An Avenue for Extracting Generalized Parton Distributions from Experiment

> Simonetta Liuti University of Virginia

INT Meeting, February 27nd, 2014

Motivation I

Tensor charge

Transv. anomalous magnetic moment

Motivation II

 $L_z = b \times k_T$

OAM: The "naive" picture

b

$$L_{q,z}^{can} = \int d^2 b \, d^2 k_T \left(\vec{b} \times \vec{k}_T\right)_z W_{LC}(x, \vec{b}, \vec{k}_T)$$

Leading twist Wigner distribution with gauge link in LC direction In arXiv:1310.5157 (PLB 2/2014) we asked what is the spin configuration corresponding to quark OAM in QCD?

Analysis done using twist 3 GTMDs

$$G_2 \Rightarrow \sigma_{ij} \Delta^j \Rightarrow \vec{S}_L \times \vec{\Delta}$$

This is no longer Parity odd but it has a transverse component, OAM is associated with a transverse spin component in the proton

DVCS on a longitudinally polarized target

Outline

- 1) State of the art of global fit for GPDs
- 2) Angular Momentum and OAM
- 3) Chiral odd sector
- 4) Self Organizing Maps as a future tool for GPDs/TMDs analyses

Collaborations

GPDs Fit

Aurore Courtoy, Gary Goldstein, Osvaldo Gonzalez Hernandez, S.L., Silvia Pisano, Jon Poage, Abha Rajan

Angular Momentum/OAM

Aurore Courtoy, Gary Goldstein, Osvaldo Gonzalez Hernandez, S.L., Abha Rajan

Extension to Chiral Odd Sector Gary Goldstein, Osvaldo Gonzalez Hernandez, S.L.

Self Organizing Maps Fit

Evan Askanazi, Katherine Holcomb, S.L.

Observable

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha}{2xQ^4} \Big[\Big(1 + (1-y)^2 F_2(x,Q^2) - y^2 F_L(x,Q^2) \Big]$$

$$F_2(x,Q^2) = x \sum_q e_q^2 q(x,Q^2)$$

Global Analyses Basic Points

- Select experimental data sets
- Factorization theorems: choose a parametric form for PDFs at an initial Q₀²

$$q(x,Q_o^2) = A_q x^{\alpha_q} (1-x)^{\beta_q} F(x,c_q,d_q,...)$$

- > $q(x,Q_o^2)$ is the input for QCD evolution equations (choose the factorization scheme), solve and obtain $q(x,Q_{exp}^2)$
- Construct observable

$$F_2(x, Q_{\exp}^2) = x \sum_q e_q^2 q(x, Q_{\exp}^2)$$

> Calculate χ^2

> Select an algorithm to minimize χ^2 (this fixes the initial parameters)

Deeply Virtual Exclusive Processes

Factorization in exclusive processes (DVCS, DVMP...)

Convolution of "hard part" with quark-proton amplitudes

$$f_{\Lambda_\gamma,\Lambda;\Lambda'_\gamma,\Lambda'} = \sum_{\lambda,\lambda'} \left[g^{\Lambda_\gamma,\Lambda'_{\gamma(M)}}_{\lambda,\lambda'}(x,k_T,\zeta,t;Q^2) \otimes A_{\Lambda',\lambda';\Lambda,\lambda}(x,k_T,\zeta,t),
ight]$$

Simonetta Liuti

Compton form factors

Chiral even GPDs (u and d valence only)

$$\frac{d^{4}\sigma}{dx_{Bj}dyd\phi dt} = \Gamma \left\{ F_{UU,T} + \epsilon F_{UU,L} + \epsilon \cos 2\phi F_{UU}^{\cos 2\phi} + \sqrt{2\epsilon(\epsilon+1)} \cos \phi F_{UU}^{\cos \phi} + h \sqrt{2\epsilon(1-\epsilon)} \sin \phi F_{LU}^{\sin \phi} \right\} \\
+ S_{\parallel} \left[\sqrt{2\epsilon(\epsilon+1)} \sin \phi F_{UL}^{\sin \phi} + \epsilon \sin 2\phi F_{UL}^{\sin 2\phi} + h \left(\sqrt{1-\epsilon^{2}} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} \cos \phi F_{LL}^{\cos \phi} \right) \right] \\
+ S_{\perp} \left[\sin(\phi - \phi_{S}) \left(F_{UT,T}^{\sin(\phi-\phi_{S})} + \epsilon F_{UT,L}^{\sin(\phi-\phi_{S})} \right) + \epsilon \left(\sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi+\phi_{S})} + \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi-\phi_{S})} \right) \\
+ \sqrt{2\epsilon(1+\epsilon)} \left(\sin \phi_{S} F_{UT}^{\sin \phi_{S}} + \sin(2\phi - \phi_{S}) F_{UT}^{12(\phi-\phi_{S})} \right) \right] \\
+ S_{\perp}h \left[\sqrt{1-\epsilon^{2}} \cos(\phi - \phi_{S}) F_{LT}^{\cos(\phi-\phi_{S})} + \sqrt{2\epsilon(1-\epsilon)} \left(\cos \phi_{S} F_{LT}^{\cos \phi_{S}} + \cos(2\phi - \phi_{S}) F_{LT}^{\cos(2\phi-\phi_{S})} \right) \right] \right\}$$
Example: $e p \rightarrow e' \pi^{o} p'$
GPDs
in helicity
amplitudes
$$F_{UU,L} = \mathcal{N} \left[|f_{10}^{++}|^{2} + |f_{10}^{-+}|^{2} + |f_{10}^{--}|^{2} \right] \\
F_{UU,L} = \mathcal{N} \left[|f_{00}^{++}|^{2} + |f_{00}^{--}|^{2} \right] \\
F_{UU,L} = \mathcal{N} 2\Re \left[(f_{10}^{+-})^{*}(f_{10}^{--}) - (f_{10}^{+-})^{*}(f_{10}^{+-}) - f_{10}^{--} \right] \\
F_{UU}^{\cos \phi} = -\mathcal{N} \Re \left[(f_{10}^{+-})^{*}(f_{10}^{+-} + f_{10}^{-+}) + (f_{00}^{++})^{*}(f_{10}^{+-} - f_{10}^{--}) \right]$$

