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GPD related hard exclusive processes

• Deeply virtual Compton scattering (clean probe)

γ ∗ ( )*γ

p'

e e'

η

scanned area of the surface as 

a  functions  of  lepton energy

+µ
−µep→ e′p′γ

ep→ e′p′µ+µ−

γp→ p′e−e+
factorization proof for transversal cross sections 
[Collins Freund (99)]
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• Deeply virtual meson production (flavor filter)

γ ∗
M

p'p

e e'

• etc.

x

−+→ µµ'' peep

twist-two observables:

longitudinal cross sections 

transverse target spin 
asymmetries

ep→ e′p′π
ep→ e′p′ρ
ep→ e′nπ+

ep→ e′nρ+

factorization proof for longitudinal cross sections
[Collins, Frankfurt, Strikman (96)]

[Collins Freund (99)]



GPDs embed non-perturbative physics

GPDs appear in various hard exclusive processes, 

e.g., hard electroproduction of photons (DVCS)

)(q
∗γ γ

x+ ξ x− ξ

[DM et. al  (91/94)
Radyushkin (96)
Ji (96)]

Q2 > 1GeV2

p'p
DVCS

GPD

CFF
Compton form factor

observable

hard scattering part

perturbation theory
(our conventions/microscope)

GPD

universal 
(conventional) 

higher twist

depends on 
approximation

F(ξ,Q2, t) =
∫ 1
−1dx C(x, ξ, αs(µ),Q/µ)F (x, ξ, t, µ) +O(

1
Q2 )

t = ∆2 − fix



Calculating DVCS tensor

Tµν = i

∫
d4x e

i
2 (q1+q2)·x〈p2|T {jµ(x/2)jν(−x/2)} |p1〉
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• collinear factorization approach  (calculating Feynman diagrams on partonic level) 

• operator product expansion (in terms of light-ray operators)

• expansion in leading 1/x2 singularities is easily done by projection on the 
light cone  nm ~qm +... and  nm* ~ Pm + ... or  nm =q2m and  nm* = q1m + ... q2m

with  qm =(q1m +q2m )/2  and  Pm =p1m +p2m

µν

∫
〈 2| { µ ν − } | 1〉

Tjµ(x/2)jν(−x/2) LO
=

Sµναβix
α

(x2 − iǫ)2
[
ψ(x/2)γβψ(−x/2)− ψ(−x/2)γβψ(x/2)

]

+
iǫµναβix

α

(x2 − iǫ)2
[
ψ(x/2)γβγ5ψ(−x/2) + ψ(−x/2)γβγ5ψ(x/2)

]



Tµν
LO
= −g⊥µν

∑

q

∫ 1

−1

dx

[
e2q

ξ − x− iǫ −
e2q

ξ + x− iǫ

]
q(x, ξ, t,Q2|s1, s2)

−iǫ⊥µν
∑

q

∫ 1

−1

dx

[
e2q

ξ − x− iǫ +
e2q

ξ + x− iǫ

]
q̃(x, ξ, t,Q2|s1, s2)

consequences of 1/Q truncation and restriction to leading order in pQCD

q(· · · |s1, s2) = u(p2, s2)

[
n · γH(· · ·) + inασαβ∆β

2M
E(· · ·)

]
u(p1, s1)

q̃(· · · |s1, s2) = u(p2, s2)

[
n · γγ5H̃(· · ·) + n ·∆

2M
γ5Ẽ(· · ·)

]
u(p1, s1)

GPD nomenclature
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consequences of 1/Q truncation and restriction to leading order in pQCD

• DVCS tensor structure depends on the choice of  n 
• scaling variable  x ~ xB/(2-xB) depends on the choice of n
• gauge invariance holds only to leading power accuracy
• DVCS tensor structure is not complete 

to overcome these problems one should go 

• to twist-3 accuracy, yields 4 other GPDs     (LT photon helicity flips)
• to NLO, yields 4 gluon transversity GPDs  (TT photon helicity flips)
• twist-4 accuracy  pushes ambiguity to the 1/Q4 level [Braun, Manashov 12]

but yields new parton correlation functions, however, no new structures



� twist-two DVCS coefficients at next-to-leading order

� twist-two DVMP coefficients at next-to-leading order

NLO effects are well understood generically
large-ξ: logarithmical enhancement
valence region: weak evolution implies moderate effects
small-ξ: model dependence            

� anomalous dimensions and evolution kernels at next-to-leading order

evolution effects can be called moderate, except for H/E at small- ξ [Belitsky, DM (98)
+ Freund (01)]

[Belitsky, DM (97);
Mankiewicz et. al (97);
Ji,Osborne (97/98);
Pire, Szymanowski, Wagner 
(11); DM, Pire, Szymanowski, 
Wagner 11]

Status of theory

DM, T. Lautschlager, 
K. Passek-Kumericki. 
A. Schaefer (13)

[Belitsky, DM (01);
Ivanov, Szymanowski,Krasnikov (04)]
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evolution effects can be called moderate, except for H/E at small- ξ
NLO analyses have to include NLO evolution

� gluon transversity at next-to-leading order

� next-to-next-to-leading DVCS order in a specific conformal subtraction scheme

NLO T NNLO corrections can be called moderate w.r.t. LO T NLO

� twist-three including quark-gluon-quark correlation at LO 

� partially,  twist-three sector at next-to-leading order 

? `target mass corrections’ (not understood)

� kinematical twist-four corrections  [Braun, Manashov (11)]

+ Freund (01)]

[DM (06); 
KMP-K,
Schaefer 06]

[Anikin,Teryaev, Pire (00);
Polyakov et. al (00),
Belitsky DM (00); Kivel et. al,
Weiss, Radyushkin (00)]

