TMD Evolution Overview

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

- High Energy Collisions and Transverse Momentum
- Transverse Momentum Dependent (TMD) Functions and Intrinsic, non-perturbative Transverse Momentum
- Phenomenology

INT Workshop – February 27, 2014

Motivation

• HEP (high energy QCD, BSM, etc...)

<u>Theme of talk.</u> Transverse Momentum Dependent (TMD) Factorization

Hadronic structure studies that use pQC.

 \smile

Quark and Gluon Degrees of Freedom

Talk Strategy

• Parton Model Intuition

Real QCD

Talk Strategy

- Collinear Factorization
 - Collinear PDF, FFs
 - Scale Evolution

- TMD Factorization
 - TMD PDF, FFs
 - Scale Evolution

Collinear parton model

Collinear Drell-Yan

• Factorization theorem

$$\sigma \sim \int \mathcal{H}(\mu/Q, \alpha_{s}(\mu)) \otimes f_{q/P}(x_{1}; \mu) \otimes f_{\bar{q}/\bar{P}}(x_{2}; \mu)$$

$$Small Coupling:$$
Perturbation Theory
$$C_{0} + C_{1}\alpha_{s}(\mu) + C_{2}\alpha_{s}(\mu)^{2} + C_{3}\alpha_{s}(\mu)^{3} + \cdots$$
Defined in terms of elementary fields
$$f_{j/p}(\xi) = \int \frac{dw^{-}}{(2\pi)} e^{-i\xi P^{+}w^{-}} \langle P | \bar{\psi}_{j}(0, w^{-}, \mathbf{0}_{t}) \frac{\gamma^{+}}{2} \psi_{j}(0, 0, \mathbf{0}_{t}) | P \rangle$$

<u>Collinear</u> (Standard) Case

• Perturbative QCD <u>factorization theorem</u>:

• Factorization + Evolution: Universal PDFs

"Portable"

High Energy Collisions & Transverse Momentum

(Less Inclusive)

(Large) Transverse Momentum:

TMD Parton Model

 $\frac{d\sigma}{d^2\mathbf{q}_t} \sim \int \mathcal{H}(Q) \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$ Elementary **Parton Model** Collision Number densities

Unified: Transverse Momentum:

Unified: Transverse Momentum:

TMD Parton Model

All Transverse Momenta

All Transverse Momenta

All Transverse Momenta W term Ex: Matching **Prescription:** $\mathbf{b}_{*}(\mathbf{b}_{\mathrm{T}}) \equiv rac{\mathbf{b}_{\mathrm{T}}}{\sqrt{1+b_{\mathrm{T}}^{2}/b_{\mathrm{T}}^{2}}}$ $\mu_b \equiv C_1 / |\mathbf{b}_*(b_T)|$ Perturbative Logs $\left\{ \int_{\mu_b}^Q \frac{d\mu'^2}{\mu'^2} \left[\mathcal{B}(g(\mu')) + \ln \frac{Q^2}{\mu'^2} \mathcal{A}(g(\mu')) \right] \right\} \times$

All Transverse Momenta

(Collins, Soper, Sterman (CSS) formalism (1981-1985)... (many similar formalisms))

Motivation I High Energy Physics & Transverse Momentum

Small Transverse Momentum, Motivation Ex:

- Constraining SM parameters.
 - Example: W, Z masses and widths

"While significant effort has been put into the study of **W(b)** at large **b** [36, 42, 43, 44], none ... adequately describe the observed **Z** boson distribution without introducing free parameters."

- P. Nadolsky, (2004) Theory of W and Z Production, pg. 9

Small Transverse Momentum, Motivation Ex:

- Constraining SM parameters.
 - Example: W, Z masses and widths

Small Transverse Momentum, Motivation Ex:

- Constraining SM parameters.
 - Example: W, Z masses and widths

"While significant effort has been put into the study of **W(b)** at large **b** [36, 42, 43, 44], none ... adequately describe the observed **Z** boson distribution without introducing free parameters."

- P. Nadolsky, (2004) Theory of W and Z Production, pg. 9

"The observed boson q_T spectrum in this measurement is mostly sensitive to g_2 and has very limited sensitivity to the other non-perturbative parameters..."