How do we perform a global fit

-- given the enhanced complexity -

how do we choose the "initial parametrization"?

Our method: Recursive fit

Advantage: control over the number of parameters to be fitted at different stages so that it can be optimized

Functional form:

From DIS $q(x,Q_o^2) = A_q x^{-\alpha_q} (1-x)^{\beta_q} F(x,c_q,d_q,...)$ to DVCS, DVMP

$$H_{q}(x,\xi,t;Q_{o}^{2}) = N_{q} x^{-\left[\alpha_{q}+\alpha'_{q}(1-x)^{p}t\right]} G^{a_{1}a_{2}a_{3}..}(x,\xi,t)$$

$$a_{1} = m_{q}, a_{2} = M_{X}^{q}, a_{3} = M_{\Lambda}^{q},...$$

"Flexible" parameterization based on the reggeized quark-diquark model.

First step: DIS cross section

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha}{2xQ^4} \Big[\Big(1 + (1-y)^2 \Big) F_2(x,Q^2) - y^2 F_L(x,Q^2) \Big]$$

Now GPDs...

fix remaining N- $(n_1 + n_2)$ parameters

DVCS data $A_{UL}(\xi,t), A_{LU}(\xi,t), A_{LL}(\xi,t), \dots$

2/27/14

We asked the question: "What is the minimal number of parameters necessary to fit X, ξ and t?" It can be addressed with Recursive Fit

Parameters	Н	E	\widetilde{H}	\widetilde{E}
m_u (GeV)	0.420	0.420	2.624	2.624
M_X^u (GeV)	0.604	0.604	0.474	0.474
M^u_{Λ} (GeV)	1.018	1.018	0.971	0.971
α_u	0.210	0.210	0.219	0.219
α'_u	1.814 ± 0.022	2.835 ± 0.051	1.543 ± 0.296	5.130 ± 0.101
p_u	0.449 ± 0.017	0.969 ± 0.031	0.346 ± 0.248	3.507 ± 0.054
\mathcal{N}_u	2.043	1.803	0.0504	1.074
χ^2	0.5	3.2	0.12	2.0
$m_d \; ({ m GeV})$	0.275	0.275	2.603	2.603
M_X^d (GeV)	0.913	0.913	0.704	0.704
M^d_{Λ} (GeV)	0.860	0.860	0.878	0.878
α_d	0.0317	0.0317	0.0348	0.0348
α'_d	1.139 ± 0.056	1.281 ± 0.031	1.298 ± 0.245	3.385 ± 0.145
p_d	-0.113 ± 0.104	0.726 ± 0.0631	0.974 ± 0.358	2.326 ± 0.137
\mathcal{N}_d	1.570	-2.800	-0.0262	-0.966
χ^2	0.9	4.8	0.11	1.0

New set of parameters using flavor separated data of Cates et al. (2012)

RESULT: This is how we determined the chiral even GPDs

25

Chiral Odd Sector

In the diquark model the chiral odd helicity amps are related to the chiral even ones through Parity

In order to explain the working of Parity transformations, we write the LHS and RHS of Fig. 1

$$\begin{array}{|c|c|c|c|c|}\hline RHS & LHS \\ \hline S = 0 & \phi^*_{\Lambda'\lambda'} & \phi_{\Lambda\lambda} \\ \hline S = 1 & \phi^\mu_{\Lambda'\lambda'} \epsilon^{*\,\lambda''}_\mu & \epsilon^{\lambda''}_\nu \phi^\nu_{\Lambda\lambda} \end{array}$$