[Kivel, Mankiewicz (03)]

[Belitsky DM (01)]

[Belitsky, DM (00)]



Field theoretical GPD definition
GPDs are defined as matrix elements of 
renormalized light-ray operators:

For a nucleon target we have four chiral even twist-two GPDs:

DM, Robaschik, Geyer, 
Dittes, Hoŕejśi (94)

momentum fraction x , skewness

F (x, η,∆2, µ2) =

∫ ∞

−∞

dκ eiκ x n·P 〈P2|RT :φ(−κn)[(−κn), (κn)]φ(κn) : |P1〉, n2 = 0

η = n·∆
n·P

∆ = P2 − P1 P = P1 + P2 ∆2 ≡ t

For a nucleon target we have four chiral even twist-two GPDs:

shorthands:

chiral even GPDs:

chiral  odd GPDs:

& CFFs:

ψ̄iγ+ψi ⇒ iq
V

= Ū(P2, S2)γ+U(P1, S1)Hi + Ū(P2, S2)
iσ+ν∆

ν

2M
U(P1, S1)Ei

ψ̄iγ+γ5ψi ⇒ iq
A

= Ū(P2, S2)γ+γ5U(P1, S1)H̃i + Ū(P2, S2)
γ5∆+

2M
U(P1, S1)Ẽi

F = {H,E, H̃, Ẽ} F = {H, E , H̃, Ẽ}

FT = {HT , ET , H̃T , ẼT } FT = {HT , ET , H̃T , ẼT}



GPD properties (from definition)
• polynomiality arises from Lorentz covariance 

(but GPDs are not Lorentz invariant or covariant)

• symmetric in η (time reversal invariance+hermiticity)  

• satisfied within double distribution representation (GPD duality)

∫ 1

−1

dx xnF (x, η, t) = polynom of order n or n+ 1 in η

∫ 1 ∫ 1−|y|

• lowest moment: partonic form factor – related to observables

• first moment: expectation value of energy-momentum tensor  

• reduction to parton densities (PDFs)

• positivity constraints (requirement on GPD and scheme) [Pobylitsa(00,02)]

are only automatically satisfied in the LCWF overlap representation

F (x, η, t) =

∫ 1

−1

dy

∫ 1−|y|

−1+|y|

dz δ(x− y − zη) [f(y, z, t) + x∆f(y, z, t)]

q(x) = lim
∆→0

H(x, η, t), ∆q(x) = lim
∆→0

H̃(x, η, t)



GPD representations
• x-(momentum fraction) representation (mostly indirectly used)

• double distribution representation (used in models: GPV, BMK, GK,...) 

• conformal partial wave expansion, starting point  for 
smearing  [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]

Shuvaev transformation [A. Shuvaev (99), J. Noritzsch (00)]

`dual’ param. [M. Polyakov, A. Shuvaev (02); M. Polyakov (07), Semenov-Tian-Shansky ]

Mellin-Barnes representation  [DM, Schaefer (05);  Kirch, Manashov, Schäfer (05); ...]

•
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• LC-wave function overlap representation (not used in phenomenology)

F (x, η) = θ

(
η + x

1− x

)
7(1 + η)

8η2

(
x+ η

1 + η

) 3
2
[
1

2

1− x
1 + η

+ 1− x

η

]
+ {η → −η}

F (x, 0) =
35

32

(1− x)3√
x

F (ξ, ξ) =
7

4(1 + ξ)

√
1 + ξ

2ξ

1− ξ
1 + ξ

⇔ 7

4

1−X√
X

, X =
2ξ

1 + ξ

toy  GPD:



A partonic duality interpretation

dual interpretation on partonic level:

quark GPD (anti-quark x → -x):

F (x, η, t) =

θ(−η ≤ x ≤ 1)ω(x, η, t) + θ(η ≤ x ≤ 1)ω(x,−η, t)

ω (x, η, t) =
1

η

∫ x+η
1+η

0

dy (a+ bx)f(y, (x− y)/η, t)
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dual interpretation on partonic level:

central region  - η < x < η

mesonic exchange in t-channel

outer region η < x

partonic exchange in s-channel

support extension 
is unique [DM et al. 92]

ambiguous (D-term)
[DM, A. Schäfer (05)
KMP-K (07)]

p pp p

η+x
2

η−x
2

η+x
2

η−x
2



Double distribution (DD) representations
• general DD representation might be quoted as

DD can be converted into f+∆f + η z ∆f with  f,∆f symmetric in z

• if representation is fixed, DDs are obtained by Radon transform

•

F (x, η, t) =

∫ 1

0

dy

∫ 1−y

−1+y

dz δ(x− y − zη) [f(y, z, t) + x∆f(y, z, t)]

∆f(y, z, t) = 0 for signature-odd and F ∈ {H + E, H̃}

[Belitsky, 
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• alternatively one may use, e.g.,                       D-term 

• ambiguity: DDs are generalized functions, i.e., it is allowed to add
δ(n)(y) [or D-, F-, ...-terms], one might end up with double counting 

• Is D-term an integral part of a GPD or not?  (answer depends on believes)

Hq(+)(x, η, t) =

∫ 1

0

dy

∫ 1−y

−1+y

dz δ(x− y − zη)f ‘′(y, z, t) + θ(|x| ≤ |η|)sign(η)D(x/η)

with f ′ = f + w ⊗∆f and D(x) = lim
η→∞

Hq(+)(xη, η, t)

[Belitsky, 
DM et al.;
Teryaev (01)]

[Polyakov, Weiss]



Uses of DDs in phenomenology
Radyushkin`s double distribution ansatz (RDDA) is employed
(original DD + D-term for H,E + π-pole for Ĕ)

