More Dark Matter Signatures at the LHC

Yang Bai

University of Wisconsin-Madison

Nuclear Aspects of Dark Matter Searches@UWashington

December 11, 2014

Hunt of Dark Matter

Indirect Detection

Direct Detection

Collider vs. Direct Detection

- more complicated detector
- know when to produce DM
- don't know whether it is the dark matter
- limited for very heavy mass

- less complicated detector
- wait for DM collision
- search for the dark matter
- limited for very light mass

Different Backgrounds

- Standard Model processes
- background-rich environment

- backgrounds for detectors
- cosmic rays
- small background

Different Interpretation Uncertainties

Collider

- Parton distribution function
- Validity of the model description

Direct Detection

- Nuclear form factor
- Astrophysical: density and velocity distributions

$$m_c \bar{c} \, i \gamma_5 c \xrightarrow{\bullet} -\frac{\alpha_s}{8\pi} G \widetilde{G}$$

 $\frac{\alpha_s}{8\pi} G\widetilde{G} \to (389 \text{ MeV}) \,\overline{p} \, i \, \gamma_5 \, p \qquad (-2 \text{ MeV}) \overline{n} \, i \, \gamma_5 \, n$

Large uncertainties

Cheng, Chiang, arxiv: 1202.1292

Model Independent Signature

Standard Signature: monojet+MET

Fermi-theory for Dark Matter

Standard Signature: monojet+MET

	_
$E_{\rm T}^{\rm miss}$ (GeV) \rightarrow	>500
$Z(\nu\nu)$ +jets	747 ± 96
W+jets	249 ± 22
tī	6.6 ± 3.3
$Z(\ell \ell)$ +jets	2.3 ± 1.2
Single t	
QCD multijets	1.0 ± 0.6
Diboson	36 ± 18
Total SM	1040 ± 100
Data	934

dominated by systematic errors

Historical "Discovery" of SUSY in Monojet

UAI, PLB, 139, 115 (1984)

Historical "Discovery" of SUSY in Monojet

SUSY

Channel	1 Jet	2 Jets (a)	2 Jets (b)	Total
$Z \neq \nu \vec{\nu}$	2.89	0.68	1.17	4.74
W + ge	1.34	0.21	0.29	1.84
W + Já	0.03	0.008	0.005	0.04
W + T + je	0.35	0.10	0.15	0.60
$W \rightarrow \tau + \mu$	0.12	0.03	0.05	0.20
W→τ→h	1.61	0.31	0.57	2.49
TOTAL	6.34	1.34	2.23	9.91

J. Ellis and H. Kowalski, NPB, 246, 189 (1984)

S. Ellis, R. Kleiss and W. Stirling, PLB, 158, 341 (1985)

other radiated particles from proton can be better measured UV-complete the EFT operators may lead to cleaner signatures

EFT Framework

leptons are better measured: mono-lepton

YB and Tait, 1208.4361

mono-Z (dilepton):

Bell et. al., 1209.0231 Carpenter: 1212.3352

Limits from Mono-lepton

 $\frac{1}{\Lambda^2} \,\overline{\chi}\gamma_\mu\chi \,\left(\overline{u}\gamma^\mu u + \xi \,\overline{d}\gamma^\mu d\right)$

 $\frac{1}{\Lambda^2} \overline{\chi} \gamma_{\mu} \gamma_5 \chi \left(\overline{u} \gamma^{\mu} \gamma_5 u + \xi \ \overline{d} \gamma^{\mu} \gamma_5 d \right)$

so far, we have considered only initial state radiation of visible particle

Dark sector could be more interesting:

It may has its own dark U(I)'

• It may also have some nearby states

Probing Dark U(I)' at the LHC

 $\mathcal{O}_V = \frac{\chi \gamma^\mu \chi \,\overline{u} \gamma_\mu u}{\Lambda^2}$

 $g_{\chi} Z'_{\mu} \overline{\chi} \gamma^{\mu} \chi$

Dark matter final state radiated a Z', the signature depends on how Z' decay

YB, James Bourbeau, Tongyan Lin; in progress

Dark Z' Decay

$$\frac{\tilde{c}}{\Lambda^2} \left(\phi'^{\dagger} D_{\mu} \phi' - \phi' D_{\mu} \phi'^{\dagger} \right) \left(\overline{u} \gamma^{\mu} u \right) \quad \longrightarrow \quad c \frac{M_{Z'}^2}{\Lambda^2} Z'_{\mu} \overline{u} \gamma^{\mu} u$$

For a heavy Z', the signature is just like mono-QCD-jet + MET, except the production cross section is increased.

