
Flavor and spin dependence 
of transverse densities  

• Personal view of subject based on my 
recent papers

• Transverse charge densities, Ann.Rev.Nucl.Part.Sci. 60 
(2010) 

• Flavor separation
• Transverse magnetization densiy
• Spin dependent density
• Lattice calculation  shows proton is not round
• Experiment  (TMD): TMD is momentum-

space probability- sdd given by pretzelocity1

Gerald A. Miller, UW
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∑

q
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ρ∞(x−,b) = 〈p+,R = 0, λ|
∑

q

eqq
†
+(x−, b)q+(x−, b)|p+,R = 0, λ〉

ρ(b) ≡
∫

dx−ρ∞(x−,b) =
∫

QdQ

2π
F1(Q2)J0(Qb)

F1 = 〈p+,p′, λ|J+(0)|p+,p, λ〉

Model independent transverse charge density
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Charge Density 
operator IMF



Transverse charge densities from 
parameterizations (Alberico)
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Nucleon ρ(b). (a) Proton transverse charge density. (b) Neutron transverse charge density. These densities
are obtained by using the parameterization of Reference 91.

by a nonzero value of Q2, no matter how small, because the momentum difference between the
initial and final states appears via the use of derivatives of momentum-conserving delta functions
in the moments computed in Reference 85. Any attempt to analytically incorporate relativistic
corrections in a p 2/m2

q type of expansion would be doomed by the presence of the quark mass mq

to be model dependent. This feature is explained more thoroughly in References 6 and 86.
We exploit Equation 31 by using measured form factors to determine ρ(b). Recent parameter-

izations (87–91) of G E and G M are very useful, so we use Equation 43 to obtain F1 in terms of G E ,
G M . Then ρ(b) can be expressed as a simple integral of known functions,

ρ(b) =
∫ ∞

0

d Q Q
2π

J0( Q b)
G E ( Q 2) + τ G M ( Q 2)

1 + τ
, 44.

where τ = Q 2

4 M 2 and J0 is a cylindrical Bessel function.
A straightforward application of Equation 44 to the proton using the parameterizations of

Reference 91 yields the results shown in F igu r e 4a. The curves obtained by using the two different
parameterizations overlap. Furthermore, there seems to be negligible sensitivity to form factors
at very high values of Q2 that are currently unmeasured. The density is peaked at low values of b
but contains has a long positive tail, suggesting a long-ranged, positively charged pion cloud.

The neutron results are shown in F igu r e 4b. The curves obtained by using the two different
parameterizations seem to overlap. Surprisingly, the central neutron charge density is negative.
The values of the integral of Equation 44 are somewhat sensitive to the regime 8 < Q2 < 16 GeV2,
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Flavor separation
• Charge symmetry (u in proton is d in neutron)

• Neglect         pairs 
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FIG. 2: Upper panel: F1. Lower panel: bρ(b) in transverse position space. The solid curves are
obtained using [17] and the dashed curves with [16].

FIG. 3: Transverse densities for up u and down d quarks. Each is normalized to unity

symmetry (invariance under a rotation by π about the z (charge) axis in isospin space) [21]
so that the u, d densities in the proton are the same as the d, u densities in the neutron. We
also neglect the effects of ss̄ [22] or heavier pairs of quarks. In this case ρu(b) = ρp(b) +
ρn(b)/2, ρd(b) = ρp(b) + 2ρn(b). The results, shown in Fig. 3, and obtained with either form
factor parameterization are that the central up quark density is significantly larger than the
central down quark density. The latter becomes larger at distances away from the center.

Model independent information about parton distributions has been obtained. In particular,
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ss̄

/2

F p =
2
3
Fu − 1

3
F d, Fu = 〈p|ūγu|p〉, etc.

Fn =
2
3
F d − 1

3
Fu

Form factors are more interesting Next three slides from G Cates
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The flavor separated form factors for 

the up and down quarks have very 

different Q2 behavior above 1 GeV2

In the QCD DSE approach, it is the diquark that causes 

such a different behavior for the u and d quarks.
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Cates, de Jager, Riordan 

and Wojtsekhowski, PRL 

vol. 106, pg 252003 (2011)

Fd seems to scale  
roughly like 1/Q4 

Fu seems to 
scale more like 
1/Q2 (if at all).

