Combined Analyses of Outflows from Neutron-Star Mergers

Oliver Just Max-Planck-Institut für Astrophysik

R-Process Workshop INT Seattle, July 29th 2014

With: H.-Th. Janka, S. Goriely, A. Bauswein, R. Ardevol, M. Obergaulinger, N. Schwarz, C. Weinberger and others

Max Planck Institute for Astrophysics

Why Study Outflows of NS-Mergers?

- 1) NS-mergers could be main / significant source of r-process elements in the universe!
- → the nucleosynthesis process is identified: *rapid neutron capture process*

→ BUT: astrophysical site(s) not clearly identified so far!

winds from CCSNe are not neutron-rich enough and have too low entropies (at least for strong r-process)

Why Study Outflows of NS-Mergers?

1) NS-mergers could be main / significant source of r-process elements in the universe!

"typical" observed pattern

very robust for heavy, while larger scatter for lighter elements

typical in lighter, but deficient in heavier elements

Why Study Outflows of NS-Mergers?

2) NS mergers could be visible in optical and infrared! ("Kilonova" / "Macronova") theoretical lightcurve (Barr

(Li&Paczynski, Kulkarni, Metzger)

- → radioactive decay heats material
 → causes electromagnetic transient on on timescale of several days
- possibly first Kilonova already measured (Berger '13, Tanvir '13)

- opacity determined by lanthanides
- lightcurve carries information about outflow mass, composition, velocity

Neutron-Star Mergers: Outflow Types

Neutron-Star Mergers: Outflow Types

Study Overview

Dynamical Ejecta

NS-NS

Dynamical Ejecta

Merger	M_1	M_2	$A_{\rm BH,0}$	EOS	pc/dc	$M_{\rm BH}$	$A_{\rm BH}$	$M_{\rm torus}$	M _{dyn}	Basy	\overline{Y}_e	$\bar{s}/k_{ m B}$	\bar{v}	Remnant	
model	$[M_{\odot}]$	$[M_{\odot}]$,			$[M_{\odot}]$		$[M_{\odot}]$	$[10^{-3}M_{\odot}]$	-			$[10^{10}\mathrm{cm/s}]$	model	
SFHO_1218	1.2	1.8		SFHO	pc	2.78	0.76	0.137	4.9	0.28	0.036	9.9	1.19	M3A8m1	
SFHO_13518	1.35	1.8		SFHO	pc	2.97	0.78	0.099	4.3	0.16	0.036	6.7	1.28	M3A8m1	> NS-NS
SFHX_1515	1.5	1.5		SFHX	dc	2.77	0.78	0.106	21.2	0.01	0.032	8.2	0.67	M3A8m1	
SFHO_145145	1.45	1.45		SFHO	dc	2.68	0.79	0.091	14.3	0.02	0.033	7.9	0.64	M3A8m1	
TM1_175175	1.75	1.75		TM1	pc	3.37	0.85	0.027	8.4	0.07	0.027	10.0	1.12	M3A8m03	
TMA_1616	1.6	1.6		TMA	dc	3.04	0.83	0.037	5.2	0.07	0.012	5.4	0.62	M3A8m03)
TM1_1123	1.1	2.29	0.54	TM1		3.04	0.81	0.30	79.8	0.93	0.056	0.64	0.66	M3A8m3	
SFHO_1123	1.1	2.3	0.53	SFHO		3.09	0.82	0.26	40.4	0.96	0.042	0.73	0.60	M3A8m3	
DD2_14529	1.45	2.91	0.53	DD2		4.00	0.83	0.27	35.9	0.96	0.056	0.62	0.67	M4A8m3	NS-BH
TM1_1430	1.4	3.0	0.52	TM1		4.03	0.81	0.30	45.8	0.97	0.054	0.50	0.67	M4A8m3	
TM1_14051	1.4	5.08	0.70	TM1		6.08	0.83	0.32	55.8	0.98	0.050	0.41	0.75	M6A8m3	

Typical properties:

- outflow masses ~ 0.001 0.1 Msun
- electron fraction Ye < 0.1
- entropy per baryon s ~ 1 10 kB
- velocity v ~ 0.2 0.4 c

Typical nucleosynthesis yields:

- solar deficient for A < 140
- solar like for A > 140 (robust)

Physics of Post-Merger BH-Torus

(short after its formation)

Neutrino Transport

Full Boltzmann equation too expensive!