For a light Z' at O(I GeV), the signature is more interesting $\overline{u}\gamma_{\mu}u \rightarrow \pi^{+}\partial_{\mu}\pi^{-} - \pi^{-}\partial_{\mu}\pi^{+} + K^{+}\partial_{\mu}K^{-} - K^{-}\partial_{\mu}K^{+}$ $\Gamma(Z' \rightarrow \pi^{-}\pi^{+}) = \frac{M_{Z'}}{48\pi} \left(\frac{c M_{Z'}^{2}}{\Lambda^{2}}\right)^{2} \left(1 - \frac{4 m_{\pi}^{2}}{M_{Z'}^{2}}\right)^{3/2}$

 $c\tau_0 \approx 3 \text{ cm}$ $c = 1, M_{Z'} = 1 \text{ GeV and } \Lambda = 1 \text{ TeV}$

Mono-Z' jet: fewer particles and could be long-lived

Production Cross Sections

Jet Substructure Analysis

One can dramatically reduce the QCD backgrounds

				ົ່ວດ
	MET >	> 350 GeV		
1.0	, , , , , , , , , , , , , , , , , , , ,			

MET > 350 GeV, leading R=0.1 subjet pT fraction 1.0

Discovery Potential

YB, James Bourbeau, Tongyan Lin; in progress 5 100 fb^{-1} 14 TeV LHC $g_{\chi}=1.0$ (sys.=5%) 4 $M_{Z'}=1 \text{ GeV}$ mono-z' (sys.=10%) A (TeV) 3 (sys.=5%)2 mono-jet (sys.=10%) $\overline{\chi} \, \gamma^{\mu} \chi \overline{u} \, \gamma_{\mu} u$ 10 100 20 200 1000 50 500 m_{χ} (GeV)

Tag-efficiency: 50% for signal, 2% for QCD

other radiated particles from proton can be better measured UV-complete the EFT operators may lead to cleaner signatures

Higgs Portal Dark Matter

Fermion Portal Dark Matter

Conserving the Lorentz symmetry, at least two particles in the dark matter sector are required

a Majorana or Dirac Fermion or a scalar dark matter

at the LHC

Lepton-portal Dark Matter

see also: Chang, Edezhath, Hutchinson, Luty, 1402.7358

Majorana fermion DM has suppressed direct detection cross sections due to the anapole moment

Del Nobile, Gelmini, Gondolo, Huh, 1401.4508

Dilepton Signature from Dark Matter

Altmannshofer, Fox, Harnik, Kribs, Raj, 1411.6743

Chromo-Rayleigh Interaction of DM

UV-completed by adding a new QCD-charged scalar

YB, James Osborne, in progress

See also: Buckley, Feld, Goncalves: 1410.6497 for QCD-singlet UV-completion

Chromo-Rayleigh Interaction of DM

 $\frac{\alpha_s}{4\pi\Lambda_1^2} X^{\dagger} X G^a_{\mu\nu} G^{a\,\mu\nu}$

$$\frac{i\,\alpha_s}{4\,\pi\,\Lambda_2^2}(XX - X^{\dagger}X^{\dagger})G^a_{\mu\nu}\widetilde{G}^{a\,\mu\nu}$$

current collider bound from mono-jet:

$M_X ({\rm GeV})$	$\Lambda_1 \ ({\rm GeV})$	$\Lambda_2 \ ({ m GeV})$
1	130	170
10	120	180
100	120	180
200	110	160
400	90	130

The constraints are pretty weak. The EFT description breaks down for a mass above 100 GeV.

UV Completion of the cRayleigh Interaction

$$\mu_G \, d_{abc} \, G^a_H G^b_H G^c_H \qquad \Gamma(G_H \to gg) = \frac{15 \, \alpha_s^2 \, \mu_G^2}{128 \, \pi^3 \, M_{G_H}} \left(\frac{\pi^2}{9} - 1\right)^2$$

The pair-produced dijet resonances can be used to constrain this UV model

Conclusions

- There are more collider signatures for discovering dark matter particles
- Dark matter can radiate its own charged Z' and have a mono-z' jet
- One class of simplified fermion-portal dark matter models can lead to dijet+MET, dilepton+MET and even just a dilepton bump
- ★ A UV completed dark matter model can usually have a higher chance to be discovered at the LHC