(See Talk of M. Guzzi)

o Lopes de Sá, (<u>2013)</u> , surement of the W boson Mass with

the D0 Detector, pg. 57, Ph.D. Thesis, Stony Brook University

Motivation II Hadron Structure and Transverse Momentum

TMD Taxonomy

(P. Mulders, R. Tangerman (1996))

(Gaussian Parametrizations)

Recall Collinear Case:

• Parton Model

$$\sigma \sim \int \mathcal{H}(Q) \otimes f_{q/P}(x_1) \otimes f_{\bar{q}/\bar{P}}(x_2)$$

$$\stackrel{\text{Elementary}}{\underset{\text{collision}}{\overset{\text{Elementary}}{\overset{\text{Hadron Structure: large distance scales}}}$$

Short distance scales

TMD Parton Model

Parton model-like picture in QCD?

TMD PDF Definitions

• Exact, gauge invariant operator definitions needed to address questions of hadronic structure. (See Collins, POS (2003) for list of complications)

TMD PDF Definitions

- Exact, gauge invariant operator definitions needed to address questions of hadronic structure. (See Collins, POS (2003) for list of complications)
- Universality / Modified Universality.
 - Sivers Function: Non-zero, reverses sign in Drell-Yan vs. SIDIS (Brodsky, Hwang, Schmidt (2002)), (Collins, (2002))

TMD Parton Model

Parton model-like picture in QCD?

Talk Strategy

- Collinear Factorization
 - Collinear PDF, FFs
 - Scale Evolution

- TMD Factorization
 - TMD PDF, FFs
 - Scale Evolution

TMD-Factorization

Unified Formalism

(J.C. Collins Extension of CSS formalism: (Book, 2011), Chapts. 10,13,14)

(See also SCET language: Echevarria, Idilbi, Scimemi (2011-2014))

Talk Strategy

- Collinear Factorization
 - Collinear PDF, FFs
 - Scale Evolution

- TMD Factorization
 - TMD PDF, FFs
 - Scale Evolution

TMD-Evolution

• Recall Collinear / DGLAP:

$$\frac{d}{d\ln\mu}f_{j/P}(x;\mu) = 2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)$$

TMD-Evolution

• Recall Collinear / DGLAP:

$$\frac{d}{d\ln\mu}f_{j/P}(x;\mu) = 2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)$$

(Collins Extension: (2011), Chapts. 10,13,14) 38

Solution: One TMD PDF

Polarized TMD PDFs:

• Same definition, same evolution equations

$$F_{f/P^{\uparrow}}(x,k_T,S;\mu,\zeta_F)$$

= $F_{f/P}(x,k_T;\mu,\zeta_F) - F_{1T}^{\perp f}(x,k_T;\mu,\zeta_F) \frac{\epsilon_{ij}k_T^i S^j}{M_p}$

Solution: One TMD PDF

Polarized TMD PDFs:

TMD Factorization

• Incorporate all processes.

- SIDIS, DY, e⁺e⁻, different targets....
- Unpolarized cross sections, spin asymmetries...

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_1}(x, k_{1T}, Q) \otimes D_{H_2/f}(z, k_{2T}, Q) + Y_{\text{SIDIS}}$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_1}(x_1, k_{1T}, Q) \otimes F_{\bar{f}/H_2}(x_2, k_{2T}, Q) + Y_{\text{Drell-Yan}}$$
$$d\sigma_{\text{e}^+\text{e}^-} = \sum_{f} \mathcal{H}_{f,\text{e}^+\text{e}^-}(Q) \otimes D_{H_1/\bar{f}}(z_1, k_{1T}, Q) \otimes D_{H_2/f}(z_2, k_{2T}, Q) + Y_{\text{e}^+\text{e}^-}$$

Phenomenology

Constraining Non-Perturbative Parts

• Incorporate all processes.

- SIDIS, DY, e⁺e⁻, different targets....
- Unpolarized cross sections, spin asymmetries...