S=0,1

In terms of GPDs

Odd	Even	
S = 0		
$\widetilde{H}_{T}^{(0)} \ = \ % \widetilde{H}_{T}^{(0)} \ = \$	$-rac{M(1-x)}{m+Mx}E^{(0)}$	(27a)
$E_T^{(0)} =$	$2\left(1+rac{M(1-x)}{m+Mx} ight)E^{(0)}$	(27b)
$\tilde{E}_{T}^{(0)} =$	0	(27c)
$H_{T}^{(0)} =$	$\frac{H^{(0)} + \widetilde{H}^{(0)}}{2} - \frac{t_0 - t}{4M^2} \frac{M(1 - t)}{m + M}$	$\frac{x)}{4x}E^{(0)}\left(27\mathrm{d}\right)$
S = 1		
\hat{H}	$\breve{I}_{T}^{(1)} = 0$	(28a)
I	$E_T^{(1)} = 2E^{(1)}$	(28b)
Î	$\breve{E}_{T}^{(1)} = 0$	(28c)
H	$H_T^{(1)} = -\frac{2x}{1+x^2} \frac{H^{(1)} + \widetilde{H}^{(1)}}{2}$	(28d)

Final step: use SU(4)

$$\begin{split} H^{u}_{T} &= \frac{3}{2} H^{S=0}_{T} - \frac{1}{6} H^{S=1}_{T} \\ H^{d}_{T} &= -\frac{1}{3} H^{S=1}_{T} \end{split}$$

RESULT: Chiral odd GPDs (but we have not fixed the ξ dependence)

33

Unpolarized Helicity Amplitudes

Same, separating the GPDs contribution

2/26/14

35

Longitudinally polarized target

Look for tensor charge in f⁺⁻ Tensor Anom. Moment in f⁺⁺,f⁻⁻

Longitudinally polarized beam and target

Look for tensor charge in f⁺⁻

Tensor Anom. Moment in f⁺⁺,f⁻⁻

2/27/14

Transverse target

Look for tensor charge in f⁺⁻ Tensor Anom. Moment in f⁺⁺,f⁻⁻ 2/27/14

38

State of the art

After these preliminary studies we are now attacking a global fit

A. DVCS

Unpolarized scattering cross section

$$d^{4}\sigma = F_{UU,T} = c_{0} + c_{1}\cos\phi + c_{2}\cos 2\phi$$
(1)

BSA

$$A_{LU} = \sqrt{\epsilon(1-\epsilon)} \frac{F_{LU}^{\sin\phi}}{F_{UU,T}} = \frac{a_1 \sin\phi}{c_0 + c_1 \cos\phi + c_2 \cos 2\phi}$$
(2)

TSA

$$A_{UL} = \frac{\sqrt{\epsilon(\epsilon+1)}\sin\phi F_{UL}^{\sin\phi}}{F_{UU,T} + \epsilon F_{UU,L}} + \frac{\epsilon\sin 2\phi F_{UL}^{\sin 2\phi}}{F_{UU,T}}$$
$$= \frac{a_2\sin\phi + a_3\sin 2\phi}{c_0 + c_1\cos\phi + c_2\cos 2\phi}$$
(3)

Double TSA

$$A_{LL} = \frac{\sqrt{1 - \epsilon^2} F_{LL}}{F_{UU,T} + \epsilon F_{UU,L}} + \frac{\sqrt{\epsilon(1 - \epsilon) \cos \phi} F_{LL}^{\cos \phi}}{F_{UU,T} + \epsilon F_{UU,L}}$$
$$= \frac{a_4 + a_5 \cos \phi}{c_0 + c_1 \cos \phi + c_2 \cos 2\phi}$$
(4)

Finally....

Study the behavior of multi-particle systems as they evolve from a large and varied number of initial conditions

This goal is at reach with HPC

NNPDF before LHC data

NNPDF including LHC data, JHEP(2012)

Most NNs (including NNPDFs) learn with supervised learning

Supervised Learning

Unsupervised Learning —

A set of examples is given. The goal is to force the data To match the examples as closely as possible. The cost function includes information about the domain

No a priori examples are given. The goal is to minimize the cost function by similarity relations, or by finding how the data cluster or self-organize → global optimization problem

Important for PDF analysis! If data are missing it is not possible to determine the output!

Observations (outputs)

Observations

Minimizing χ^2

E. Askanazi, K. Holcomb, S.L.

Observable

Conclusions

We got a usable GPDs parameterization that satisfies all theoretical requirements (polynomiality, positivity, forward limit, ...), and that is "flexible": it is physically motivated (based on reggeized diquark model), but, **most importantly**, it allows us to monitor the various parameters.

There are several papers on arXiv...

sl4y@virginia.edu

References

- pi0 and eta → arXiv:1401.0438
- GPDs from flavor separated form factors \rightarrow arXiv:1206.1876
- Chiral odd approach \rightarrow arXiv:1311.0483
- Chiral even approach → arXiv:1012.3776
- Observability of OAM→arXiv:1310.5157
- Angular momentum in spin 1 \rightarrow arXiv:1101.0581

• Self Organizing Maps parametrization →arXiv:0810.2598, arXiv:1008.2137, arXiv:1309.7085

 \bullet