Searching for Dark Matter in the Large Magellanic Cloud with the *Fermi-*LAT

Matthew R Buckley Rutgers Universit(Non)-Standard Model Higgs Boson

with:

Eric Charles, Jennifer Gaskins, Alyson Brooks, Alex Drlica-Wagner, Pierrick Martin, and Geng Zhou and the *Fermi-*LAT Collaboration

Gamma-ray

(Preliminary Results)

Indirect Detection

- Complimentary probe of DM/SM interactions
- Models without large direct detection cross sections can have significant indirect detection rates, and vice versa
- Intriguing hints from the Galactic Center.
 - I'd like to know what's going on there.

$$\frac{d\phi}{dE_{\gamma}} = \left(\frac{\langle \sigma v \rangle}{8\pi} \frac{dN_{\gamma}}{dE_{\gamma}} \frac{1}{m_{\chi}^2}\right) \left(\int_{\text{l.o.s.}} \rho_{\chi}^2(\vec{r}) d\ell d\Omega\right)$$

- Nearby over-densities give a boost through the 2nd term
 - a.k.a. the *J*-factor
- Notable targets:
 - dwarf spheroidals: $J \sim 10^{18-19.5} \text{ GeV}^2/\text{cm}^5$
 - Galactic Center: $J \sim 10^{21} \text{ GeV}^2/\text{cm}^5$ (within 1°)
 - Can also look at all-sky, galactic clusters, dark satellites (unidentified gamma-ray sources), *etc*
- What additional good sources are out there?

The Magellanic Clouds

- The Milky Way's largest satellite galaxies
 - Not dwarf spheroidal galaxies.
 - LMC: 50 kpc distant, 8-9 kpc radius, $\sim 1.7 \times 10^{10} \ M_{\odot}$
 - Consistent with first approach to Milky Way.

Dark Matter Content

- Two approaches to determine the dark matter distribution
 - Use rotation curve measurements, fit to a particular profile (blue & red lines). Need to assume an inclination angle.
 - Take simulations of LMC-type galaxies. Derive dark matter profile using mass/luminosity of LMC. (grey shaded region)

J-factor

- Adopt 3 sets of profiles: NFW, isothermal, "envelope"
- "Best" Dwarfs: $J \sim 10^{18-19} \text{ GeV}^2/\text{cm}^5$
- Galactic Center: $J \sim 10^{21} \text{ GeV}^2/\text{cm}^5$ inside 1°

Profile	α	β	γ	$r_S \; (\mathrm{kpc})$	$ ho_0~(M_\odot/{ m kpc}^3)$	$J \; ({\rm GeV^2/cm^5})$	$M(8.7 \text{ kpc}) \ (M_{\odot})$
nfwmax	1	3	1	17.0	$2.5 imes 10^6$	2.0×10^{20}	1.1×10^{10}
nfwmin	1	3	1	12.6	1.8×10^6	4.4×10^{19}	$5.3 imes 10^9$
isomax	2	2	0	2.0	6.2×10^7	$4.6 imes 10^{20}$	2.0×10^{10}
isomin	2	2	0	2.4	2.9×10^7	1.7×10^{20}	1.2×10^{10}
envmax	0.35	3	1.3	5.4	1.1×10^{8}	5.6×10^{21}	1.6×10^{10}
envmean	0.96	2.85	1.05	7.2	8.4×10^{6}	2.3×10^{20}	1.4×10^{10}
envmin	1.56	2.69	0.79	4.9	1.2×10^{7}	1.7×10^{20}	$1.3 imes 10^{10}$

6

Event Selection

- Data from Aug 4, 2008 and Aug 4, 2013
 - P7REP-CLEAN event selection
 - Standard data quality cuts DATA_QUAL == 1 && LAT_CONFIG == 1

Selection	Criteria			
Observation Period	2009 Aug. 4 to 2013 Aug. 4			
Mission Elapsed Time (s)	239557414 to 397345414			
Energy range (GeV)	0.5 to 500			
Fit Region	$10^{\circ} \times 10^{\circ}$ centered on $(l, b) = (277.86^{\circ}, -32.41^{\circ})$			
Zenith range (deg)	$\theta_{\rm z} < 100$			
Rocking angle range (deg)	$ \theta_{\rm r} < 52$			

Backgrounds

- Backgrounds built iteratively
 from LAT gamma-ray data
- Assume emission of cosmic rays with gaussian morphology,^{30.000} power law spectrum.
 - Gamma ray flux set by convolution of CR injection, measured HI gas column density.
- Fermi-LAT gamma-ray model of LMC. Publication pending
- Broadband fit to get spectra

Backgrounds

- Background model contains both extended components and point sources
 - Some previously unidentified in Fermi-LAT catalog

800 MeV-12.6 GeV

Dark Matter Spectra

- Test dark matter annihilating into 1 species of Standard Model particles at a time.
 - Code developed by LAT Team & Stefano Profumo

Fitting Procedure

- Binned likelihood (30 log bins 500 MeV-500 GeV)
- Parameter inputs from "broadband" best fit
- Likelihood constructed assuming specific spatial morphology for a signal (*i.e.* assuming a dark matter profile and center location)
 - Construct a spectral energy distribution, independent of annihilation channel.
- Then can quickly build a test statistic for a particular choice of spectrum

$$TS = 2 \ln \frac{\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\theta} | \mathcal{D})}{\mathcal{L}_{null}(\boldsymbol{\theta} | \mathcal{D})}$$

Systematics

- Model not perfect. Would like control region to estimate systematics. No similar region exists in the sky.
 - Use LMC outside 3° as control.
- First: Using test statistic (TS), we assumed χ^2 with 1 d.o.f.
 - Refit TS distribution to find TS value for 95% exclusion

Systematics

 Second: Estimate statistical and total errors from number of photons, derive estimate of systematics from this.

Coverage

- Test that injecting signals will return reasonable results.
- Inject signal of 50 GeV DM annihilating into $b\bar{b}$ with

 $\langle \sigma v \rangle = 8 \times 10^{-26} \ \mathrm{cm}^3 / \mathrm{s}$

Test both fits to "correct" and "wrong" profile/centers

Results

- Consider the bounds for minimum isothermal, minimal NFW, and mean envelope profile.
 - Scan over possible center locations.

Results

• Of our pre-selected center locations, the center of the HI gas has the most conservative bounds. Use this for our limits.

• Lower edge of brazil band is pushed upward by addition of systematic errors for spectra with $\mathcal{O}(100 \text{ MeV} - \text{GeV})$ photons

A Possible Excess

- Our bounds are $3 4\sigma$ weaker than expected from statistical uncertainties only, $1 2\sigma$ with all systematics.
 - A 15-18 TS near to expected DM centers.
 - Depends on morphology of DM signal injection

A Possible Excess

- Our bounds are $3 4\sigma$ weaker than expected
 - A 15-18 TS near to expected DM centers.
 - Depends on morphology of DM signal injection

A Possible Excess

- Most likely explanation is this is an unmodeled baryonic background (non-gaussian, TS < 25 not in model)
 - However, also the parameters of the claimed anomaly in the Galactic Center (which does look baryonic)

Conclusions

- Stacking up against dwarf spheroidals galaxy bounds, and Galactic Center excess.
 - Weaker than expected
 - Comparable with Pass 7 dwarf, if profile similar to simulation results
- Future Improvements/Work:
 - Reduce uncertainties in DM profile
 - Need collaboration with astronomers.
 - Small Magellanic Cloud

