$\nu\text{-}\mathbf{driven}$ wind in the Aftermath of Neutron Star Merger

Albino Perego

in collaboration with A. Arcones, R. Cabezon, R. Käppeli, O. Korobkin,

M. Liebendörfer, D. Martin, S. Rosswog

albino.perego@physik.tu-darmstadt.de

Technische Universität Darmstadt

Institute for Nuclear Physics, Theory

BNS mergers

NS-NS (BH-NS) mergers

٩	intense GW emitters and major targer of GW detectors			Luciano's talk			
٩	candidates as central	engine of short GRBs	e.g. Paczynski 86, Goodman 86				
٩	nucleosynthesis from t	the ejecta: r-process	e.g. Lattimer&Schramm74, Eichler+89,				
	initial n-rich matte	r		Surman+08			
	I dominant $\bar{ u}_e$ over $ u_e$						
	fast expansion time	nescales					
Channels for matter ejection see also Oliver's, Yuichiro's, Brian's talks							
٩	dynamical ejecta	e.g., Korobkin+12, B	auswein+13, Hotokez	aka+13, Wanajo+14			
٩	viscous ejecta		e.g., Fernandez&	Metzger 13, Just+14			
٩	u-driven wind ejecta	e.g. Dessart+09, Me	tzger&Fernandez 14,	Perego+14, Just+14			
kilo/macro- nova observation in (short) GRB130603B							

compatible with production of r-process elements in sGRB events

e.g. Kasen+13, Grossman+14, Tanaka+14

Physical sketch

Final stages of a binary NS (2 x $1.4M_{\odot}$) system evolution

inspiral

merger

hypermassive NS (HMNS) + disc

Credit: Price&Rosswog 06

- HMNS (\rightarrow BH) $\sim 2.55 M_{\odot}$
- thick accreting torus $\sim 0.17 M_{\odot}, Y_e \lesssim 0.05$
- intense ν emission $L_{\nu, \text{tot}} \sim 10^{53} \text{erg s}^{-1}$
 - ν -disc interaction: wind

disc lifetime:

$$t_{\rm disc} \sim \alpha^{-1} \left(\frac{H}{R}\right)^{-2} \Omega_K^{-1} \sim 0.31 \, {\rm s} \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\rm disc}}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M_{\rm ns}}{2.5 \, M_{\odot}}\right)^{-1/2} \, {\rm s} \left(\frac{M_{\rm rs}}{1/3}\right)^{-1/2} \, {\rm s} \left(\frac{M_{\rm rs}}{1/3}\right)^{-1$$

 α : viscosity coefficient R_{disc} : disc typical radius H/R: disc aspect ratio Ω_K : Keplerian angular velocity M_{ns} : HMNS mass

• disc lifetime: $t_{\text{disc}} \sim 0.31 \,\mathrm{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disc}}}{100 \,\mathrm{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{-1/2}$ • disc L:

$$L_{\nu,\text{disc}} \sim \frac{\Delta E_{\text{grav}}}{2 t_{\text{disc}}} \approx 8.35 \times 10^{52} \,\text{erg s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disc}}}{0.2 \, M_{\odot}}\right) \left(\frac{R_{\text{disc}}}{100 \,\text{km}}\right)^{-3/2} \\ \times \left(\frac{\alpha}{0.05}\right) \left(\frac{R_{\text{ns}}}{25 \,\text{km}}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{2}$$

 $\Delta E_{
m grav}$: gravitational energy released during accretion

- $\text{ disc lifetime: } t_{\text{disc}} \sim 0.31 \,\text{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disc}}}{100 \,\text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2}$ $\text{ disc L: } L_{\nu,\text{disc}} \sim 8.35 \times 10^{52} \,\text{erg s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disc}}}{0.2 \, M_{\odot}}\right) \dots$
- HMNS L:

$$L_{\nu,\rm ns} \sim \frac{\Delta E_{\rm ns}}{t_{\rm cool,ns}} \approx 1.86 \times 10^{52} \,\rm erg \, s^{-1} \left(\frac{\Delta E_{\rm ns}}{3.5 \times 10^{52} \,\rm erg}\right) \left(\frac{R_{\rm ns}}{25 \,\rm km}\right)^{-2} \\ \left(\frac{\rho_{\rm ns}}{10^{14} \,\rm g cm^{-3}}\right)^{-1} \left(\frac{k_{\rm B} T_{\rm ns}}{15 \,\rm MeV}\right)^{-2}$$

 $\Delta E_{\rm ns}$: thermal energy $t_{\rm ns,cool} \sim 3\tau_{\nu,\rm ns}/(R_{\rm ns}c)$: diffusion time scale $\tau_{\nu,\rm ns}$: ν optical depth in HMNS

$$\text{ disc lifetime: } t_{\text{disc}} \sim 0.31 \,\text{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disc}}}{100 \,\text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2} \\ \text{ disc L: } L_{\nu,\text{disc}} \sim 8.35 \times 10^{52} \,\text{erg s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disc}}}{0.2 \, M_{\odot}}\right) \dots$$