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_1}(x, k_{1T}, Q) \otimes D_{H_2/f}(z, k_{2T}, Q) + Y_{\text{SIDIS}}$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_1}(x_1, k_{1T}, Q) \otimes F_{\bar{f}/H_2}(x_2, k_{2T}, Q) + Y_{\text{Drell-Yan}}$$
$$d\sigma_{\text{e}+\text{e}^-} = \sum_{f} \mathcal{H}_{f,\text{e}+\text{e}^-}(Q) \otimes D_{H_1/\bar{f}}(z_1, k_{1T}, Q) \otimes D_{H_2/f}(z_2, k_{2T}, Q) + Y_{\text{e}+\text{e}^-}$$

Solution: One TMD PDF

TMD Factorization

• Incorporate all processes.

- SIDIS, DY, e⁺e⁻, different targets....
- Unpolarized cross sections, spin asymmetries...

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_1}(x, k_{1T}, Q) \otimes D_{H_2/f}(z, k_{2T}, Q)$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_1}(x_1, k_{1T}, Q) \otimes F_{\bar{f}/H_2}(x_2, k_{2T}, Q)$$
$$d\sigma_{\text{e}^+\text{e}^-} = \sum_{f} \mathcal{H}_{f,\text{e}^+\text{e}^-}(Q) \otimes D_{H_1/\bar{f}}(z_1, k_{1T}, Q) \otimes D_{H_2/f}(z_2, k_{2T}, Q)$$

DIS $Y_{\rm Dr}$ +-Yan **Approximation**

Type I - like

• Fixed Scale Fits.

Type I - like

(Torino Group 1999...)

Recall: One TMD PDF

• Ex: ResBos: CSS formalism

 $g_{K}(b_{T})\ln\left(\frac{Q}{Q_{0}}\right) = -g_{2}\frac{1}{2}b_{T}^{2}\ln\left(\frac{Q}{Q_{0}}\right)$

 $g_2 = .68 \, \mathrm{GeV}^2$

(Landry, Brock, Nadolsky, Yuan, (2003))

 $b_{\rm max} = .5 \ {\rm GeV}^{-1}$

http://hep.pa.msu.edu/resum/

TMD Factorization

• Incorporate all processes.

- SIDIS, DY, e⁺e⁻, different targets....
- Unpolarized cross sections, spin asymmetries...

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_{T}}(x,k_{1T},Q) \otimes D_{H_{Z}/f}(z,k_{2T},Q) + Y_{\text{SIDIS}}$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_{T}}(x_{1},k_{1T},Q) \otimes F_{\overline{f}/H_{Z}}(x_{2},k_{2T},Q) + Y_{\text{Drell-Yan}}$$
$$d\sigma_{e^{+}e^{-}} = \sum_{f} \mathcal{H}_{f,e^{+}e^{-}}(Q) \otimes D_{H_{T}/f}(z_{1},k_{1T},Q) \otimes D_{H_{Z}/f}(z_{2},k_{2T},Q) + Y_{e^{+}e^{-}}$$

Type II - like

(Approximations)

New Stage in Fitting

• Incorporate all processes.

- SIDIS, DY, e⁺e⁻, different targets....
- Unpolarized cross sections, spin asymmetries...

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_1}(x, k_{1T}, Q) \otimes D_{H_2/f}(z, k_{2T}, Q) + Y_{\text{SIDIS}}$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_1}(x_1, k_{1T}, Q) \otimes F_{\bar{f}/H_2}(x_2, k_{2T}, Q) + Y_{\text{Drell-Yan}}$$
$$d\sigma_{\text{e}^+\text{e}^-} = \sum_{f} \mathcal{H}_{f,\text{e}^+\text{e}^-}(Q) \otimes D_{H_1/\bar{f}}(z_1, k_{1T}, Q) \otimes D_{H_2/f}(z_2, k_{2T}, Q) + Y_{\text{e}^+\text{e}^-}$$

Evolution: Fix x,z, process/hadron species. (As much as possible)

- Vary Q to determine $g_{K}(b_{T};b_{max})$

Evolution: Fix x,z, process/hadron species. (As much as possible)

- Vary Q to determine $g_{K}(b_{T};b_{max})$

• Determine x, z dependence

Evolution: Fix x,z, process/hadron species. (As much as possible)

- Vary Q to determine $g_{K}(b_{T};b_{max})$

- Determine x, z dependence
- Dependence on hadron species, TMD PDF vs. TMD fragmentation function, flavor

Evolution: Fix x,z, process/hadron species. (As much as possible)

- Vary Q to determine $g_{K}(b_{T};b_{max})$

- Determine x, z dependence
- Dependence on hadron species, TMD PDF vs. TMD fragmentation function, flavor
- Hadron structure

Example:

Example:

Solution: One TMD PDF

Evolved TMD PDFs: constructed from old fits

https://projects.hepforge.org/tmd/

Evolved TMD PDFs: constructed from old fits

https://projects.hepforge.org/tmd/

Evolved TMD PDFs: constructed from old fits

Sign flip for Drell-Yan!