GPV (VGG code), 
BMK, GK:

in form factor modeling:
NOTE:

• GPV & BMK (I give it up 2005) α’=0, quark angular momentum mostly fixed

f(y, z, t) = Ff (t)y
−α′t qf (y)

1− y
Γ
(
3
2 + b

) (
1− z2

(1−y)2

)b

√
πΓ(1 + b)

∫ 1−x

−1+x

dz f(x, z, t) = qf (x) exp{tgf (x)}
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• GPV & BMK (I give it up 2005) α’=0, quark angular momentum mostly fixed
• VGG code now (form factor sum rule can be violated, Ju/Jd issue)   
• GK uses not  Diehl-Kroll ansatz from form factor fits; only Jsea is a free parameter

profile parameter b is fixed (integer value)
NLO PDFs are refitted with integer β, evolution is not GPD evolution

• RDDA is so rigid that it is a holographic model                [Kumericki, DM (10)]

(F(x,x,t) and F(x,0,t) allow to restore the whole GPD)

large-x & small-x
behavior  are tied: 

F (ξ, ξ, t)

F (ξ, 0, t)

ξ→1
=

2bΓ
(
3
2 + b

)
Γ(1 + b− α(t))Γ(β − b)√

πΓ(1 + b)Γ(1− α(t) + β)
(1− ξ)b
(1− ξ)β

F (ξ, ξ, t)

F (ξ, 0, t)

ξ→0
=

Γ
(
3
2 + b

)
Γ(1 + b− α(t))

Γ
(
1 + b− α(t)

2

)
Γ
(
3
2 + b−

α(t)
2

)



Conformal partial wave expansion of GPDs
� a GPD can be expanded with respect to conformal partial waves of the 

collinear conformal group SO(2,1) (similar to SO(3) expansion)

• expansion in terms of discrete conformal spin j+2 for h >1,  |x/h| ≤ 1

• conformal moments (partial wave amplitudes) are polynomials:

z=x/h j+2F (x, η, t) =

∞∑

j=0

(−1)jpj(x, η)Fj(η, t)

F (x, η) =
Γ(3/2)Γ(1 + j)

∫ 1

dx ηj+1C
3/2

(
x
)
F (x, η, t)

• conformal partial waves ensure the polynomiality condition:

�crossing symmetry allows for a more convenient representation
(technicality, e.g., Sommerfeld-Watson transform, numerous failures in the literature) 

� PWs evolve autonomously          trivial implementation of LO evolution
NLO done by perturbative expansion

Fj(x, η) =
Γ(3/2)Γ(1 + j)

2jΓ(3/2 + j)

∫

−1

dx ηj+1C
3/2
j

(
x

η

)
F (x, η, t)

pj(x, η) =
Γ(5/2 + j)

j!Γ(1/2)Γ(2 + j)

dj

dxj

∫ 1

−1

du(1− u2)j+1δ(x− uη)



Implementing constraints

• form factor and PDF constraints can be trivially implemented, e.g,
(also Lattice constraints could be treated in this way, if they are considered as reliable)

• flexible skewness dependence can be implemented, e.g., by 
SO(3) PW expansion (Wigner matrices)  [`dual’ model]

Fj(η = 0, t) = qF,jFF (t|Mj) , qF,j =

∫ 1

0

dx xjqF (x) , FF (t|Mj=0) = FF (t)

j (+1)∑
ˆ ˆ

[Polyakov (99),

Lebed, Ji (00),   
Diehl(03),...]
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Fj(t, η) =
∑

J

fJj (t) η
j (+1)−J d̂FJ (η) , d̂FJ (η = 0) = 1

Diehl(03),...]

• all PWs contribute in the small-ξ approximation of CFFs

• taking  leading PW yields the Shuvaev claim (tying GPDs  to PDFs at small- ξ)

• two PWs can be used to mimic the RDDA 

• three PWs can be used to control normalization and evolution flow at small-ξ

• to have flexibility at large-ξ one must resum,  i.e., in fitting one should replace 
Wigner matrices by some effective functions 



GPD ansatz from t-channel view
� at short distance a quark/anti-quark state 

is produced, labeled by conformal spin j+2

� they form an intermediate mesonic state 
with total angular momentum J
strength of coupling is

� mesons propagate with

� decaying into nucleon anti-nucleon pair 

fJj , J ≤ j (+1)

1
m2(J)−t ∝ 1

J−α(t)

γ∗ γ(∗)

q q̄

1

fjJ
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with given angular momentum J,
described by an impact form factor

• labeling by t-channel quantum numbers  JPC

• so-called D-term arises from 0 ++ , (f0 or σ) 2++, 4++, ...,  
has even J=j+1  (or j = -1 in DR) pole   (J (=0) has multiple meanings [KMP-K(07&08)])

• usable for large x (employing effective rotation matrices)  

P̄1 P2(1− t
M2(J) )

p

Fj(t, η) =

j (+1)∑

J

fJj
J − α(t)

1

(1− t
M2(J) )

p
ηj (+1)−J d̂FJ (η) , d̂FJ (η = 0) = 1

� (conformal) GPD moments  expanded in Wigner`s rotation matrices

[Polyakov (99), Lebed, Ji (00),   

Diehl(03),...]



Comments on skewless GPD modeling

• GK12 uses as in VGG a Regge inspired ansatz for valence quarks 

• not the ansatz as in Guidal et. al or Diehl-Kroll form factor fits
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• not the ansatz as in Guidal et. al or Diehl-Kroll form factor fits
• induces only a slight violation of form form factor sum rules
• Ju

(-) /Jd
(-) values fixed (strong Ju/Jd variations are senseless)!

