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Black Hole Accretion Disks

Two types of disks
e compact object mergers
e collapsars
Some interesting types of nucleosynthesis
® r-process
e °°Ni and other iron group nuclei

® pP-process



Nucleosynthesis in Winds
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Accretion Disk v, temperatures
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The weak interaction

Converting neutrons to protons occurs primarily through
e electron (neutrino) capture n+ve<>e +p
e positron (anti-neutrino) capture D+, et +n
A few words about neutrinos...

They are emitted from complicated neutrino surfaces.
General relativistic effects determine their paths and energies.

They oscillate! e.g. As a v, travels it may turn into a combination of

Ve, Vy, and VL. talks by Wu, Pllumbi



v general relativistic effects - high entropy trajectory

Iron group elements

e yellow - No GR

electron fraction

e red - v GR, norot., a =0

+ =

+ E

+ 3

++++++ 3

E + + 4+ 3

- E 4 +4+ 3
with s/K = — 4t AN
— — - = + 3

7 3 +h ++ + .1 43

E T + +3

+ byt + 73

+ P

Caballero et al 2012

60 80 100 120 140



Compact Object Merger Disk Winds: Nickel - 56
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Neutrino Oscillations (no GR)




Neutrino Oscillations

Neutrino propagation in matter: forward scattering on electrons,

neutrinos leads to effective potential
e e
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Modified wave equation
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Oscillation Equation

Modified wave equation

a Sm? sm?
ihciwy _ Ve+ VI — 24—E cos(20) Vo4 T8 Sl2n(29) "
dr VP dmogin(20) V.- V,¢ + 22 cos(20)
® w — (wea ¢u)
o 547?; vacuum contribution

e |/, matter potential
e V2 VY neutrino self interaction potential

e Survival Probability: P, = |v.|?, if ¢ = (1,0) initially



Common Types of Oscillations

Modified wave equation

ihci¢y — Ve + V& — 2 cos(20) VP + 2 sin(20)
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| ets oscillate neutrinos above a

merger-type disk




Matter Neutrino Resonance above a Merger Disk
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Top panel shows survival probabilities. Looks like no known supernova,

solar, or terrestrial type oscillation Fig. from Malkus et al 2014



Resonance transition occurs close to disk
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In the region of the transition expect free nucleons, so
VG —|_ n — p _l_ 6_ and DG —|_p — N _|_ 6_|_ W||| be afFeCted Fig. from Malkus et al 2014



What's different about neutrinos from

black hole accretion disks?

Antineutrinos outnumber neutrinos, so the unoscillated neutrino self
interaction potential V! = N, .+ — Ny s 1S negative.

Note: Nocrp=Nuerr— Noyery 80
Vi = (Nugerr — Nuyesr) = (Nocerr — Noyeff)



Neutrino-Matter Resonance Transition
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Bottom panel shows potentials. Dotted green line indicates negative

potential. Oscillation occurs at crossing of V., and V&, Fig from Malkus et al 2014



Phenomenological Prediction: "Matter Neutrino Resonance”

e System finds a resonance where V¢ 4 V. ~ 0 and then tries to

maintain a position there

e In order to maintain the resonance the neutrinos change flavor
Vi Nyerr(2P,, —1) — Ny ers(2P;, — 1) where P is survival
probability

e Adiabaticity - time to complete transition must be greater than

u L] ] 2 )
time needed to change flavor: limit on 54% sin 26

e The sum of flavor isospin vectors doesn’t precess, instead sum
vector Is restricted to Z direction.



Phenomenological Prediction: "Matter Neutrino Resonance”

(@ =1)p ()2 =Ve(r)?
4Ve (r)pu (r)
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« is asymmetry and u,, is the scale of the neutrion self interaction

P, =

—1/2

protential

Now compare analytic prediction with numerical calculation



Neutrino-Matter Transition: Predictable Behavior
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Prediction suggests that sufficient v, v-

flux will shut off the resonance transition
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Numerical calculation confirms this. Fig. from Malkus et al 2014



Sufficient p, 7 neutrino flux will shut off

the resonance transition: What does this mean?

e v, vy flux which is of order the v, flux turns off the transition
e typical prediction is that v,, v, about 20% of v,

e this means transition occurs

e significantly larger flux would turn off transition

e this creates a major change in the nucleosynthesis

e c.g. nickel or the r-process

To understand the nucleosynthesis, we need to know to v,,, v, flux well



Matter-Neutrino Resonance: Collapsar type disks




Matter-Neutrino Resonance: Collapsar type disks

Collapsar type disks are globally deleptonizing, i.e. neutrinos
outnumber antineutrinos when you are far from the disk:
Vi =Noerr = Noepp >0

But, they can be locally leptonizing, i.e. near the disk surface
antineutrinos can outnumber neutrinos: V! = N, c¢¢ — Np cpp < 0

Implications: along a neutrino trajectory, the potential starts negative
and then switches sign.

Neutrino-matter resonance point occurs near switch-over point



Inverted hierarchy, 7 dominated first, v later

figure from Malkus et al 2012
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Upper panel: solid red - electron neutrino survival probability
Upper panel: dashed red - electron antineutrino survival probability



Accretion Disk Nucleosynthesis

red - no oscillations, blue - oscillations

Malkus et al 2012



Conclusions

When anti-neutrinos outnumber neutrinos (e.g. disks) a new flavor
transformation phenomenon can occur

We call this a matter-neutrino resonance transition

This transition can change the result of wind nucleosynthesis
dramatically or perhaps neutrino heating from the wind

More to be considered, e.g. multi-angle effects together with 3-D
disk emission surfaces