What is the significance of these different behaviors?

17Friday, November 1, 2013

Cates slide



6

Jerry Miller’s suggestion explaining the 

different scaling by using diquarks
u-quark scattering amplitude 

is dominated by scattering 

from the lone “outside” quark.

Two constituents implies 1/Q2

While at present this idea is at the conceptual stage, it is an 

intriguingly simple interpretation for the very different behaviors.
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d-quark scattering amplitude is 

necessarily probing inside the 

diquark.  Two gluons  need to be 

exchanged (or the diquark would 

fall apart), so scaling goes like

1/Q4

Cates slide
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In the QCD DSE approach, it is the diquark that causes 
such a different behavior for the u and d quarks.

Relativistic Constituent Quark Models (RCQMs) 
that emphasize diquark features fit the data well

It appears that it is important to include 
terms related to diquarks in RCQMs in 
order to fit the behavior of the flavor 

decomposed form factors.
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Light-front cloudy bag model Jerry 
Miller (PRC  v66, pg032201, 2002).

Updated RCQM model emphasizing quark-
diquark structure: Ian Cloët and Jerry Miller

The QCD DSE model of Cloët, 
Roberts et al. in which the 
constituent quark mass is 

dynamically generated and diquark 
degrees of freedom are 

incorporated.
(Few Body Systems v46, pg1 2009)
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Validity of flavor separation        

8

ss̄

Parity-violating Electron Scattering... 29

Figure 9: The world data constraints on (Gs
E , G

s
M ) at Q2 = 0.1(GeV/c)2 . The

form factors of Kelly are used. Different bands in the plot represent SAMPLE-H
(45) (solid red), SAMPLE-D (48) (dashed red), HAPPEx-H-a (26) (dashed blue),
HAPPEx-H-b (28) (solid blue), HAPPEx-He-a (27) (dashed pink), HAPPEx-He-
b (28) (solid pink), PVA4-H-b (53) (solid green), and the lowest three Q2 bins
in G0 forward angle (25) (solid black). The yellow and gray blue (dark) ellipses
represent 68.27% (∆χ2 = 2.3) and 95% (∆χ2 = 5.99) confidence contours around
the point of maximum likelihood at (Gs

E = 0.006, Gs
M = 0.33). The black cross

represents Gs
E = Gs

M = 0.

Ann.Rev.Nucl.Part.Sci. 62 (2012) 337-3Armstrong and McKeown

This is not zero

Q2 = 0.1 GeV 2



Validity of flavor separation CSB

9

        

CSB << ss̄

12

FIG. 4: (Color online) The CSB form factors including uncertainty estimates for resonance parame-
ters and for contributions beyond LO. The darker puple regions include only resonance uncertainty
and are identical to the blue regions in Fig. 3. The lighter blue regions additionally include an
estimate of higher order term uncertainty. This estimate is found by considering GCSB ±|∆GCSB|,
where ∆GCSB is the difference between the CSB form factors with and without phenomenological
vertex form factors. This estimate of higher order uncertainty adds significant uncertainty to GCSB

M

but negligible uncertainty to GCSB
E .

scattering experiments. Including both empirical uncertainties in resonance parameters and
higher order term uncertainties quantified by the magnitude of form factor contributions,
our LO predictions are GCSB

M (0) = 0.021 ± 0.01 ± 0.008 and |GCSB
E | < 0.005 for Q2 < 0.3

GeV2. Comparing these results with current experimental bounds on strange form factors
Gs

M = 0.33± 0.4, Gs
E = 0.006± 0.02 at Q2 = 0.1 GeV2 [1], we see that our CSB predictions

are an order of magnitude smaller than current experimental error bars.
Kubis & Lewis calculated GCSB

M to NLO and GCSB
E to LO in HBχPT with resonance

saturation and predict that with resonance parameter uncertainties GCSB
M (0) = 0.025 ±

0.02 and |GCSB
E | < 0.01 for Q2 < 0.03 GeV2 [9]. The much larger resonance parameter

uncertainty in these results arises from using a large ω-nucleon coupling constant gω ∼ 42
taken from dispersion analysis. With Kubis & Lewis’s other parameter choices, experimental
measurements of the 3He-3H binding energy difference constrain gω ! 19 ± 5 when ρ − ω
mixing is treated as a resonance contribution to HBχPT contact operators. Taking gω = 19,
the HBχPT results of Kubis & Lewis become GCSB

M (0) = 0.031±0.01 at NLO and |GCSB
E | <

0.005 at LO for Q2 < 0.03 GeV2. This is once again an order of magnitude smaller than
current experimental uncertainties on nucleon strangeness.