• generic modeling agrees with DK13, having a different functional form

• How strongly influences the PDF parameterization the t-dependence?

• Do η- and t-dependencies factorize (as commonly assumed)? (properly not)

Gu(−)

j (t) =
2

(
1− t

M2
j

)2
Γ(1 + j − α)Γ(2− α+ β)

Γ(1− α)Γ(2 + j − α+ β)
, M2

j =
α′

1 + j − αF q
(−)

j (x, t) = qF (x)e
tB(x)



Photon leptoproduction 

measured by H1, ZEUS, HERMES, CLAS, HALL A collaborations

planed at COMPASS, JLAB@12GeV, perhaps at ? EIC, ?? LHeC

dσ

dxBjdyd|∆2|dφdϕ =
α3xBjy

16π2Q2

(
1 +

4M2x2Bj
Q2

)−1/2 ∣∣∣∣
T
e3

∣∣∣∣
2

,

e±N → e±Nγ
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| | Q Q

∣∣∣∣

∣∣∣∣

xBj =
Q2

2P1 · q1
≈ 2ξ

1 + ξ
,

y =
P1 · q1
P1 · k

,

∆2 = t (fixed, small),

Q2 = −q21 (> 1GeV2),



interference of DVCS and Bethe-Heitler processes

12 Compton form factors                              elastic form factors
(helicity amplitudes)

)(q
∗γ γ

p'p

H, E , H̃, Ẽ , · · · F1, F2

JµJµTµν
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exactly known
(LO, QED)

harmonics 
1:1

helicity ampl.

harmonics 
1:1

helicity ampl.

|TBH|2=
e6(1 + ǫ2)−2

x2Bjy
2∆2 P1(φ)P2(φ)

{
cBH0 +

2∑

n=1

cBHn cos (nφ)

}
,

|TDVCS|2 =
e6

y2Q2

{
cDVCS0 +

2∑

n=1

[
cDVCSn cos(nφ) + sDVCSn sin(nφ)

]
}
,

I =
±e6

xBjy3∆2P1(φ)P2(φ)

{
cI0 +

3∑

n=1

[
cIncos(nφ) + s

I
nsin(nφ)

]
}
.



all harmonics are given by twist-2 and -3 GPDs:                    [Diehl et. al (97)
Belitsky, DM, Kirchner (01)]{

c1
s1

}I
∝ ∆

Q tw-2(GPDs) +O(1/Q3), cI0 ∝
∆2

Q2
tw-2(GPDs) +O(1/Q4),

{
c2
s2

}I
∝ ∆2

Q2
tw-3(GPDs) +O(1/Q4),

{
c3
s3

}I
∝ ∆αs

Q (tw-2)T +O(1/Q3),

cCS0 ∝ (tw-2)
2
,

{
c1
s1

}CS
∝ ∆

Q
(tw-2) (tw-3),

{
c2
s2

}CS
∝ αs(tw-2)(tw-2)GT

e.g., n=1 odd harmonic  is approximately given by `CFF’  combination
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relations among harmonics and (helicity dependent) CFFs
are not more based on a 1/Q expansion:

[Belitsky, DM  (10) --
Belitsky, DM, Ji (12)]

new improved C coefficients ensure the cancellation of kinematical singularities

relations among CFFs and GPDs are always based on a 1/Q expansion 



DVCS world data set
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• CFF given as GPD convolution:

Can one `measure’ GPDs?

• F(x,x,t,�2) viewed as ”spectral function” (s-channel cut):

F(ξ, t,Q2)
LO
=

∫ 1

−1

dx

(
1

ξ − x− iǫ ∓
1

ξ + x− iǫ

)
F (x, η = ξ, t,Q2)

LO
= iπF±(x = ξ, η = ξ, t,Q2) + PV

∫ 1

0

dx
2x

ξ2 − x2F
±(x, η = ξ, t,Q2)

1
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• CFFs satisfy `dispersion relations’
(not the physical ones, threshold ξ0 set to 1)

[Frankfurt et al (97)
Chen (97)
Terayev (05) 
KMP-K (07)
Diehl, Ivanov (07)]

[Terayev (05)]

access to the GPD on the cross-over line h = x  (at LO )

access to the subtraction constant  (for H,E related to `D-term’)

F±(x, x, t, Q2) ≡ F (x, x, t, Q2)∓ F (−x, x, t, Q2) LO= 1

π
ℑmF(ξ = x, t, Q2)

ℜeF(ξ, t,Q2) =
1

π
PV

∫ 1

0

dξ′
(

1

ξ − ξ′ ∓
1

ξ + ξ′

)
ℑmF(ξ′, t, Q2) + C(t, Q2)



Strategies to analyze DVCS data
(ad hoc) modeling:  VGG code   [Goeke et. al (01) based on Radyushkin’s DDA]

BMK model [Belitsky, DM , Kirchner (01) based on RDDA]
`aligned jet’ model [Freund, McDermott, Strikman (02)]
Goloskokov/Kroll (05) based on RDDA (pinned down by DVMP)

`dual’ model [Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07]
“  -- “     [KMP-K (07) in MBs-representation]

polynomials [Belitsky et al. (98), Liuti et. al (07), Moutarde (09)]

dynamical models: not applied [Radyushkin et.al (02); Tiburzi et.al (04); Hwang DM (07)]…

(respecting Lorentz symmetry)
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flexible models: any representation by including unconstrained degrees of freedom
(for fits)                    KMP-K (07/08) for H1/ZEUS in MBs-integral-representation

CFFs (real and imaginary parts) and GPD fits/predictions

i. CFF extraction  with   formulae (local)  [BMK (01), HALL-A (06)] and [KK,DM, Murray]

least square fits (local)  [Guidal, Moutarde (08...)]