Our approach:

Two-moment scheme with algebraic Eddington factor (aka "M1 scheme")

$$E = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) \qquad \leftarrow \text{energy density}$$

$$F^{i} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} \qquad \leftarrow \text{momentum density}$$

$$P^{ij} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} n^{j} \qquad \leftarrow \text{pressure}$$

$$Q^{ijk} = \int d\Omega \mathcal{I}(\boldsymbol{x}, \boldsymbol{n}, \epsilon, t) n^{i} n^{j} n^{k}$$

 $\partial_t E + \nabla_j F^j + \nabla_j (v^j E) + (\nabla_j v_k) P^{jk} - (\nabla_j v_k) \partial_\epsilon (\epsilon P^{jk}) = C^{(0)}$ $\partial_t F^i + c^2 \nabla_j P^{ij} + \nabla_j (v^j F^i) + F^j \nabla_j v^i - (\nabla_j v_k) \partial_\epsilon (\epsilon Q^{ijk}) = C^{(1),i}$ equations

 $\left.\begin{array}{ll}P^{ij} &=& P^{ij}(E,F^i)\\Q^{ijk} &=& Q^{ijk}(E,F^i)\end{array}\right\} \quad \text{approximate algebraic}\\ \text{closure relations (e.g. "M1 closure")}\end{array}$

Computational save up of two degrees of freedom!

Neutrino Transport

Details of the algorithm:

- energy-dependent (multi-group), fully multidimensional
- O(v/c) effects advection, aberration and Doppler shift included
- IMEX scheme for time integration → efficiently scalable
- implemented most important neutrino-interaction channels
- extensively tested in 1D and 2D (Just, Janka, Obergaulinger, to be submitted)

2D shadow test

Setup of BH-Torus Models

- initial models: j-constant equilibrium tori
- axisymmetry
- angular momentum transport: Shakura & Sunyaev α-viscosity
- most dominant interactions included:
 - ✓ beta-processes
 - neutrino-nucleon scattering
 - neutrino-antineutrino annihilation
- pseudo-Newtonian gravitational potential (mimics the ISCO and BH spin)
- variation in M_{torus} , M_{BH} , α (adapted to merger simulations)

Disk Properties

2 main evolutionary phases:

- → first few 100 ms: "Neutrino-dominated accretion flow" (NDAF)
- neutrino cooling balances viscous heating

- → ejecta (mainly) driven by neutrino-heating
- → Ye in ejecta determined by neutrino captures

$$\begin{array}{ccc} n + \nu_e \to p + e^- \\ p + \bar{\nu}_e \to n + e^+ \end{array} \longrightarrow Y_e^{\nu} \simeq \left(1 + \frac{L_{\bar{\nu}_e}}{L_{\nu_e}} \frac{\varepsilon_{\bar{\nu}_e} - 2Q_{np}}{\varepsilon_{\nu_e} + 2Q_{np}} \right)^{-1}$$

Disk Properties

2 main evolutionary phases:

subsequently: "Advection-dominated accretion flow" (ADAF)

viscous heating dominates neutrino cooling

time = 2 s

→ ejecta (mainly) driven by viscous effects

→ Ye in ejecta determined by electron/positron captures

$$\begin{array}{ccc} p + e^- \to n + \nu_e \\ n + e^+ \to p + \bar{\nu}_e \end{array} \longrightarrow \begin{array}{ccc} Y_e & \longrightarrow & Y_e^\beta & = & Y_e(\rho, T, \mu_\nu = 0) \end{array}$$