Our results demonstrate good agreement between LO loop contributions in RBχPT and
HBχPT. The RBχPT loop contribution of 0.014 to GCSB

M (0) agrees with the LO HBχPT
loop contribution to better than 95%. The RBχPT loop contribution to ρCSB

M is smaller
than the LO HBχPT loop contribution but larger than the loop contribution at NLO. The
two frameworks therefore manifestly agree on ρCSB

M up to higher order corrections. The
RBχPT loop contribution to ρCSB

E is also smaller than the LO HBχPT loop contribution,
but ρCSB

E is numerically dominated by the resonance contribution in both frameowrks and
so we expect that differences can again be considered higher order.

Wagman & Miller 2014    

CSB effects at least 10 times smaller than current error bar

arXiv:1402.7169
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µa =
1

2M

∫
d2b ρ̃M (b)

Spin effects: Magnetization density

10
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The expression (51) has an appealing simplicity. However, the directly-obtained

Eq. (49) can also be evaluated immediately. We pursue this here to find

µa =
−1
2M

∫
d2b by

∂ρM (b)
∂by

, (52)

so that the quantity −by
∂ρM (b)

∂by
≡ ρ̃M (b) also has an interpretation as an anoma-

lous magnetization density. The two integrals appearing in Eq. (50) and Eq. (52)

the same value can be seen immediately by using integration by parts. Ref. (111)

rejected the use of Eq. (52) as a magnetization density because of the appearance

of an explicit direction y. However, this has a general interpretation as the trans-

verse direction orthogonal to that of the transverse magnetic field. We evaluate

ρ̃M (b) in terms of F2(Q2) to find

ρ̃M (b) = sin2 φ b
∫ ∞

0

q2 dq

2π
J1(qb)F2(q2), (53)

where φ is the angle between the direction of b and that of the transverse magnetic

field, which is also the direction of the nucleon polarization. Thus the physical

direction of the polarization or magnetic field provides a definite spatial direction.

Indeed the magnetization density ρ̃M (b) is largest in directions perpendicular to

the direction of the nucleonic polarization (or magnetic field). as shown in Fig. 7.

The largest values occur for φ = π/2, and the magnetization density peaks at

about 0.5 fm. Furthermore ρ̃M (b) vanishes if b = 0 or if φ = 0. These features

are all in accord with the expectations of classical physics. A current in the z

direction causes a magnetic dipole density ∼ r× %J in the x direction for positions

r along the y-direction. Therefore we conclude here that the quantity ρ̃M (b) is

the preferred expression for the magnetization density.

Hoyer & Kurki have computed the transverse density of the electron (131).

Using their expression for the electron F2 in Eq. (??) leads to the correct result

Ann.Rev.Nucl.Part.Sci. 60 (2010) 1-25 

G A Miller



Spin effects- 
spin-dependent density

• Probability that quark is in a given 
location and has a spin in a given 
direction

• Probability that quark has a given 
momentum and has a spin in a given 
direction

• Condensed matter physicists measure 
former using neutrons

11

OR

First step - non relativistic example

GPD

TMD
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Shapes of the proton

vectors n, K, S

Momentum space

Relation between coordinate and momentum space 
densities?  Model independent technique needed.

