R-process WS INT, Seattle 30/July/2014

R-process elements on the extremely metal-poor (EMP) stars & effects of the surface pollution

Yutaka Komiya (Tokyo Univ., RESCEU)

Takuma Suda (Tokyo Univ., RESCEU) Shimako Yamada (Hokkaido Univ.) Masayuki Y. Fujimoto (Hokkaido Univ.)

Observations of r-process elements on EMP stars

♦ R-II stars: [Eu/Fe]>1. at [Fe/H]~ -2.8
 Inhomogeneous chemical evolution

216 giant stars with [Fe/H]<-2.5184 stars: Ba detection4 stars: only upper limit

But, at [Fe/H]<-3.3, plateau is reached

Observations: Sr/Ba

- Light-element primary process (LEPP) (weak r-process)
 - <u>Enhancements</u> of lighter r-process elements (Z<56; Sr, Y, Zr...) relative to heavier elements (Ba, Eu, Pb...)
 - ♦ Anti correlation between [Sr/Ba] – [Ba/Fe]

But, at [Fe/H]<-3.6, no light element enhanced stars

But, stars with small [Ba/Fe] and [Sr/Ba]~0

(Aoki+ 2013)

Hierarchical model for chemical evolution

Proto-galaxy

- Chemical evolution along a merger tree
- All the individual EMP stars are registered
 - Yield from each individual SN
- Metal pre-enrichment of intergalactic medium (IGM)
- <u>Surface pollution of EMP stars by accretion of interstellar</u> <u>medium (ISM)</u>

Model: Chemical evolution

Star formation

- ♦ All the individual EMP stars are registered in computations
- * Star Formation Rate: $\psi = M_{gas} \times 10^{-10}/yr$
- ♦ Lognormal IMF:
 - ♦ Pop.III stars (Z<10⁻⁶Z_☉) Pop. III.1: $M_{md} = 200 M_{\odot}$, Pop.III.2 : $M_{md} = 40 M_{\odot}$

$$\log m) \propto \begin{cases} \exp\left[-\frac{\left\{\log(m/M_{\rm md})\right\}^2}{2 \times \Delta_M^2}\right] & (m \leq m_{norm}) \\ m^{-1.35} & (m > m_{norm}). \end{cases}$$

- ♦ EMP (Pop.II) stars: $M_{md} = 10 M_{\odot}$ (Komiya et al. 2007)
- ♦ Binary fraction: 50%
 - ♦ Mass ratio distribution: n(q) = 1

♦ Massive Pop.III.1 stars suppress star formation in their host halos.

ξ(

Metal enrichment

- ♦ Stellar lifetime : Schaerer et al. (2002)
- Instantaneous mixing inside mini-halos.
- ♦ Yield : (He-Zn)

Kobayashi et al.(2006, Type II SN) Nomoto et al. (1984, Type Ia SN) Umeda & Nomoto (2002, Pair-instability SN; PISN)

Model: Accretion of interstellar matter (ISM)

- Surface abundances of EMP stars can be changed by accretion of ISM.
 - Trace the changes of the surface abundance of EMP stars along the evolution of galaxies
 - Accretion rate in mini-halos are much higher than in the MW halo due to small relative velocity between stars and ISM.

Accretion rate

 \diamond

Bondi accretion

$$\dot{m} = \pi \left(\frac{2Gm}{v^2 + c_s^2}\right)^2 \sqrt{v^2 + c_s^2}\rho$$

- In the mini-halos in which stars are formed, $v = c_s(T), \rho = \rho_{av} \times (T_{vir}/T)$ T = 200K for primordial clouds, $T = max(10K, T_{CMB})$ for $Z > 10^{-6}Z_{\odot}$
- $\sqrt{v^2 + c_s^2 \rho}$
- * After their host halos merge with larger halo, stars moves with circular velocity $\mathbf{v} = \mathbf{v}_{cir}$, ρ_{av} (average density of virialized halo)

Accreted matter is mixed in surface convective zone of EMP stars.

- $\ast~Mscz{=}~0.2M_{\odot}$ for giant
- $= 0.0035 M_{\odot}$ for main sequence

EMP star

R-process source

- \bullet <u>Core-collapse SN</u> (e.g. Burbidge+ 1957)
 - Neutrino driven wind
 - \diamond >20M $_{\odot}$ (Woosley & Hoffman 1992)
 - ♦ Very high entropy is required to synthesize heavy r-process elements
 - ♦ Electron-capture (O-Ne-Mg) SN $(8-12M_{\odot})$ (e.g. Wheeler et al. 1998)
 - ♦ Artificial enhancement of the explosion energy (Wanajo et al. 2003)
 - $\diamond \quad n+\nu_e \longrightarrow p^+ + e^- \quad :not \ so \ n \ rich$
 - (Light r-process elements can be synthesized)
- Neutron star merger (e.g. Lattimer+ 1974, Rosswog+ 1999)

 - \diamond Chemical evolution: \times (Argast et al. 2004)
 - \diamond Event rate: ~1/1000 of SN
 - \diamond Long delay time (~ Gyr)

$\begin{array}{c} \text{Mass range of r-process source} \\ 9-10 \text{ M}_{\odot} \\ _{\text{Ba: } 5.72 \times 10^{-6}} \end{array} & 10\text{-}40 \text{ M}_{\odot} \\ \end{array} & 30\text{-}40 \text{ M}_{\odot} \end{array}$

Color : predicted Blue lines: 95, 75 curves of predicte Black symbols: SAGA sample

Chemical evolution, ISM accretion

Majority of stars with [Fe/H] <-3 was $[Ba/H] = -\infty$.

