INT Workshop: The r-process: status and challenges July 28 - August 1, 2014

Nucleosynthesis of heavy elements: r-process and its astrophysical site

INT Workshop: The r-process: status and challenges July 28 - August 1, 2014

Nucleosynthesis of heavy elements: r-processes and their astrophysical sites

r-process

Rapid neutron capture compared to beta decay

Where does the r-process occur?

rapid process \rightarrow explosions high neutron densities \rightarrow neutron stars

Core-collapse supernovae

Neutron star mergers

core-collapse supernovae

r-process in core-collapse supernovae? (B²FH 1957)

- prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984)
- neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)
- shocked surface layers (Ning, Qian, Meyer 2007)
- neutrino-induced in He shells (Banerjee, Haxton, Qian 2011)
- jets (e.g., Winteler et al. 2012)

One model for low mass progenitors: 8.8M_{sun} (Nomoto 1984, 1987) Promising scenario for the r-process, requires further investigation Eichler, Arcones, Thielemann 2012

Supernova-jet-like explosion

3D magneto-hydrodynamical simulations: rapid rotation and strong magnetic fields

matter collimates: neutron-rich jets

right r-process conditions

z [km]

Neutrino-induced r-process in He shell

at low metallicity $Z < 10^{-3}Z_{sun} \rightarrow Iow$ seed abundance neutral- and charged-current neutrino reactions on He \rightarrow few neutrons

cold r-process relative low neutron density lasts ~20s peaks shift to high A (between r- and s-process)

Banerjee, Haxton, Qian 2011 Epstein, Colgate, Haxton 1988, Woosley, Hartmann, Hoffman, Haxton 1990 Nadyozhin, Panov, Blinnikov 1998

Neutrino-driven winds

neutrons and protons form a-particles a-particles recombine into seed nuclei

T < 3 GK

NSE \rightarrow charged particle reactions / α -process \rightarrow r-process T = 10 - 8 GK 8 - 2 GK weak r-process vp-process

for a review see Arcones & Thielemann (2013)

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale: inhibit α-process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale: inhibit α-process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

nditions are not realized in drodynamic simulations ones et al. 2007, Fischer et al. 2010, epohl et al. 2010, Roberts et al. 2010, ones & Janka 2011, ...)

$$\begin{split} S_{wind} &= 50 - 120 \ k_B/nuc \\ \tau &= few \ ms \\ Y_e &\approx 0.4 - 0.6? \end{split}$$

ditional ingredients: Id termination, extra energy Irce, rotation and magnetic fields, Itrino oscillations

neutron-star mergers

Neutron star mergers

Ejecta from three regions:

- dynamical ejecta
- neutrino-driven wind
- disk evaporation

Neutron star mergers: robust r-process

simulations: 21 mergers of 2 neutron stars 2 of neutron star black hole

nucleosynthesis of dynamical ejecta robust r-process:

- extreme neutron-rich conditions ($Y_e = 0.04$)
- several fission cycles

Korobkin, Rosswog, Arcones, Winteler (2012) see also Bauswein, Goriely, and Janka Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo

Neutron star mergers: robust r-process

x km

Korobkin, Rosswog, Arcones, Winteler (2012) see also Bauswein, Goriely, and Janka

Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo

T (GK)

ρ (g cm⁻³)

Korobkin et al. 2012

Neutron star mergers: neutrino-driven wind

Electron fraction [-]

3D simulations ~100ms after merger disk and neutrino-wind evolution neutrino emission and absorption

Nucleosynthesis for few trajectories

Neutron star mergers: evaporation disk

2D simulations with simple neutrino treatment outflows from accretion disk: black hole, super-massive neutron star matter unbound: viscosity and alpha recombination

Neutron star mergers: evaporation disk

2D simulations with simple neutrino treatment outflows from accretion disk: black hole, super-massive neutron star matter unbound: viscosity and alpha recombination

Radioactive decay in neutron star mergers

r-process heating affects:

- merger dynamics: late X-ray emission in short GRBs (Metzger, Arcones, Quataert, Martinez-Pinedo 2010)
- remnant evolution (Rosswog, Korobkin, Arcones, Thielemann, Piran 2014)

Radioactive decay in neutron star mergers

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, Goriely et al. 2011): direct observation of r-process, EM counter part to GW

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, Bauswein et al. 2013)

A 'kilonova' associated with the short-duration γ-ray ON Star mergers burst GRB130603B

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. Tunnicliffe

ger et al. 2010, Roberts et al. 2011, rocess, EM counter part to GW

Time since GRB 130603B (days)

Where does the r-process occur?