How to measure?-Lattice and/or experiment

so that we may compute probabilities for a quark to have a

position r!(r ," ,#) and spin direction n. We find

$%r,n&!'(s!$̂%r,n&!(s)

!" d3k*†%k ,r&
1

2
%1"+0!•n+5&*%k ,r&, %14&

with

*%k ,r&!# Fk%r &!s)

#i"• r̂Gk%r &!s)
$ , %15&

and Fk(r)!,d3K-(k ,K).E(K)"M /1/2eiK•r,Gk(r)

!0/0r,d3K-(k ,K)eiK•r/.E(K)"M /1/2. We find

$%r,n&!$U%r & 12 %1"n• ŝ&"$L%r &
1
2 %1"2 r̂• ŝn• r̂#n• ŝ&,

%16&

where $U(r)!,d3kFk
2(r),$L(r)!,d3kGk

2(r). The pattern

is similar to that in momentum space, with $(r,n! ŝ)

!$U(r)"$L(r)cos
2", $(r,n!# ŝ)!$L(r)sin

2", and $„r,n
!( x̂" ŷ)/!2…! 1

2 $U(r)"
1
2 $L(r) .1"2/!2cos " sin "(cos#

"sin#)/.
The ratio $L /$U , which determines the size of the rela-

tivistic effects, can be much larger %Fig. 4& than the factor
+(K) %Fig. 1& controlling the momentum-space shapes, so
that extreme deviations from a spherical shape are possible.

The most likely value of $L /$U is about 0.25, but there is no
limit. The case with $L /$U!3 is shown in Fig. 5. A pretzel
form is obtained if n is out of the page.

The shape of the proton may be defined in terms of matrix

elements of spin-dependent density operators Eqs. %10& and
%13& taken for protons in any fixed polarization state. Rela-
tivity mandates the use of Dirac spinors to describe the

quarks. These components, embodied in Eq. %6&, lead to a
constant ratio of QF2 /F1 in accord with observation, and

also to shapes that depend strongly on the relative orientation

of the quark spin with respect to that of the proton total

angular momentum, Eqs. %11& and %16& %Figs. 2, 3, and 5&.
We next consider experiments aimed at measuring the

matrix element $̂(K,n), Eq. %9&, for real nucleons !N). Ob-
serve that ,d3K $̂(K,n) is a local operator. Its matrix element
is a linear combination of the charge, integrals of spin-

dependent structure functions 1q , and gA that can be deter-
mined from previous measurements. We find

" d3K'N!$̂%K,n!$ ŝ&!N)

!
1

2
'N!2̄%0 &

Q̂

e
%+0$+3+5&2%0 &!N)

! 1
2 .1$ 1

6 %1u"1d"1s &" 1
2 gA/!0.5$0.34, %17&

in which numerical values of 1q are taken from Ref. .15/.
The model we use gives 0.5$0.37 for the above quantity,

FIG. 3. %Color online& n•s!0. Left column, n! x̂ %out of page&,

central: n! ŷ, right n!( x̂" ŷ)/!2. The momentum K increases

from 1 to 4 GeV/c .

FIG. 4. Coordinate space densities.

FIG. 5. %Color online& Shape of the proton coordinate space.
Left, n!s; right, n points out of the page.
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2", and $„r,n
!( x̂" ŷ)/!2…! 1
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Pretzelocity

Phys.Rev. C68 (2003) 022201



Γ = 1
2 (1 + ŝ · γγ5) gives spin-dependent density

Generalized Coordinate Space Densities

14

Schierholtz, Zanotti  2009 -this quantity is not zero, proton 
is not round

spin-dependent density 
-depends on direction 
of b: proton is not round

Transverse Spin Structure of the Nucleon from Lattice-QCD Simulations
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We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of
quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our
dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons.
We find significant contributions from certain quark helicity flip generalized parton distributions, leading
to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our
results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-
Mulders function h?1 , describing correlations of transverse quark spin and intrinsic transverse momentum
of quarks, is large and negative for both up and down quarks.

DOI: 10.1103/PhysRevLett.98.222001 PACS numbers: 12.38.Gc, 14.20.Dh

Introduction.—The transverse spin (transversity) struc-
ture of the nucleon received a lot of attention in recent
years from both theory and experiment as it provides a new
perspective on hadron structure and QCD evolution (for a
review, see [1]). A central object of interest is the quark
transversity distribution !q!x" # h1!x", which describes
the probability of finding a transversely polarized quark
with longitudinal momentum fraction x in a transversely
polarized nucleon [2]. Much progress has been made in the
understanding of so-called transverse momentum depen-
dent parton distribution functions (TMD PDFs) like, e.g.,
the Sivers function f?1T!x; k2?" [3], which measures the
correlation of the intrinsic quark transverse momentum
k? and the transverse nucleon spin S?, as well as the
Boer-Mulders function h?1 !x; k2?" [4], describing the cor-
relation of k? and the transverse quark spin s?. While the
Sivers function is beginning to be understood, still very
little is known about the sign and size of the Boer-Mulders
function.