Unpolarized Fitting

Example:

Non-Perturbative Evolution

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Too Rapid!

(Sun,Yuan (2013))

Fits in TMD formalism

(Echevarria, Idilbi, Kang, Vitev (2014))

Extractions of TMD PDFs

• **Ex: ResBos: CSS formalism** $g_{K}(b_{T}) \ln \left(\frac{Q}{Q_{0}}\right) = -g_{2}\frac{1}{2}b_{T}^{2} \ln \left(\frac{Q}{Q_{0}}\right)$ (Landry, Brock, Nadolsky, Yuan, (2003))

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Too Rapid!

(Sun,Yuan (2013))

- Importance of non-perturbative (*Type II*) TM dependence?
 - Contribution should vanish at Q = Infinity (Parisi, Petronzio (1979))

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Too Rapid!

(Sun,Yuan (2013))

• Importance of non-perturbative (*Type II*) TM dependence?

 Contribution should vanish at Q = Infinity (Parisi, Petronzio (1979))

- Collins, Soper, Sterman (1985): non-perturbative k_T -dependence becomes negligible at approximately Q ≈ 10⁸ GeV.

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Too Rapid!

(Sun,Yuan (2013))

• Importance of non-perturbative (*Type II*) TM dependence?

 Contribution should vanish at Q = Infinity (Parisi, Petronzio (1979))

- Collins, Soper, Sterman (1985): non-perturbative k_T -dependence becomes negligible at approximately Q ≈ 10⁸ GeV.
- Global fits find small but important important non-perturbative evolution of k_T -dependence at Q \approx 90 GeV. (Recent: (Guzzi, Nadolksy, Wang (2013))

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Too Rapid!

(Sun,Yuan (2013))

• Importance of non-perturbative (*Type II*) TM dependence?

 Contribution should vanish at Q = Infinity (Parisi, Petronzio (1979))

- Collins, Soper, Sterman (1985): non-perturbative k_T -dependence becomes negligible at approximately Q ≈ 10⁸ GeV.
- Global fits find small but important important non-perturbative evolution of k_{T} -dependence at Q ≈ 90 GeV. (*Recent: (Guzzi, Nadolksy, Wang (2013)*)
- Only perturbative evolution down to Q ≈ 1 GeV ??
 (Sun,Yuan (2013)) (Echevarria, Idilbi, Schafer, Scimemi (2012))

• Lattice

 $g_K(b_T; b_{\max})$

- Renormalons / Power corrections
 - Korchemsky, Sterman (1995), Tafat (2001) $g_2 \approx 0.16~{
 m GeV}^2$
 - Laenen, Sterman, Vogelsang (2000,2001)

TMD-Evolution

• Recall Collinear / DGLAP:

$$\frac{d}{d\ln\mu}f_{j/P}(x;\mu) = 2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)$$

(Collins Extension: (2011), Chapts. 10,13,14) 80

Recent: arXiv:1401.2654 C. Aidala, B. Field, and L. Gamberg, TCR

From COMPASS, C. Adolph et al., arXiv:1305.7317

Recent: arXiv:1401.2654 C. Aidala, B. Field, and L. Gamberg, TCR

• Largest "apples-to-apples" evolution (in b_{τ} -space):