• HMNS L: $L_{\nu, ns} \sim 1.86 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{\Delta E_{ns}}{3.5 \times 10^{52} \, \text{erg}} \right) \left(\frac{R_{ns}}{25 \, \text{km}} \right)^{-2} \dots$ • wind time:

$$t_{\rm wind} \sim \frac{e_{\rm grav}}{\dot{e}_{\rm heat}} \approx 0.072 \,\mathrm{s} \, \left(\frac{M_{\rm ns}}{2.5 \, M_{\odot}}\right) \left(\frac{R_{\rm disc}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \\ \left(\frac{\xi L_{\nu_e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

 e_{grav} : specific gravitational energy

 $\dot{e}_{\rm heat}$: specific heating rate

 ξL_{ν_e} : isotropized ν_e luminosity at $\theta \approx \pi/4$, $\xi \sim 1.5$ and $L_{\nu_e} \sim (L_{\rm ns} + L_{\rm disc})/3$

disc lifetime:
$$t_{\text{disc}} \sim 0.31 \, \text{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disc}}}{100 \, \text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2}$$
disc L: $L_{\nu,\text{disc}} \sim 8.35 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disc}}}{0.2 \, M_{\odot}}\right) \dots$
HMNS L: $L_{\nu,\text{ns}} \sim 1.86 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{\Delta E_{\text{ns}}}{3.5 \times 10^{52} \, \text{erg}}\right) \left(\frac{R_{\text{ns}}}{25 \, \text{km}}\right)^{-2} \dots$

• wind:
$$t_{\text{wind}} \sim 0.072 \,\mathrm{s} \left(\frac{M_{\text{ns}}}{2.5M_{\odot}}\right) \left(\frac{R_{\text{disc}}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \left(\frac{\xi L_{\nu e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

 $t_{\rm wind} < t_{\rm disc}$

disc lifetime:
$$t_{\text{disc}} \sim 0.31 \, \text{s} \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disc}}}{100 \, \text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2}$$
disc L: $L_{\nu,\text{disc}} \sim 8.35 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disc}}}{0.2 \, M_{\odot}}\right) \dots$
HMNS L: $L_{\nu,\text{ns}} \sim 1.86 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{\Delta E_{\text{ns}}}{3.5 \times 10^{52} \, \text{erg}}\right) \left(\frac{R_{\text{ns}}}{25 \, \text{km}}\right)^{-2} \dots$
wind: $t_{\text{wind}} \sim 0.072 \, \text{s} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right) \left(\frac{R_{\text{disc}}}{100 \, \text{km}}\right) \left(\frac{E_{\nu}}{15 \, \text{MeV}}\right)^{-2} \left(\frac{\xi L_{\nu e}}{4.5 \times 10^{52} \, \text{erg s}^{-1}}\right)^{-1}$

 $t_{\rm wind} < t_{\rm disc}$

• HMNS \rightarrow BH: EoS, M_{ns} , B_{ns} , ang. mom. transport, etc.

 $t_{\rm bh} \sim 0.01 - 10 \, {\rm s}$

our assumption: $t_{\rm bh} \gtrsim 0.1 \, {\rm s}$

Goals & model

Goal: study of the aftermath of BNSM under ν influence

- $\checkmark \nu$ emission
- **D** disc dynamics and ν -driven wind formation
- nucleosynthesis in the wind
- e.m. counterparts

Perego+14, to be published in MNRAS

Model ingredients:

- HD: FISH 3D Newtonian Cartesian code
- EoS: TM1 nuclear EoS
 - stiff EoS, large NS radii
- \mathbf{P} v treatment: Advanced Spectral Leakage (ASL) scheme
- Initial conditions: final stage of 1.4-1.4 M_{\odot} no-spin NS merger
 - Image for the second s
 - dynamical evolution: $\sim 100 \, {
 m ms}$

Käppeli+11

Hempel+12

cf Wanajo+14

Neutrino treatment: the ASL scheme

- effective scheme: ASL mimics known solutions
- 3-flavors, spectral scheme, based on previous grey leakage schemes

Ruffert+97, Rosswog&Liebendörfer 03

- cooling part
 - smooth interpolation between diffusion and production (spectral) rates
 - reproduction of the correct limits: diffusive ($\tau_{\nu} \gg 1$) and free streaming ($\tau_{\nu} \lesssim 1$)
- heating part (for $\tau_{\nu} \lesssim 1$):
 - n_{ν} (neutrino density) calculated by ray-tracing algorithm; input: emission rates at ν -surfaces
 - $r_{\text{heat}} \propto \chi_{ab} \cdot n_{\nu}$ (χ_{ab} absorptivity)

Initial conditions

- 3D SPH data mapped on 3D FISH grid
- I km resolution: HMNS treated as stationary object
- data relaxation: $\Delta t \approx 10 \text{ms}$, hydro + ν emission

u-driven wind in the aftermath of NS merger, - The r-process: status and challenges, Seattle, 29 July 2014 – p. 7/17

Neutrino Surfaces

v-driven wind in the aftermath of NS merger, - The r-process: status and challenges, Seattle, 29 July 2014 - p. 8/17

dependence on time

dependence on time

dependence on time

Neutrino net rates

u-driven wind in the aftermath of NS merger, - The r-process: status and challenges, Seattle, 29 July 2014 – p. 10/17