A particularly promising approach is based on
3-dimensional densities of quarks in the nucleon, "!x; b?;
s?; S?" [5], representing the probability of finding a quark
with momentum fraction x and transverse spin s? at dis-
tance b? from the center of momentum of the nucleon with
transverse spin S?. As we will see below, these transverse
spin densities show intriguing correlations of transverse
coordinate and spin degrees of freedom. According to
Burkardt [6,7], they are directly related to the above men-
tioned Sivers and Boer-Mulders functions. Our lattice re-
sults on transverse spin densities therefore provide for the
first time quantitative predictions for the signs and sizes of

these TMD PDFs and the corresponding experimentally
accessible asymmetries.

Lattice calculations give access to x moments of trans-
verse quark spin densities [5]
 

"n #
Z 1

$1
dxxn$1"!x; b?; s?; S?"

# 1

2

!
An0!b2?" % si?S

i
?

"
ATn0!b2?" $

!b?
~ATn0!b2?"
4m2

#

% bj?#
ji

m
&Si?B0

n0!b2?" % si?B
0
Tn0!b2?"'

% si?!2bi?b
j
? $ b2?!

ij"Sj?
1

m2
~A00
Tn0!b2?"

$
; (1)

where "n # "n!b?; s?; S?" and m is the nucleon mass.
The b?-dependent nucleon generalized form factors
(GFFs) An0!b2?"; ATn0!b2?"; . . . in Eq. (1) are related to
GFFs in momentum space An0!t"; ATn0!t"; . . . by a Fourier
transformation

 f!b2?" (
Z d2!?

!2$"2 e
$ib?)!?f!t # $!2

?"; (2)

where !? is the transverse momentum transfer to the
nucleon. Their derivatives are defined by f0 ( @b2?f and
!b?f ( 4@b2?!b

2
?@b2?"f. The generalized form factors in

this work are directly related to x moments of the corre-
sponding vector and tensor generalized parton distributions
(GPDs) (for a review, see [8]). The probability interpreta-
tion of GPDs in impact parameter space was first noted in
[9]. Apart from the orbitally symmetric monopole terms in

PRL 98, 222001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JUNE 2007

0031-9007=07=98(22)=222001(4) 222001-1  2007 The American Physical Society

ρΓ(b) =
∑

q

eq

∫
dx−q†+(x−,b)γ+Γq+(x−,b)
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We present t he first calcula t ion in la t t ice Q C D of t he lowest two moments of t ransverse spin
densi t ies of quar ks in t he nucleon . T hey encode correla t ions b e tween quar k spin and orbi t al angular
moment um . O ur d y namical simula t ions are based on two flavors of clover-improved W ilson fermions
and W ilson gluons. We find significant cont ribu t ions from cert ain quar k helici t y flip generalized
par ton dist ribu t ions, leading to st rongly distor t ed densit ies of t ransversely polarized quar ks in t he
nucleon . I n par t icular, based on our resul ts and recent arguments by B ur kard t [P hys. R ev . D 72
(2005) 094020], we predic t t ha t t he B oer- M ulders-func t ion h⊥

1 , describing correla t ions of t ransverse
quar k spin and int rinsic t ransverse moment um of quar ks, is large and nega t ive for bot h up and down
quar ks.

Introduction.— T he transverse spin (t ransversi ty)
structure of the nucleon received a lot of a t tention in
recent years from both theory and experiment as i t pro-
vides a new perspect ive on hadron structure and Q C D
evolu tion (for a review see [1]). A central ob ject of inter-
est is the quark t ransversi ty distribu tion δq(x) = h1 (x),
which describes the probabili ty to find a t ransversely po-
larized quark wi th longi tudinal momentum fract ion x in
a t ransversely polarized nucleon [2]. M uch progress has
been made in the understanding of so-called t ransverse
momentum dependent P D F s (tmd P D F s) like e.g. the
Sivers funct ion f⊥

1T (x, k2
⊥

) [3], which measures the cor-
rela t ion of the int rinsic quark transverse momentum k⊥
and the t ransverse nucleon spin S⊥ , as well as the Boer-
M ulders funct ion h⊥

1 (x, k2
⊥

) [4], describing the correla t ion
of k⊥ and the t ransverse quark spin s⊥ . W hile the Sivers
funct ion begins to be understood, st ill very li t t le is known
abou t the sign and size of the Boer-M ulders funct ion.