Recall: One TMD PDF $-g_{PDF,f}(x,b_T) \equiv -g_{f/P}(x,b_T) + \ln\left(\tilde{F}_{f/P}(x,b_*;\mu_b,\mu_b^2)\right)$ One r ching Prescription: $) \equiv \frac{\mathbf{b}_{\mathrm{T}}}{\sqrt{1 + b_{\mathrm{T}}^2/b_{\mathrm{max}}^2}}$ $\tilde{F}_{f/P}(x, \mathbf{b}_{\mathrm{T}}; Q, Q^2) =$ $\mu_b \equiv C_1 / |\mathbf{b}_*(b_T)|$ $\tilde{F}_{f/P}(x, b_*; \mu_b, \mu_b^4) \times$ $\times \exp\left\{\ln\frac{Q}{\mu_b} \not H(b_*;\mu_b) + \int_{\mu_b}^Q \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu');1) - \ln\frac{Q}{\mu'}\gamma_K(g(\mu'))\right]\right\} \times$ $\times \exp\left\{\frac{\int}{-g_{f/P}(x,b_T)-g_K(b_T)\ln\frac{Q}{Q_0}}\right\}$

Nonperturbative large b_{τ} behavior

Recall: One TMD PDF

One physical scale for evolution

 $\mu \sim \sqrt{\zeta_1} \sim \sqrt{\zeta_2} \sim Q$ $\zeta_1 \zeta_2 \sim Q^4$

Ex: Matching Prescription:

$$\mathbf{b}_{*}(\mathbf{b}_{\mathrm{T}}) \equiv \frac{\mathbf{b}_{\mathrm{T}}}{\sqrt{1 + b_{T}^{2}/b_{\mathrm{max}}^{2}}}$$
$$\mu_{b} \equiv C_{1}/|\mathbf{b}_{*}(b_{T})|$$

 $\tilde{F}_{f/P}(x, \mathbf{b}_{\mathrm{T}}; Q, Q^2) =$

$$\exp\left\{\ln\frac{Q}{\mu_{b}}\tilde{K}(b_{*};\mu_{b})+\int_{\mu_{b}}^{Q}\frac{d\mu'}{\mu'}\left[\gamma_{F}(g(\mu');1)-\ln\frac{Q}{\mu'}\gamma_{K}(g(\mu'))\right]\right\}\times\\\times\exp\left\{-g_{PDF,f}(x,b_{T})-g_{K}(b_{T})\ln\frac{Q}{Q_{0}}\right\}$$

$$\uparrow$$
Not vanishing at small b_{T}

TMD Factorization: W-term

 $\frac{d\sigma}{dP_T^2} \propto \mathcal{H}(\alpha_s(Q)) \int d^2 b_T e^{ib_T \cdot P_T} \tilde{F}_{H_1}(x, b_T; Q, Q^2) \tilde{D}_{H_2}(z, b_T; Q, Q^2) + Y_{\text{SIDIS}}$

TMD Factorization: W-term

$$\frac{d\sigma}{dP_T^2} \propto \mathcal{H}(\alpha_s(Q)) \int d^2 b_T e^{ib_T \cdot P_T} \tilde{F}_{H_1}(x, b_T; Q, Q^2) \tilde{D}_{H_2}(z, b_T; Q, Q^2) + Y_{\text{FIDIS}}$$

$$\frac{d\sigma}{dP_T^2} \propto \text{F.T.} \exp\left\{-g_{\text{PDF}}(x, b_T; b_{\text{max}}) - g_{\text{FF}}(z, b_T; b_{\text{max}}) - 2g_K(b_T; b_{\text{max}}) \ln\left(\frac{Q}{Q_0}\right) + 2\ln\left(\frac{Q}{\mu_b}\right) \tilde{K}(b_*; \mu_b) + \int_{\mu_b}^{Q} \frac{d\mu'}{\mu'} \left[\gamma_{\text{PDF}}(\alpha_s(\mu'); 1) + \gamma_{\text{FF}}(\alpha_s(\mu'); 1) - 2\ln\left(\frac{Q}{\mu'}\right) \gamma_K(\alpha_s(\mu'))\right]\right\}$$
$$g_K(b_T) \ln\left(\frac{Q}{Q_0}\right) = -g_2 \frac{1}{2} b_T^2 \ln\left(\frac{Q}{Q_0}\right)$$
$$-g_{\text{PDF}}(x, b_T; b_{\text{max}}) - g_{\text{FF}}(z, b_T; b_{\text{max}})$$

$$= -\frac{b_T^2 \langle P_T^2 \rangle_{Q_0}}{4} - 2\ln\left(\frac{Q_0}{\mu_b}\right) \tilde{K}(b_*;\mu_b) - \int_{\mu_b}^{Q_0} \frac{d\mu'}{\mu'} \left[\gamma_{\text{PDF}}(\alpha_s(\mu');1) + \gamma_{\text{FF}}(\alpha_s(\mu');1) - 2\ln\left(\frac{Q_0}{\mu'}\right) \gamma_K(\alpha_s(\mu'))\right]$$