Rare core-collapse supernovae

Neutron star mergers

Galactic chemical evolution

ESO PR Photo 25b/02 (30 October 2002)

Trends with metallicity

Fe and Mg produced in same site: core-collapse supernovae

Significant scatter at low metallicities

r-process production rare in the early Galaxy

Mg and Fe production is not coupled to r-process production

Fingerprint of the r-process

Oldest observed stars

Solar system abundances

- HD 221170: Ivans et al. (2006)
- HE 1523-0901: Frebel et al. (2007)

LEPP: Lighter Element Primary Process

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Nucleosynthesis components

C.J. Hansen, Montes, Arcones 2014

LEPP and r-process components based on 3 methods:

- M1: LEPP = Honda star r-process = Sneden star
- M2: LEPP = Honda Sneden r-process = Sneden

M3: iterative method (Li et al. 2013) LEPP = LEPP - r-process r-process = r-process - LEPP

→ Component abundance pattern: Y_r and Y_L Assumptions: Z range for components robust pattern

Abundance deconvolution

big sample of stars (Frebel et al. 2010) remove s-process, carbon enhanced, and stars with internal mixing

fit abundance as combination of components: $Y_{\text{calc}}(Z) = (C_r Y_r(Z) + C_L Y_L(Z)) \cdot 10^{[\text{Fe/H}]}$

Abundance deconvc

big sample of stars (Frebel et al. 2010) remove s-process, carbon enhanced, and stars with ir

fit abundance as combination of components: $Y_{\text{calc}}(Z)$

[Mg/Fe]

2

+ All

+ All Sample

Sample

+ Stars: 823

Abundance deconvolution

big sample of stars (Frebel et al. 2010) remove s-process, carbon enhanced, and stars with internal mixing

fit abundance as combination of components: $Y_{\text{calc}}(Z) = (C_r Y_r(Z) + C_L Y_L(Z)) \cdot 10^{[\text{Fe/H}]}$

Abundance deconvolution

big sample of stars (Frebel et al. 2010) remove s-process, carbon enhanced, and stars with internal mixing

fit abundance as combination of components: $Y_{\text{calc}}(Z) = (C_r Y_r(Z) + C_L Y_L(Z))$

LEPP in neutrino winds?

Arcones et al. 2007

Lighter heavy elements in neutrino-driven winds

vp-process

Observation pattern reproduced!

Production of p-nuclei

0.50 neutron rich ي، 0.48 0.46 234567

weak r-process

Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

(Arcones & Montes, 2011)

Electron capture supernova

Wanajo, Janka, Müller (2011): small neutron-rich pockets in 2D simulations

Lighter heavy elements in neutrino-driven winds

vp-process

Observation pattern reproduced!

Production of p-nuclei

0.50 neutron rich ي، 0.48 0.46 234567

weak r-process

Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

(Arcones & Montes, 2011)

Lighter heavy elements in neutrino-driven winds

LEPP components: constraining conditions

LEPP abundance ratios: Sr/Y = 6.13 (//) $Sr/Zr = 1.22 (\)$ Sr/Ag = 48.2

LEPP components: constraining conditions

LEPP abundance ratios: Sr/Y = 6.13 (//) $Sr/Zr = 1.22 (\)$ Sr/Ag = 48.2

LEPP components: constraining conditions

Conclusions

How many r-processes? How many astrophysical sites?

heavy r-process: mergers: dynamical, wind, disk evaporation jet-like supernovae He shell

lighter heavy elements: neutrino-driven winds mergers: wind, disk evaporation constraints from observations: LEPP component

Needs

Observations: oldest stars, kilo/macronovae, neutrinos, gravitational waves, ...

Neutron-rich nuclei: experiments with radioactive beams, theory

Improved supernova and merger simulations

Chemical evolution models