A par ticularly promising approach is based on
3-dimensional densi t ies of quarks in the nucleon,
ρ(x, b⊥, s⊥, S⊥) [5], representing the probabili ty to find a
quark wi th momentum fract ion x and transverse spin s⊥
a t distance b⊥ from the center-of-momentum of the nu-
cleon wi th transverse spin S⊥ . A s we will see below, these
t ransverse spin densi t ies show intriguing correla t ions of
t ransverse coordina te and spin degrees of freedom. A c-
cording to B urkard t [6, 7], they are direct ly rela ted to
the above mentioned Sivers- and Boer-M ulders-funct ions.
O ur la t t ice resul ts on transverse spin densi t ies therefore
provide for the first t ime quanti ta tive predict ions for the
signs and sizes of these tmd P D F s and the corresponding

experimentally accessible asymmetries.
L a t tice calcula tions give access to x-moments of trans-

verse quark spin densi t ies [5]

ρn(b⊥, s⊥, S⊥) =
∫ 1

−1
dxxn−1ρ(x, b⊥, s⊥, S⊥) =

1
2

{
An0 (b2

⊥) + si
⊥Si

⊥

(
ATn0 (b2

⊥) −
1

4m2 ∆b⊥ÃTn0 (b2
⊥)

)

+
bj
⊥

εji

m

(
Si
⊥B′

n0 (b2
⊥) + si

⊥B
′

Tn0 (b2
⊥)

)

+ si
⊥(2bi

⊥bj
⊥
− b2

⊥δij )Sj
⊥

1
m2 Ã′′

Tn0 (b2
⊥)

}
, (1)

where m is the nucleon mass. T he b⊥-dependent nucleon
generalized form factors ( G F F s) An0 (b2

⊥
), ATn0 (b2

⊥
), . . .

in E q. (1) are rela ted to G F F s in momentum space
An0 (t), ATn0 (t), . . . by a Fourier transforma tion

f (b2
⊥) ≡

∫
d2∆⊥

(2π)2 e−ib⊥·∆⊥f (t = −∆2
⊥) , (2)

where ∆⊥ is the transverse momentum transfer to the
nucleon. T heir deriva tives are defined by f ′ ≡ ∂b2

⊥
f and

∆b⊥f ≡ 4∂b2
⊥

(
b2
⊥

∂b2
⊥

)
f . T he generalized form factors in

this work are direct ly rela ted to x-moments of the cor-
responding vector and tensor generalized par ton distri-
bu tions ( G P Ds) (for a review see [8]). T he probabili ty
interpreta t ion of G P Ds in impact parameter space has
been first noted in [9]. A par t from the orbi tally symmet-
ric monopole terms in the second line of E q.(1), there are
two dipole st ructures present in the third line of E q.(1),
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We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of
quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our
dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons.
We find significant contributions from certain quark helicity flip generalized parton distributions, leading
to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our
results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-
Mulders function h?1 , describing correlations of transverse quark spin and intrinsic transverse momentum
of quarks, is large and negative for both up and down quarks.
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Introduction.—The transverse spin (transversity) struc-
ture of the nucleon received a lot of attention in recent
years from both theory and experiment as it provides a new
perspective on hadron structure and QCD evolution (for a
review, see [1]). A central object of interest is the quark
transversity distribution !q!x" # h1!x", which describes
the probability of finding a transversely polarized quark
with longitudinal momentum fraction x in a transversely
polarized nucleon [2]. Much progress has been made in the
understanding of so-called transverse momentum depen-
dent parton distribution functions (TMD PDFs) like, e.g.,
the Sivers function f?1T!x; k2?" [3], which measures the
correlation of the intrinsic quark transverse momentum
k? and the transverse nucleon spin S?, as well as the
Boer-Mulders function h?1 !x; k2?" [4], describing the cor-
relation of k? and the transverse quark spin s?. While the
Sivers function is beginning to be understood, still very
little is known about the sign and size of the Boer-Mulders
function.