Ejecta Properties

Remnant	$M_{\rm BH}$	$A_{\rm BH}$	$M_{\rm torus}$	$\alpha_{\rm vis}$	visc.	radio.	neutr.	$M_{ m out}$	$M_{\mathrm{out}, \nu}$	\overline{Y}_e	$ar{s}/k_{ m B}$	\bar{v}
model	$[M_{\odot}]$		$[M_{\odot}]$		type	corr.	heat.	$[10^{-3}M_\odot(M_{\rm torus})]$	$[10^{-3}M_\odot(M_{\rm torus})]$			$[10^9{\rm cm/s}]$
M3A8m3a2	3	0.8	0.3	0.02	type 1	No	Yes	66.8(22.3%)	3.00(1.00%)	0.28	20.9	1.16
M3A8m3a5	3	0.8	0.3	0.05	type 1	No	Yes	78.3(26.1%)	3.51 (1.17%)	0.25	23.0	1.55
M3A8m1a2	3	0.8	0.1	0.02	type 1	No	Yes	22.7(22.7%)	0.09 (0.09%)	0.28	24.8	1.03
M3A8m1a5	3	0.8	0.1	0.05	type 1	No	Yes	24.7 (24.7%)	0.35 (0.35 %)	0.24	28.0	1.56
M3A8m03a2	3	0.8	0.03	0.02	type 1	No	Yes	7.0(23.4%)	0.0005(0.002%)	0.27	29.5	0.96
M3A8m03a5	3	0.8	0.03	0.05	type 1	No	Yes	7.3(24.3%)	0.002 (0.007%)	0.25	32.7	1.70
M4A8m3a5	4	0.8	0.3	0.05	type 1	No	Yes	66.2(22.1%)	1.47~(0.49~%)	0.26	28.1	1.66
M6A8m3a5	6	0.8	0.3	0.05	type 1	No	Yes	56.3(18.8%)	0.07~(0.02~%)	0.27	29.4	1.45
M3A8m3a2-v2	3	0.8	0.3	0.02	type 2	No	Yes	64.2~(21.4%)	2.58 (0.86%)	0.29	19.3	0.97
M3A8m3a5-v2	3	0.8	0.3	0.05	type 2	No	Yes	70.1(23.4%)	2.63 (0.88 %)	0.26	19.7	1.39
M4A8m3a5-rh	4	0.8	0.3	0.05	type 1	Yes	Yes	67.3(22.4%)	$1.51 \ (0.50 \ \%)$	0.26	26.4	1.62
M3A8m1a2-rh	3	0.8	0.1	0.02	type 1	Yes	Yes	22.8(22.8%)	0.09 (0.09 %)	0.28	25.1	1.05
M3A8m3a2-noh	3	0.8	0.3	0.02	type 1	No	No	56.6 (18.7%)	- /	0.24	21.7	0.90

Typical properties:

- viscous ejecta dominant
- total outflow mass Mout ~ 20% Mtorus
- electron fraction Ye ~ 0.2 0.3
- velocity v ~ 10^9 cm/s

Typical nucleosynthesis yields:

- solar like for 90 < A < 140
- solar deficient for A > 140

Combined Nucleosynthesis Yields

→ DYNAMICAL ejecta (mainly A ~ 140 - 210)

→DISK + DYNAMICAL ejecta

- → nicely recovers the full mass range A > 90
- → BH-torus ejecta could be significant sources of intermediate mass elements with 90 < A < 140</p>
- Observed scatter for 90 < A < 140 maybe explained by variable ratios of disk and prompt ejecta masses</p>

Heavy-Element Deficient Stars

... could perhaps be explained by asymmetric mass ejection in NS-BH mergers

Summary

- NS mergers could be main/significant sources of r-process elements in the universe
- all outflow components potentially important and each could have individual nucleosynthesis signatures
- we analyzed prompt ejecta from NS-NS / NS-BH mergers as well as ejecta from relic BH-torus system
- prompt ejecta typically few % Msun and give solar-like yields for A > 140
- disk ejecta typically few % Msun, subdominantly neutrino-driven and dominantly viscously-driven, and give solar-like yields for 90 < A < 140</p>
- combinations of dynamical + disk ejecta reproduce solar pattern within 90 < A < 210</p>

Conclusions

- dynamical ejecta from NS-BH mergers could be significant/main sources of r-process elements in the range A > 140
- ejecta from BH-torus remnants could be significant/main sources of rprocess elements in the range 90 < A < 140</p>
- observed star-to-star scatter for the lighter elements could be explained by different ratios of dynamical-to-disk ejecta masses
- heavy-element deficient stars possibly explained by asymmetric mass ejection in NS-BH mergers
- several aspects of our study can still be improved, e.g.:
 - add ejecta from (H)MNS
 - include neutrinos in merger-phase simulations
 - take BH-torus configuration as resulting from merger model
 - include relativity and MHD in BH-torus models

More details in arXiv:1406.2687

Supplementary Material

Emission Properties

Ejecta Properties