Accretion rate: $\sim 10^{-11} M_{\odot}/yr$ Mini-halo merger timescale: $\sim 10^{8-9} yr$ ISM abundance: [Ba/H] ~ -2

 \rightarrow stellar surface: [Ba/H] ~ -4

For stars with [Ba/H] \leq -3.5, accretion of ISM is the dominate source of heavier rprocess elements on their surface.

NS merger scenario ? timescale t_c 9-10 M_{\odot} SN (~2×10⁷ yr)

 $t_c = 10^8 - 10^{10} \text{ yr}$

\Rightarrow Short delay time (~10⁷yr)

NS merger scenario Event rate $9-10 M_{\odot} SN$ Ever

 $t_c = 10^7 \text{ yr}$ Event rate = $0.01 \times \text{SN}$ rate

 \diamond

 Even with surface pollution, a half of stars with [Fe/H] < -3 is [Ba/Fe]<-2.5
</p>

But, dynamics of the high velocity ejecta (~0.2c) is different from SN ejecta.

Observations: Sr/Ba

- Light-element primary process (LEPP) (weak r-process)
 - <u>Enhancements</u> of lighter r-process elements (Z<56; Sr, Y, Zr...) relative to heavier elements (Ba, Eu, Pb...)
 - ♦ Anti correlation between
 [Sr/Ba] [Ba/Fe]

But, at [Fe/H]<-3.6, no light element enhanced stars

But, stars with small [Ba/Fe] and [Sr/Ba]~0

LEPP

SN with the progenitor mass of 10-12 M_{\odot}

 $Y_{Ba} = 0$ Y_{Sr} is set to be <Sr/Ba> = solar r-process

Main-r source: 9 -10 M_{\odot} [Sr/Ba] = - 0.5

Summary

 In spite of a large abundance scatter, Ba is detected for almost all EMP stars.
 Plateau at [Fe/H] < -3.3

• No star with [Sr/Ba] > 0 at [Fe/H] < -3.6

\odot Low mass (9 – 10M $_{\odot}$) SN + surface pollution

- ♦ Light elements (Sr): ~10-12 M_{\odot} (9-10 M_{\odot} also eject light r-process elements, [Sr/Ba] ~ -0.5)
- NS merger
 - Additional r-process source

Model: Galaxy formation

- ♦ <u>Merger tree:</u>
 - Extended Press-Schechter Method Somerville & Kollat (1999)
 - * $M_{MW} = 10^{12} M_{\odot}, M_{min} = M(T_{vir} = 10^{3} K)$

♦ <u>Proto-galaxy</u>

- \bullet Gass infall: $\Delta M_h \times \Omega_b / \Omega_M$
- * At the beginning, stars are formed in mini-halo with $T_{vir} > 10^3 K$ (Tegmark+ 1997, Yoshida+ 2003)
- * At z < 20, by Lyman-Werner photon, stars are not formed in newly formed mini-halos with $T_{vir} < 10^4 K$
- $\, \ast \,$ Reionization: At z < 10 gas do not accrete to mini-halos with $T_{vir} < 10^4 K$
- Proto galaxies are chemically homogeneous

Model: Metal pollution of intergalactic matter (IGM)

- ♦ SN driven galactic wind
 - Energy injection: $E_w = E_k (\epsilon + E_k/E_{bin})/(1 + E_k/E_{bin})$
 - \otimes Mass loading: $M_w = M_{gas} E_w / (E_{bin} + E_w)$
 - Metal loading: $f_W = (M_w/M_{sw} + E_k/E_{bin})/(1 + E_k/E_{bin})$.

 E_k : SN kinetic energy = $0.1 * E_{exp}$ E_{bin}: binding energy of a proto-glaxy $E_{\rm bin} = \frac{1}{2} \, GM_{\rm halo} M_{\rm gas} / R_{\rm vir}$ ε (=0.1): minimum value of E_w/ E_k M_{sw}: mass swept up by a SN shell

◆ Evolution of galactic wind in the IGM (momentum-conserving snowplow model)

 $\frac{d}{dt}M_{b,j} = (v_j - r_jH_r)r^2\rho_{IGM} + \sum_i M_{w,i}\delta(t - t_i) - \sum_{i=1}^{i} \dot{M}_{acc,n}$ ♦ Mass:

Metal:

 $\frac{d}{dt}M_{A,j} = \sum_{i} (M_{w,i}X_{A,g} + f_{w,i}Y_{A,i})\delta(t-t_i) - \sum_{n \in n(i)} \dot{M}_{acc,n} \frac{M_{A,j}}{M_{b,j}},$

- Some proto-galaxies are formed with IGM enriched by metal ejected by SNe occurred in other galaxies.
 - Random spatial distribution of mini-halos
 - Winds "merge" when mini-halos merge