A particularly promising approach is based on
3-dimensional densities of quarks in the nucleon, "!x; b?;
s?; S?" [5], representing the probability of finding a quark
with momentum fraction x and transverse spin s? at dis-
tance b? from the center of momentum of the nucleon with
transverse spin S?. As we will see below, these transverse
spin densities show intriguing correlations of transverse
coordinate and spin degrees of freedom. According to
Burkardt [6,7], they are directly related to the above men-
tioned Sivers and Boer-Mulders functions. Our lattice re-
sults on transverse spin densities therefore provide for the
first time quantitative predictions for the signs and sizes of

these TMD PDFs and the corresponding experimentally
accessible asymmetries.

Lattice calculations give access to x moments of trans-
verse quark spin densities [5]
 

"n #
Z 1

$1
dxxn$1"!x; b?; s?; S?"

# 1

2

!
An0!b2?" % si?S

i
?

"
ATn0!b2?" $

!b?
~ATn0!b2?"
4m2

#

% bj?#
ji

m
&Si?B0

n0!b2?" % si?B
0
Tn0!b2?"'

% si?!2bi?b
j
? $ b2?!

ij"Sj?
1

m2
~A00
Tn0!b2?"

$
; (1)

where "n # "n!b?; s?; S?" and m is the nucleon mass.
The b?-dependent nucleon generalized form factors
(GFFs) An0!b2?"; ATn0!b2?"; . . . in Eq. (1) are related to
GFFs in momentum space An0!t"; ATn0!t"; . . . by a Fourier
transformation

 f!b2?" (
Z d2!?

!2$"2 e
$ib?)!?f!t # $!2

?"; (2)

where !? is the transverse momentum transfer to the
nucleon. Their derivatives are defined by f0 ( @b2?f and
!b?f ( 4@b2?!b

2
?@b2?"f. The generalized form factors in

this work are directly related to x moments of the corre-
sponding vector and tensor generalized parton distributions
(GPDs) (for a review, see [8]). The probability interpreta-
tion of GPDs in impact parameter space was first noted in
[9]. Apart from the orbitally symmetric monopole terms in
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This is not symmetric.
  Proton is not round!
 effect is small

Sent by 
Schierholz



Shapes of the proton
• Relate spin dependent density to experiment
• Phys.Rev.C76:065209,2007 

Field-theoretic spin dependent 
momentum density is related to the 
transverse momentum distribution h⊥1T
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32Université Blaise Pascal/IN2P3, F-63177 Aubière, France

33Seoul National University, Seoul 151-747, Republic of Korea
34INFN, Sezione di Genova, I-16146 Genova, Italy

35University of Washington, Seattle, WA 98195
36Syracuse University, Syracuse, NY 13244

37Yerevan Physics Institute, Yerevan 375036, Armenia
38University of Ljubljana, SI-1000 Ljubljana, Slovenia

(Dated: December 17, 2013)

2

An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions
in deep-inelastic scattering on a transversely polarized 3He target was performed at Jefferson Lab
in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q2 < 2.7 GeV2. The pretzelosity asymmetries
on 3He, which can be expressed as the convolution of the h⊥

1T transverse momentum dependent
distribution functions and the Collins fragmentation functions in the leading order, were measured
for the first time. Using the effective polarization approximation, we extracted the corresponding
neutron asymmetries from the measured 3He asymmetries and cross-section ratios between the
proton and 3He. Our results show that for both π± on 3He and on the neutron the pretzelosity
asymmetries are consistent with zero within experimental uncertainties.