Recent: arXiv:1401.2654 C. Aidala, B. Field, and L. Gamberg, TCR

• Gaussian $g_K(b_T)$

Recent: arXiv:1401.2654 C. Aidala, B. Field, and L. Gamberg, TCR

• Gaussian $g_K(b_T)$

$$g_K(b_T)\ln\left(\frac{Q}{Q_0}\right) = -g_2\frac{1}{2}b_T^2\ln\left(\frac{Q}{Q_0}\right)$$

Recent: arXiv:1401.2654 C. Aidala, B. Field, and L. Gamberg, TCR

 $\left| g_{K}(b_{T}) \ln \left(\frac{Q}{Q_{0}} \right) \right| = -g_{2} \frac{1}{2} b_{T}^{2} \ln \left(\frac{Q}{Q_{0}} \right)$

• Gaussian $g_K(b_T)$

To Do:

• New global fits to semi-inclusive deep inelastic scattering over wide range of large and small Q.

(Meng, Soper, Yuan (1995): CSS Factorization for SIDIS) (Nadolsky, Stump, Yuan (2000,2001): ResBos SIDIS)

• Recast in terms of Collins 2011 TMD factorization.

(with P. Nadolsky, in progress....)

- Constrain non-perturbative evolution.
 - Different non-perturbative forms.
 - Purely non-perturbative considerations.
- Fix x, z, hadron species as much as possible (or account for variations).

To Do:

- Try non-power-law form.
 - Requirements:
 - Quadratic (or power law) at small b_T

$$g_K(b_T; b_{\max}) = a_1 \left(\frac{b_T^2}{b_{\mathrm{NP}}^2}\right) + a_2 \left(\frac{b_T^4}{b_{\mathrm{NP}}^4}\right) + \cdots$$

– Constant at very large \mathbf{b}_{T}

(Schweitzer, Strikman, Weiss, (2013)) (with J. Collins, in progress....)

- $a_1/b_{\rm NP}^2 \sim 0.1 \ {\rm GeV}^2$
- $b_{\rm NP} \gtrsim 1.0 \ {\rm GeV}^2$

Example:

• Try non-power-law forms.

$$- \text{Ex:} \quad g_K(b_T; b_{\max}) = \frac{g_2(b_{\max})b_{\text{NP}}^2}{2} \ln\left(1 + \frac{b_T^2}{b_{\text{NP}}^2}\right)$$

•
$$g_2 \gtrsim 0.1 \ {
m GeV}^2$$

• $b_{
m NP} \gtrsim 1.0 \ {
m GeV}^2$

Example:

Recent: arXiv:1401.2654 C. Aidala, B. Field, and L. Gamberg, TCR

• Try non-power-law form.

Example:

• <u>Work in progress</u>: ResBos SIDIS including moderate Q

 Many types of physics unified in a single TMD formalism (*Types I,II*) (No need for pessimism)

- Many types of physics unified in a single TMD formalism (*Types I,II*) (No need for pessimism)
- Non perturbative components are important for both types.

- Many types of physics unified in a single TMD formalism (*Types I,II*) (No need for pessimism)
- Non perturbative components are important for both types.
- Moderate Q ideal for extracting details of large b_T nonperturbative (but universal) physics.
 - Caution:
 - Q too small Factorization begins to fail.
 - Y term

- Many types of physics unified in a single TMD formalism (*Types I,II*) (No need for pessimism)
- Non perturbative components are important for both types.
- Moderate Q ideal for extracting details of large b_T nonperturbative (but universal) physics.
 - Caution:

 - Y term
- Embrace "apples-to-apples" style for meaningfully extracting hadron structure.

