radioactive light curves from compact object mergers

> daniel kasen UC Berkeley/LBNL

- r. fernandez, b. metzger,
- j. barnes, n. badnell,
- s. rosswog, l. roberts,
- e. ramirez-ruiz

ejecta from compact object mergers $M_{ej} \sim 10^{-4} - 10^{-2} M_{sun}$

dynamical ejecta

disk winds

S. Rosswog

t ~ ms $Y_e \sim 0.05 - 0.1$ "strong" r-process (A > 130)

 $t \sim sec \\ Y_e \sim 0.2 - 0.4 \\ \text{``strong'' and/or ``weak (A < 130)} \\ depending on neutrino irradiation \\ \end{cases}$

expansion of merger ejecta

multi-D time dependent radiative transfer

SEDONA code - Kasen et al. ApJ (2006), Kasen (2008), Roth & Kasen (2014)

freely expanding cloud heated by radioactivity gamma-rays: compton/photoabsorption betas: coulomb collisions, ionization fission, alphas: coulomb collisions

> re-emitted thermal optical/infrared photons gradually diffuse out

main opacity: lines must calculate thermodynamic evolution, ionization/exctiation state with detailed atomic data

radioactively powered transients (kilonovae)

line interactions in an expanding (hubble-like) flow

mean free path set by density of lines

opacity and atomic complexity

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	f-shell
* * Actinide series	actinium 89	140.12 thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	(g= 4)
		Th 232.04	Pa 231.04	U 238.03	Np	Pu [244]	Am	Cm	Bk	Cf	ES [252]	Fm	Md [258]	No [259]	(0)

atomic structure and radiative data limited data available for high Z species

atomic structure modeling needed for level/line data

VALD database (Kurucz, MONS) (~500,000 lines) very incomplete for most ions Z > 28no line data for higher ionization states almost no data for $\lambda > 1 \ \mu m$

Autostructure cacluations kasen, badnell, and barnes (2013) (~40,000,000 lines) ab-initio calculations for Nd, Cd, Os,... extrapolated to other species

more work underway....

mean opacities different composition

kasen, badnell, barnes 2013

light curves of radioactive transients effect of high lanthanide opacity

model spectral energy distribution

GRB130603B relatively nearby short GRB (z = 0.356)

deep infrared imaging with HST Tanvir+ 2013 triggered ~1 week after burst c.f. Berger 2013

3D dynamical ejecta models

roberts, kasen, lee, & ramirez-ruiz (2011)

model kilonova light curve 0.025 M_{sun} of dynamical ejecta

10⁴¹

mass estimate subject to uncertainties in dynamics (ejecta geometry) atomic physics (line opacities) nuclear physics (radioactive heating) plasma physics (thermalization of decay products)

ejected disk wind (NS lives 30 ms)

log₁₀ density

estimated final abundances (parameterized wind nucleosynthesis calculations)

Ye distribution of wind ejecta

optical and infrared light curves of winds multi-dimensional radiative transport calculations

light curve and spectral evolution $t_{ns} = 30 \text{ ms}$

multiple ejecta components disk wind inside dynamical ejecta

multiple ejecta components $t = 100 \text{ ms disk wind inside} 10^{-2} M_{sun} \text{ dynamical ejecta}$

takeaways

- kilonovae are a direct probe of r-process nucleosynthesis at the production site
- modeling kilonova light curves measures ejected mass
- kilonova color is a strong diagnostic of composition lanthanides (A > 130) = red lanthanide-free (A < 130) = blue
- kilonova spectra carry more detailed information about ejecta velocity and composition
- may be able to untangle multiple components:
 1) dynamical, 2) high Y_e wind, 3) low Y_e wind