data acquired

What Are We Probing?

Current Sensitivity

The Future of Direct Dark Matter Searches (next ~5 years, the XENON perspective...)

XENON1T

Longer into the future: reaching the neutrino limit

INT, Seattle, Dec. 2014

22

Cryogenics and purification

INT, Seattle, Dec. 2014

R. Budnik (WIS)

XENON1T commissioning

Jul. 2013

XENON1T commissioning

XENON1T commissioning

Oct.

2014

248 required for the TPC – Hamamatsu R11410-21 Average QE 34%

TPC, PMTs and cables

Cryostat and support

INT, Seattle, Dec. 2014

Offline removal of Kr to <ppt ⁸⁵Kr - an irreducible backd

Tested on *XENON100* for optional <u>online Rn removal</u>, working "in reverse"

Calibration: External sources (ER, NR, e-lifetime) Dissolved sources (ER, e-lifetime) PMT calibration

Distillation of Kr and Rn, calibration strategy

X E N O N Dark Matter Project XENON1T: MC and backgrounds

Gamma background: Single scatter, 1 ton fiducial volume, [2-12] keVee, 99.75% S2/S1 discrimination.

0.05 ev/y Mainly from the Cryostat (50%), PMTs (30%) and TPC components (< 10%)

Neutron background: Single scatter, 1 ton fiducial volume, [5-50] keVr, 50% NR acceptance **0.2 ev/y** Mainly from Cryostat (30%), PMT+Bases (30%) and PTFE (20%).

XENON1T: Current status

- Service building, Water tank, cryostat, supports and connections done
- LXe handling almost completed, tests started.
 Will reach full scale by spring
- TPC will start assembly at LNGS in the spring
- First test runs expected in the summer
- First science run should start within 2015!

Upgrade to XENONnT: ~7t total mass

Only requires change in:
1. Inner cryostat
2. TPC
3. Adding 3t of Xe
4. Adding PMTs
5. Adding DAQ channels

Expected in 2017-2018

Summary

- XENON100 has reached limit in the WIMP-nucleon cross section of 2.0x10⁻⁴⁵cm² for a 50GeV WIMP
- Next on the agenda for *XENON100*:
 - Extra ~X2 with new data combination
 - More analyses of the data, e.g. Annual modulation, e recoil, Light WIMP, Sub-GeV DM ...
 - Testing new technologies for *XENON1T*
- We are commissioning XENON1T to reach a sensitivity of ~2x10⁻⁴⁷ cm² by 2017-2018
- Ongoing efforts keep improving our understanding of Xe detector physics, for better DM detection

Extras

Analysis Sequence

INT, Seattle, Dec. 2014

Dark Matter Project

R. Budnik (WIS)