- Many types of physics unified in a single TMD formalism (*Types I,II*) (No need for pessimism)
- Non perturbative components are important for both types.
- Moderate Q ideal for extracting details of large b_T nonperturbative (but universal) physics.
 - Caution:
 - Q too small Factorization begins to fail.
 - Y term
- Embrace "apples-to-apples" style for meaningfully extracting hadron structure.
- Embrace and exploit Strong Universality of $g_{K}(b_{T};b_{max})$.

TMD Evolution Overview

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

Thank You!

INT Workshop – February 27, 2014

Implementing Collinear Factorization

Implementing TMD-Factorization

Strategy: "Apples-to-apples"

<u>TMD</u> Functions	TMD PDF: quark in hadron $F_{f/P}(x,k_T)$	TMD PDF: antiquark in hadron $F_{ar{f}/P}(x,k_T)$	TMD Fragmentation Function	
	$\left(F_{\bar{f}/\bar{P}}(x,k_T) \right)$	$\left(F_{f/\bar{P}}(x,k_T) \right)$	$D_{h/f}(z,k_T)$	••• More TMDs

Strategy: "Apples-to-apples"

<u>TMD</u> Functions	TMD PDF: quark in hadron $F_{f/P}(x,k_T)$	TMD PDF: antiquark in hadron $F_{ar{f}/P}(x,k_T)$	TMD Fragmentation Function	
	$\left(F_{\bar{f}/\bar{P}}(x,k_T) \right)$	$\left(F_{f/\bar{P}}(x,k_T) \right)$	$D_{h/f}(z,k_T)$	••• More TMDs
				More TML

<u>Processes</u>	$pp \rightarrow \gamma^*(Z, W) + X$ $p\bar{p} \rightarrow \gamma^*(Z, W) + X$ Drell-Yan	$lp \rightarrow h + X$ SIDIS	$l^+l^- \to h_1 + h_2 + X$	More Processes, Different
				Targets

Strategy: "Apples-to-apples"

TMD PDF Definition

TMD PDF Definition

• Collinear PDFs: $f_{j/p}(\xi;\mu) = \sum_{i} \int \frac{dz}{z} Z_{ji}(z,\alpha_s(\mu)) f_{0,i/p}(\xi/z) = Z_{ji} \otimes f_{0,i/p}$

$$f_{0,i/p}(\xi) = \int \frac{dw^{-}}{(2\pi)} e^{-i\xi P^{+}w^{-}} \langle P | \bar{\psi}_{0,j}(0,w^{-},\mathbf{0}_{t}) U^{[+]}(w^{-},0) \frac{\gamma^{+}}{2} \psi_{0,j}(0,0,\mathbf{0}_{t}) | P \rangle$$

Talk Strategy

- Collinear Factorization
 - Collinear PDF, FFs
 - Scale Evolution

- TMD Factorization
 - TMD PDF, FFs
 - Scale Evolution

TMD PDF Definition

• Collinear PDFs: $f_{j/p}(\xi;\mu) = \sum_{i} \int \frac{dz}{z} Z_{ji}(z,\alpha_s(\mu)) f_{0,i/p}(\xi/z) = Z_{ji} \otimes f_{0,i/p}$

$$f_{0,i/p}(\xi) = \int \frac{dw^{-}}{(2\pi)} e^{-i\xi P^{+}w^{-}} \langle P | \bar{\psi}_{0,j}(0,w^{-},\mathbf{0}_{t}) U^{[+]}(w^{-},0) \frac{\gamma^{+}}{2} \psi_{0,j}(0,0,\mathbf{0}_{t}) | P \rangle$$

• TMD PDFs, CS Equation:

 $\tilde{F}_{f/P}^{\text{unsub.}}(x_1, \mathbf{b}_T; \mu, y_s) = \tilde{F}_{f/P}^{\text{unsub.}}(x_1, \mathbf{b}_T; \mu, -\infty) \times Z_{\text{CS}}(\mathbf{b}_T; y_s, +\infty, -\infty)$ Or $\tilde{F}_{f/P}^{\text{unsub.}}(x_1, \mathbf{b}_T; \mu, y_s) = \lim_{\text{WL Raps} \to \infty} \left(\tilde{F}_{f/P}^{\text{unsub.}}(x_1, \mathbf{b}_T; \mu) \times Z_{\text{CS}}(\mathbf{b}_T; y_s) \right)$

Independent of hadron properties