neural networks – a start up [KMS (11)]

ii. `dispersion integral’  fits    [KMP-K (08),KM (08...)]

iii. flexible GPD modeling      [KM (08...)]

vi. model comparisons VGG code, however also BMK01 (up to 2005)

& predictions          Goloskokov/Kroll (07) model based on RDDA 



Asking for CFFs (physics case)
� CFFs are defined for the whole kinematical region      [Belitsky, DM, Ji (12)]

� contain (generalized)  polarizabilities
� their access requires a complete measurement  

toy example DVCS off a scalar target [KK, DM, Murray  (13)]

� for the first step we use s-channel helicity conservation hypothesis 
(neglecting twist-three and transversity associated CFFs)

• linearized set of equations (approximately valid) 
sin(1φ) −1 Im cos(1φ) −1 Re
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• normalization N is bilinear in CFFs

A
sin(1φ)
LU,I ≈ Nc−1

Im
HIm and A

cos(1φ)
C ≈ Nc−1

Re
HRe

0 � N(A) ≈ 1

1 + k
4
|H|2

≈
∫ π
−π
dφP1(φ)P2(φ)dσBH(φ)∫ π

−π
dφP1(φ)P2(φ) [dσBH(φ) + dσDVCS(φ)]

� 1

• cubic equation for N with two non-trivial solutions

• standard error propagation
NOTE: there is no need to linearize,  we do mapping numerically

N(A) ≈ 1

2

(
1±

√
1− k c2

Im

(
A
sin(1φ)
LU,I

)2
− k c2

Re

(
A
cos(1φ)
C

)2
)

+ BH regime
- DVCS regime



� a complete measurement allows in principle to pin down all CFFs

� missing information in incomplete measurements can be filled with noise
(Guidal`s philosophy: use noise together with hypotheses and model constraints, 
our results are compatible)

KK, DM, Murray (13)

24� larger statistics: 
some CFF E  constraint  might have been obtained  by HERMES



A simple valence quarks GPD model

• model of GPD H(x,x,t) within DD motivated ansatz at Q2=2 GeV2

fixed: PDF normalization eff. Reage pole large t-counting rules

free parameters: r-ratio at small x                             large x-behavior       p-pole mass

H(x, x, t) =
n r 2α

1 + x

(
2x

1 + x

)−α(t) (
1− x
1 + x

)b
1(

1− 1−x
1+x

t
M2

)p .
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free parameters: r-ratio at small x                             large x-behavior       p-pole mass

• unpolarized valence quarks :  asking for  r, b, M  parameters

• flexible parameterization of subtraction constant
(so-called D-term convoluted with hard amplitude)

• analogous ansatz for porlarized quark GPD  + pion-pole contribution

• no E(x,x,t) nor Ê(x,x,t) is set up

• KM...> 2010 hybrid models  GPD evolution for  sea /gluon  + DR for valence

D(t) = −C
(1−t/M2

c )
2

n = 1.0, α(t) = 0.43 + 0.85t/GeV2, p = 1



KM10 fits to DVCS off unpolarized proton
• a hybrid model: three effective SO(3) PWs  for  sea quarks/gluons

dispersion relations for valence
still E GPD is neglected  (only D-term)
still Ê GPD only flexible pion pole contribution

• asking for GPD H and `D-term’  (Ĥ is considered as effective d.o.f.)

leading order,  including evolution for sea quarks/ gluons
quark twist-two dominance hypothesis within CFF convention [BM10]

• data selection (taking moments of  azimuthal angle harmonics)
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• data selection (taking moments of  azimuthal angle harmonics)

KM10a:  neglecting HALL-A data
KM10b:  forming ratios of moments
KM10:    original  HALL-A data
neglecting large –t  BSA  CLAS data 

15 parameter fit, e.g., 
including all HALL-A data 

175 data points 
χ 2/d.o.f.  =132/165

• results are given as xs.exe on http://calculon.phy.hr/gpd/ 



HALL A  φ-dependence 
• φ-dependence  is described (if we fit to it)
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• KMM12 (KM10 type model)  includes polarized target DVCS data
(global fit to most of data , χ2/d.o.f º 1.6 - best what is there at present
e.g., transverse polarized HERMES asymmetries looks as) 
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recoil detector     HERMES data

missing mass  technique
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• recoil  detector data are compatible with missing mass technique ones
• fit procedure:  curves were data are scattered around
• recoil data: RDDA is not so much disfavored as it was before the case



How to understand Hall A data?

[Braun, Manashov,

Pirnay, DM (14)]

GK12 model 
evaluated with 
KM and BMP 
prescription

including 
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� standard models can not explain HALL A data
� wrong understanding on CFF hierarchy? – inclusion of higher-twist?
� exclusivity issue in all other fixed target data? 
� Is (QED) correction procedure understood?
� naive understanding of `power corrections’  [VGG (99)] is misleading

including 
kinematical 
corrections



• HERMES(02-12) 12x34 asymmetries (+few bins)  0.05 ≤ <xB> ≤ 0.2,    <|t|> ≤ 0.6 GeV2

[sin(φ), ..., cos(3 φ),                                                 <�2> ≈ 2.5 GeV2

two kinds of electrons, all polarization options]

• HERMES(12)   ALU with recoil detector
(compatible with old data, differences in GPD interpretation)

• CLAS(07) 12x12  [ALU(φ)]                             0.14 ≤ <xB> ≤ 0.35,  <|t|> ≤ 0.3 GeV2