Disc and wind dynamics

Picture I left: matter density right: projected velocity Picture II left: electron fraction right: entropy

Click here for the video

Wind properties

- **9** 2D mass-histograms of (ρ, Y_e) and (ρ, s)
- large variation for Y_e : $0.1 \leq Y_e \leq 0.40$
- small variation in entropy: $10 \leq s \; [k_B/bar] \leq 22$

Click here for the video

Ejecta

Criteria: 1) $e_{\text{tot}} = e_{\text{kin}} + e_{\text{th}} + e_{\text{pot}} > 0$ & 2) $v_r > 0$ & 3) $\theta < 60^{\circ}$

nuclear recombination energy included

u-driven wind in the aftermath of NS merger, - The r-process: status and challenges, Seattle, 29 July 2014 – p. 13/17

Ejecta

criteria: 1) $e_{tot} = e_{kin} + e_{th} + e_{pot} > 0$ & 2) $v_r > 0$ & 3) $\theta < 60^o$ nuclear recombination energy included

high latitudes ($0^o < \theta < 40^o$)

- $m_{\rm ej}(t = 91 \,\mathrm{ms}) \approx 1.3 \times 10^{-3} M_{\odot}$ $m_{\rm ej}(t = t_{\rm disc}) \approx 2 3 \times 10^{-3} M_{\odot}$
- Y_{e} : 0.31-0.35 s: 15-20 k_{B} baryon⁻¹ v_{r} : 0.08-0.09 c

low latitudes ($40^{\circ} < \theta < 60^{\circ}$)

- $m_{\rm ej}(t=91\,{\rm ms}) \approx 0.8 \times 10^{-3} M_{\odot}$ $m_{\rm ej}(t=t_{\rm disc}) \approx 1-2 \times 10^{-3} M_{\odot}$
- Y_{e} : 0.23-0.31 s: 14-15 k_{B} baryon⁻¹ v_{r} : 0.06-0.07 c

nucleosynthesis: representative tracers

Tracer	Y_e	s [k _B /baryon]	$\langle A \rangle_{\rm final}$	$\langle Z angle_{ m final}$	$X_{ m La,Ac}$
L1	0.213	12.46	118.0	46.2	0.04
L2	0.232	11.84	107.1	42.5	0.009
L3	0.253	12.68	98.0	39.2	$7 \cdot 10^{-5}$
L4	0.275	12.73	90.2	36.4	$1 \cdot 10^{-7}$
L5	0.315	13.68	81.7	33.0	$3 \cdot 10^{-12}$
H1	0.273	13.57	93.0	37.4	$8 \cdot 10^{-7}$
H2	0.308	14.69	83.3	33.7	$6 \cdot 10^{-11}$
H3	0.338	15.36	79.4	32.1	$< 10^{-12}$
H4	0.353	16.40	78.4	31.7	$< 10^{-12}$
H5	0.373	18.35	76.8	31.0	$< 10^{-12}$

- post-processed with WinNet
 - Winteler et al (2012)
- no robust r-process
- weak r-process ($70 \lesssim A \lesssim 110$)
- significant differences between high and low latitudes

e.m. transient: bolometric luminosity

- $\begin{array}{c|c} & m_{\rm ej} \approx 2 \times 10^{-3} M_{\odot} \\ & v_{\rm ej} \approx 0.08 \, c \end{array}$
- uniform grey opacity: $\kappa_h = 1 \,\mathrm{cm}^2 \,\mathrm{g}^{-1}$ VS $\kappa_l = 10 \,\mathrm{cm}^2 \,\mathrm{g}^{-1}$

Tanaka&Hotokezaka 13, Grossmann+14

different shapes reflect individual nuclear heating conditions

e.m. transient: broadband lightcurves

top/on-axis view

side/off-axis view

- AB broadband lightcurves
- high latitude: peak in B band at $t \sim 1.3 \, d$ low latitude: dimmer, redder and delayed
- comparison with dynamical ejecta ($m_{
 m dyn} pprox 1.3 imes 10^{-2} M_{\odot}$)

Conclusions and outlook

- Solution genuine ν -driven wind from ν heating in the disc ($t_{\rm wind} \sim {\rm tens \, ms}$) both HMNS (cooling) and disc (accretion) L_{ν}
- I ν -driven wind contributes substantially ($\gtrsim 3.5 imes 10^{-3} M_{\odot}$) to ejecta in BNS mergers.
- wind e.m. transient depends on geometry and relative orientation high latitude outflow powers bluer and brighter lightcurve, that peaks $\approx 1 d$ low latitude outflow redder and dimmer lightcurve, that peaks $\approx few ds$

Outlooks

- \mathbf{P} v-driven wind and GRB mechanism
- **P** role of ν oscillations in wind-dynamics and nucleosynthesis
- **P** role of GR on ν emission
- detailed nucleosynthesis and e.m. transient

e.g. Murguia-Berthier+14

Malkus+14, Gail's talk

Caballero+12