Studies of nucleon structure have been and still are
at the frontier of understanding how quantum chromo-
dynamics (QCD) works in the non-perturbative region.
It has been known for decades that the nucleon is com-
posed of quarks and gluons, however how quarks and
gluons contribute to the elementary properties of a nu-
cleon from QCD is still an open question. Among these
properties, the nucleon spin has been at the center of
interest for more than two decades since the original dis-
covery by the European Muon Collaboration in 1988 [1],
that quark spins were found to contribute only a small
portion to the proton spin. In the last two decades, many
polarized deep-inelastic scattering (DIS) experiments [2]
have been confirmed that the quark spin only contributes
about 25% with significantly improved precision. In more
recent years, efforts have also been devoted to the deter-
mination of the gluon spin contribution to the nucleon
spin both from polarized DIS and from polarized proton-
proton collision measurements [3]. Recently, new re-
sults [4–6] from the RHIC-spin program suggest that the
gluon spin may contribute to the proton spin only at a
level comparable to that of quark spins. These findings
suggest that the orbital angular momentum (OAM) of
the quarks and gluons, the most elusive piece, may be
the largest contributor to the nucleon spin.

In recent years, major theoretical and experimen-
tal efforts have focused on accessing OAM in the nu-
cleon. The development of the general parton distribu-
tion functions (GPDs) [7] and the transverse-momentum-
dependent parton distribution functions (TMDs) [8] pro-
vided not only three-dimensional imaging of the nucleon,
but also promising ways to access OAM. By investigating
the correlations between quark position and momentum,
GPDs supply a new way to characterize the contribution
of the orbital motion of quarks to the spin of the nu-
cleon. On the other hand, TMDs investigate the parton
distributions in three-dimensional momentum space and
provide information about the relationship between the
quark momenta and the spin of either the nucleon or the
quark. Since most TMDs are expected to vanish in the
absence of quark orbital motion, they supply important
and complementary ways to access the contribution of
OAM to the spin of the proton.

Among the 8 leading-twist TMDs, there are only three
that remain non-zero after an integration over the par-
ton transverse momentum [8]. They are the unpolar-

ized parton distribution function (PDF) f1, the longitu-
dinally polarized PDF g1 (helicity), and the transversely
polarized PDF h1 (transversity). f1 has been extensively
studied for several decades. g1 is also relatively well un-
derstood by continuous efforts started in the 1970s [2].
For transversity, although less known than the former
two, pioneering studies have been made in recent years,
both theoretically and experimentally [9]. One of the
least known TMDs, h⊥

1T , referred to as pretzelosity, has
drawn significant attention recently [10–14] due to its in-
tuitive relation to the quark OAM. It is one of the eight
leading-twist PDFs, with the odd chirality which leads
to an important consequence that there are only quark
pretzelosity distributions, with no gluonic counterparts.

In a class of relativistic quark models [13, 14], pret-
zelosity can be expressed as the difference between the
helicity and the transversity. This relation can be in-
tuitively understood as that in a moving nucleon the
difference in polarization of a quark in the longitudinal
and transverse direction is due to the fact that boosts
and rotations do not commute. A non-zero value of the
pretzelosity is a direct consequence of this relativistic na-
ture of quark motion. Another interesting feature is that
pretzelosity emerges from the interference of quark wave-
function components with a difference of two units of
orbital momentum [15]. Pretzelosity is the only leading-
twist TMD with this unique feature. In quark models,
the quark OAM can be directly accessed via pretzelos-
ity [13, 14]. This finding was first obtained in a quark-
diquark model [16] and a bag model [12], and confirmed
later in a large class of quark models based on spherical
symmetry [14].

Experimentally, pretzelosity is suppressed in the inclu-
sive DIS processes due to its chiral-odd property. How-
ever, combined with another chiral-odd object such as the
Collins fragmentation function [17], it leads to a measur-
able effect in semi-inclusive DIS (SIDIS) [18] in which a
leading hadron is detected in addition to the scattered
lepton. Specifically, with an unpolarized lepton beam
scattered from a transversely polarized nucleon target,
a non-zero h⊥

1T would produce an azimuthal-angular de-
pendent single-spin asymmetry (SSA) in the differential
cross sections of the scattered lepton and the leading
hadron, with respect to the target spin direction.

Following the Trento convention [19], the azimuthal-
angular dependence of the target SSA at the leading twist
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Summary

• Form factors,  GPDs, TMDs, understood from unified 
light-front formulation, GPD-coordinate space 
density,TMD momentum space density

• Neutron central transverse density is negative-
• Proton is not round- lattice QCD spin-dependent-

density in coordinate space is not zero
• Experiment can whether or not proton is round by 

measuring 
 

The Proton