40x12 [ALU(φ)] (large |t| or bad sta.) <�2> ≈ 1.8 GeV2

(06,08) AUL and ALU

• HALL A(06)      12x24 [∆σ(φ)] <xB> =0.36,  <|t|> ≤ 0.33 GeV2

�

Fixed target DVCS data

31

• HALL A(06)      12x24 [∆σ(φ)] <xB> =0.36,  <|t|> ≤ 0.33 GeV
3x24 [σ(φ)] <�2> ≈ 1.8 GeV2



KM... versus CFF fits & large-x “model” fit

! large χ2

small errors
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GUIDAL twist-two dominance hypothesis
7 parameter fit to all harmonics of unpolarized cross section 
propagated errors + “theoretical“ error estimate

GUIDAL same + longitudinal TSA 

Moutarde H dominance hypothesis within  a smeared polynomial expansion
propagated errors + “theoretical“ error estimate 

NN                neural network within H dominance hypothesis
green (blue) [red] curves (KM10...) without (with)  HALL A data (ratios)

GK08              black curve GPDs (based on RDDA) obtained from handbag approach to DVMP

• reasonable agreement  for HERMES and CLAS kinematics
• large x-region  and real  part remains unsettled   



DIS+DVCS+DVMP phenomenology at small-xB (H1,ZEUS)
works somehow without DIS at LO                          [T. Lautenschlager, DM, A. Schäfer (13)]

works at NLO  (Q2 > 4 GeV2),  done with Bayes theorem (probability distribution function)  
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fixed:

meson DA
flavor content

errors might 
be perhaps
larger

entirely model 
dependency
for x> 10-2
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• going from LO to NLO increases the skewness ratios  (known since `ever’, [KMP-K(07)])

• gluons are more centralized as sea quarks (expected from  DVCS & J/ψ interpretation)

• cross-talk of skewness and t-dependency has been addressed by pdf

• NLO GPDs look rather compatible to Goloskokov/Kroll and Martin et. al finding

• there is also DVCS beam charge and perhaps beam spin data are coming up



GPD phenomenology lessons: first decade
• qualitatively GPD formalism works in DVCS (from the start up)

• first look: no serious problems in DVMP (apart from ? about very large xB data)
also supported by hand-bag model description of Goloskokov/Kroll

• description of present DVCS data is reached/feasible with flexible models
for unpolarized target– but GPD understanding induces tension among data
large unidentified contribution called Ĥ is disfavored by polarized target data

• many uncertainties: exclusivity, correction procedure, assumptions

• HERMES gave proof of principle that on can go for a complete measurement
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• HERMES gave proof of principle that on can go for a complete measurement

partonic interpretation:

• RDDA (GVP01,BMK01, VGG code in its many versions, GK07, ...) 
a bit disfavored  at LO can not reach a  χ2/dof ~ 1...1.6  (its like χ2/nop ~5...10)
should work at NLO  [Freund, McDermott (02)]

• GPD H is dominant (? 15% accuracy), tomography at small-xB
• GPD Ĥ is constrained
• no access to GPD E from present data,  pion pole model for Ê is disfavored
• D-term related subtraction constant comes out negative (& sizable)

Goke et. al model prediction (perhaps fit result might be not stable)
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The Future 
� COMPASS II
� JLAB@12 GeV
? ENC@GSI

? LHeC@CERN
? EIC@BNL or EIC@JLAB      Aschenauer, Firzo

KK, DM (13)

from stage II
20¥250 GeV2

simulations
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simulations



GPDs
effective

hard excl.
processes

exclusive 
processes 

FFs lattice QCD

spin cont.
imaging 

elastic
processes

Prospect: quantifying partonic content
looks doable 
[Hwang, DM 
(07,11,12,??)]
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effective
LCWFs

uPDFs

processes 
@ large t

PDFs

dynamical
models

inclusive
processes

semi-inclusive
processes

partonic
phase space

functions

TMDs



Summary
GPDs are intricate and (thus) a promising tool 

� to reveal the transverse distribution of partons (to some extend done at small xB)

� to address the spin content of the nucleon (not possible at present in pheno.)

� providing a bridge to LCWFs  & non-perturbative methods (e.g., lattice)

� modeling in terms of effective LCWFs is doable (require efforts)

first decade of hard exclusive leptoproduction measurements

• CFFs have their own interest, bridging low and high virtuality regimes
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• CFFs have their own interest, bridging low and high virtuality regimes

• should be straightforward to improve global (flexible) model fits to DVCS

• DVCS and DVMP data are describable  in global fits at small x

• moving on: to NLO, kinematical twist, full GPD models, DVCS+DVMP+...

• covering the kinematical region between HERA (COMPASS) experiments 
within a high luminosity machine and dedicated detectors is needed to 
quantify exclusive and inclusive QCD phenomena:  handle on GPD E & 3D

need :
tools/technology for global  NLO QCD fits (inclusive + exclusive)
theory development  (desired but not urgent needed for phenomenology)



back ups
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Impact of  EIC data  to extract GPD H
two simulations from S. Fazio  for DVCS cross section ~ 650 data points
-t <  ~0.8 GeV2 for ~ 10/fb
1 GeV2 < –t  < 2 GeV2  for ~ 100/fb (cut: –t < 1.5 GeV2 , 4 GeV2 < Q2 to ensure –t < Q2)  

pseudo data are re-generated with GeParD
statistical errors  rescaled 
5% systematical  errors added in quadrature, 3% Bethe-Heitler uncertainty

42



q(x,<b, µ2) =
1

4π

∫ ∞

0

d|t| J0(|<b|
√
|t|)H(x, η = 0, t, µ2)

Imaging (probabilistic interpretation)

skewness effect vanishes (s2 , s4 → 0)  
• reduce fit uncertainties 
• increase  model uncertainties  

extrapolation errors for  -t → 0
(large b uncertainties – small effect)

extrapolation errors into  -t > 1.5 GeV2

(small b uncertainties)
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FT

(small b uncertainties)



20x250  2x5/fb mock data 
(~1200 data points with statistical errors
+ 5% systematics at cross section level)

flexible GPD model for Esea and EG

normalization (and t-dependency) of Esea

is reasonable constraint

EG is essentially unconstraint

Single transverse target spin asymmetry
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Modeling & Evolution
outer region governs the evolution at the cross-over trajectory

GPD at h = x is `measurable’ (LO)

µ2 d
dµ2F (x, x, t, µ

2) =
∫ 1
x
dy
x V (1, x/y, αs(µ))F (y, x, µ

2)

45

net contribution of 
outer + central region is
governed by a sum rule:

x

h

PV

∫ 1

0

dx
2x

η2 − x2F
+(x, η, t)

= PV

∫ 1

0

dx
2x

η2 − x2F
+(x, x, t) + C(t)



HALL A  φ-dependence 
• φ-dependence  is described (if we fit to it)
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• KMM12 (KM10 type model)  includes polarized target DVCS data
(global fit to most of data , χ2/d.o.f º 1.6 - best what is there at present
e.g., transverse polarized HERMES asymmetries looks as) 
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Neural Networks
• kinematical values are represented 

by the input layer

• propagated trough the network, where  
weights are set randomly

• random values for Im� and Re�

• calculation of χ2

• backwards propagation (PyBrain)

• adjusting weights so that error 

[KK,DM,Schäfer(11)]
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• adjusting weights so that error 
decreases

• repeat procedure

• taking next kinematical point  

Monte Carlo procedure to propagate errors, 
i.e., generating a replica data set

avoiding over fitting (fitting to noise), 
dividing data set, taking a control example
if error increases after decreasing – one stops



A first use of neural network fits
(ideal) tool for error propagation and quantifying model uncertainties

used to access real and imaginary part of � CFF from HERMES

results are compatible to model, CFF fits, and mapping

HERMES data
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Model prediction versus unbiased error propagation
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• model fits and neural networks are complimentary 
• meaning of error bands should be properly understood
• error propagation is practically an art (full information is not given)



What is used for the (D)VCS tensor? 
(helicity amplitudes)

Tµν = i

∫
d4x e

i
2 (q1+q2)·x〈p2|T {jµ(x/2)jν(−x/2)} |p1〉

〈p2, s2|jρ(0)|p1, s1〉 = u(p2, s2)

[
γρ F1(t) + iσρσ

∆σ

2M
F2(t)

]
u(p1, s1)

A simple electromagnetic form factor parametrization is accepted: 

What about (DV)CS-tensor parmetrizations?
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Prange (1958)  [real CS, over-counting amplitudes, Dirac-spinors]

Hearn, Leader (1962)  [VCS, Pauli-spinor representation]

Tarrach (1975) [VVCS, kinematical constraints are removed]

DVCS (calculated in terms of GPDs since 1992, various similar parametrizations )

VCS Kroll et al. (1995) in terms of helicity amplitudes  [diquark model for nucleon]

VCS Drechsel et al. (1998)  [VCS, generalized polarizabilieties]

etc.

unique parametrization for the (D)VCS tensor is desired

Tµν = i

∫
d x e · 〈p2|T {jµ(x/2)jν(−x/2)} |p1〉



Tarrach
(1975) 

? minimal
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DVCS  tensor parametrizations arise from approximate calculations 

• xµ ∂ nµ + ... different choices for light-like vector n ∂ q + a p1 + b p2,  
(constructed from in- and out-particle momenta) 

Requirements on the parametrization of DVCS tensor 

• Lorentz-covariance + gauge invariance + implementing discrete symmetries

• scalar amplitudes (6 for RCS, 12 for (D)VCS, 18 for general parametrization
without  kinematical constraints

• simplicity (including simple relation to what is already used)
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(constructed from in- and out-particle momenta) 

• various results differ at twist-2, twist-3, (twist-4)  by the order O(1/Q), O(1/Q2), O(1/Q3) 

• DVCS/GPD results are not exact and suffer from breaking of gauge+Lorentz symmetries

• to relate GPDs to observables a convention is needed (if one likes to compare results)

embed GPD findings in a general DVCS tensor parametrization

• this does not solve the ambiguity problem in GPD calculations (see Volodya`s talk)

• provides the basis to discuss the physics case of (D)VCS measurements

[Belitsky, DM,
Kirchner (01)]



Tµν = −g̃µν
q · VT
p · q + iε̃µν

q ·AT
p · q +

(
q2µ −

q22
p · q pµ

)(
q1 ν −

q21
p · q pν

)
q · VL
p · q

+

(
q1 ν −

q21
p · q pν

)(
gµρ −

pµ q2 ρ
p · q

)[
V ρ
LT

p · q +
iǫρqpσ
p · q

AσLT
p · q

]

+

(
q − q22 p

)(
g − pν q1 ρ

)[
V ρ
TL +

iǫρqpσ A
σ
TL

]

parameterization
of (DV)CS  helicity
amplitudes

T VCSab (φ) = (−1)a−1εµ∗2 (b)Tµνε
ν
1(a)

T VCSab = V(Fab)− bA(Fab) for a ∈ {0,+,−}, b ∈ {+,−}

V(Fab) = ū2

(
"mHab + iσαβ

mα∆β

2M
Eab
)
u1

A(Fab) = ū2

(
"mγ5 H̃ab + γ5

m ·∆
2M

Ẽab
)
u1 , mµ =

qµ1 + qµ2
(p1 + p2).(q1 + q2)

(one) parameterization
of (DV)CS tensor

equivalent to Tarrach’s one

[Belitsky, DM, Kirchner (01) -- BM Ji (12)]
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+

(
q2µ −

q2
p · q pµ

)(
gνρ −

pν q1 ρ
p · q

)[
VTL
p · q +

iǫ qpσ

p · q
ATL
p · q

]

+

(
g ρ
µ − pµ q

ρ
2

p · q

)(
g σ
ν − pν q

σ
1

p · q

)[
∆ρ∆σ + ∆̃⊥

ρ ∆̃
⊥
σ

2M2

q · VTT
p · q +

∆ρ∆̃
⊥
σ + ∆̃⊥

ρ ∆σ

2M2

q ·ATT
p · q

]

F+b =

[
1 + b

√
1 + ǫ2

2
√
1 + ǫ2

+
(1− xB)x2B(4M2 − t)

(
1 + t

Q2

)

Q2
√
1 + ǫ2

(
2− xB + xBt

Q2

)2

]
FT

+
1− b

√
1 + ǫ2

2
√
1 + ǫ2

K̃2

M2
(
2− xB + xBt

Q2

)2FTT +
2xBK̃

2

Q2
√
1 + ǫ2

(
2− xB + xBt

Q2

)2FLT

F0+ =

√
2 K̃√

1 + ǫ2Q
(
2− xB + xBt

Q2

)
{[

1 +
2x2B

(
4M2 − t

)

Q2
(
2− xB + xBt

Q2

)
]
FLT

+xB

[
1 +

2xB(4M
2 − t)

Q2
(
2− xB + xBt

Q2

)
]
FT + xB

[
2− 4M2 − t

M2
(
2− xB + xBt

Q2

)
]
FTT

}

relations of  CFFs to helicity dependent CFFs are easily calculated:

usable for 
DVCS - RCS,
extendable to 
timelike (D)VCS, 
double(D)VCS or DIS

this will not be our last suggestion



What is used to connect GPDs to DVCS? 
Vanderhaeghen Guidal Guichon (VGG) code 

• numerical squaring, well defined wrt. convention (includes twist-three, no transversity)

• implemented GPD model is often called VGG – it is GPV

• model is often not specified if confronted with data 

Guchion (Vanderhaeghen) code used by Moutarde & Sabatie

• unpublished, I am not able to figure out what goes into the code (users can not tell me)

• users claims: the code is `exact’  and uniquely separates leptonic and hadronic parts,
which is simply wrong

[Goeke, Polyakov, 
Vanderhaeghen (01), 
based on Radyushkin ansatz]
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which is simply wrong

BM(K)J versions 

• analytic squaring with (BMK) and without  (BMJ) approximtaion

• approximate versions went into `private codes’  and Monte Carlos 
(Freund & McDermott (MILOU),  Guzey&Teckentrup, HERMES, JLAB, COMPASS)

• we (KM) use (apart from transverse target) BM11 contained in BMJ12 
(will be upgraded to 12 CFFs, needed for kinematical twist-4 corrections)

� numerical comparison  on precision level is only possible  with VGG

� practically, results agree often very well since we use similar light-like vector n
this has not to be the case, see Volodya`s talk



Summing up conformal PWs
• GPD support is a consequence of Poincaré covariance (polynomiality)

• conformal moments evolve autonomous  (to LO and beyond in a special scheme) 

Hj(η, t, µ
2) =

∫ 1

−1

dx cj(x, η)H(x, η, t, µ2) , cj(x, η) = ηjC
3/2
j (x/η)

µ
d

dµ
Hj(η, t, µ

2) = −αs(µ)
2π

γ
(0)
j Hj(η, t, µ

2)
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• inverse relation is given as series of (mathematical) generalized distributions:

• various ways of resummation were proposed:

• smearing method [Radyushkin (97); Geyer, Belitsky, DM., Niedermeier, Schäfer (97/99)]
• mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]
• dual parameterization [M. Polyakov, A. Shuvaev (02), Polyakov (07), Semenov-Tian-Shansky ]
• based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]
• Mellin-Barnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

H(x, η, t) =

∞∑

j=0

(−1)jpj(x, η)Hj(η, t) , pj(x, η) ∝ θ(|x| ≤ η)
η2 − x2
ηj+3

C
3/2
j (−x/η)



Sommerfeld-Watson transform

� rewrite sum as an integral around the real axis:

� find appropriate analytic continuation of pj and Fj
(Carlson’s theorem)

F (x, η,∆2) =
1

2i

∮ (∞)

(0)

dj
1

sin(πj)
pj(x, η) Fj(η,∆

2)

pj(x, η) = θ(η − |x|)η−j−1Pj
(
x

η

)
+ θ(x− η)η−j−1Qj

(
x

η

)

2j+1Γ(5/2 + j)
(−j − 1, j + 2 ∣∣1 + x

)

� change integration path so that singularities remain on the l.h.s.

Pj(x) =
2j+1Γ(5/2 + j)

Γ(1/2)Γ(1 + j)
(1 + x) 2F 1

(−j − 1, j + 2

2

∣∣∣
1 + x

2

)

Qj(x) = − sin(πj)

π
x−j−1 2F 1

(
(j + 1)/2, (j + 2)/2

5/2 + j

∣∣∣
1

x2

)

F (x, η,∆2) =
i

2

∫ c+i∞

c−i∞

dj
1

sin(πj)
pj(x, η)Fj(η,∆

2)

� NOTE: continuation of GPD conformal moments has not worked out numerically
RDDA with integer b, β, like GK model, can be transformed in Mellin space 


