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Outline

n Introduction and discussion

n QCD evolution of unpolarized TMDs

n QCD evolution of Sivers asymmetry

n Summary
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Why QCD evolution is needed

n Experiments are operated in different energy and kinematic regions, 
to make reliable predictions, one has to take into account these 
differences
n Q is different: Q ~ 1 - 3 GeV in SIDIS, Q ~ 10 GeV at e+e-, Q ~ 4 - 90 GeV for 

DY, W/Z 
n Also      dependence is important  

n We use the energy evolution equation for the relevant parton 
distribution functions (PDFs) or fragmentation function (FFs) to 
account for the kinematic differences
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Qiu-Zhang 1999, ResBos
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QCD evolution: meaning

n What is QCD evolution of TMDs 
anyway?
n Evolution = include important perturbative 

corrections
n One of the well-known examples is the 

DGLAP evolution of collinear PDFs, which 
lead to the scaling violation observed in 
inclusive DIS process

n What it does is to resum the so-called 
single logarithms in the higher order 
perturbative calculations
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QCD evolution: TMDs

n TMD factorization works in the situation where there are two 
observed momenta in the process, such as SIDIS, DY, W/Z production 
and in the kinematic region where Q>>qT

n Evolution again = include important perturbative corrections
n What it does is to resum the so-called double logarithms in the higher 

order perturbative corrections
n For SIDIS: qT is the transverse momentum of the final-state hadron
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Many approaches for TMD evolution

n Collins-Soper-Sterman (CSS) resummation framework

n New Collins approach

n Soft Collinear Effective Theory (SCET)
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Collins-Soper-Sterman 1985
ResBos: C.P. Yuan, P. Nadolsky
Qiu-Zhang 1999, Vogelsang ...
Kang-Xiao-Yuan 2011, Sun-Yuan 2013, 
Echevarria-Idilbi-Kang-Vitev 2014

Aybat-Rogers 2011, 
Aybat-Collins-Rogers-Qiu, 2012
Aybat-Prokudin-Rogers 2012

Echevarria-Idilbi-Schafer-Scimemi 2012

They are all consistent with each other perturbatively 
However, they could have very different phenomenological predictions
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Kinematic dependence of TMD evolution

n Any correct TMD evolution should contain
n Q  dependence
n     dependence

n These are supported by the data
n Q  dependence seems to be generally accepted
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CM energy     dependence is also important

n Phenomenological studies 
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What the evolution looks like?

n We have a TMD distribution               (take             ) measured at a 
scale Q
n It is easy to deal in the Fourier transformed space

n Standard CSS formalism tells us it evolves from an initial scale 
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Connection to other approaches: new Collins

n Derive new Collins evolution from CSS

n This is the same as in SCET
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What’s the complication in QCD evolution?

n So far the evolution kernel is calculated in perturbation theory, so 
valid only for small b region:

n Fourier transform back to the momentum space, one needs the whole 
b region (also large b): need some non-perturbative extrapolation

n Widely used prescription (CSS): 
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Use conventional CSS formalism

n In the conventional CSS formalism, one further calculate TMD at c/b 
scale in terms of collinear PDFs

n Expand our initial TMD                  in terms of the corresponding the collinear 
PDF

n Note: above coefficient functions are different from the C-functions in 
CSS formalism
n Take into account the hard-part function -> C-function in CSS
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Non-perturbative Sudakov factor

n Still have to choose non-perturbative Sudakov function

n Typical simplest form for unpolarized PDF and FF

n This way still okay to obtain your TMD in momentum space, thus to 
perform 3D structure as usual
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Interesting thing: not a universal Gaussian
n Full expression in b-space

n At large b region, b* → b_max, thus the above form will be closer to the usual 
Gaussian: thus might be okay to think g_1 as the “starting/intrinsic” kt at Q0

n At intermediate or small b, apparently they do not look Gaussian at all; 
because F(x, c/b) has different behavior as a function of b for different x, it is 
very complicated functional form

n In the usual Gaussian ansatz: same b-dependence at all x
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F(x, c/b) builds into the     dependence

n At cross section level for DY

n Perform the saddle-point approximation, which will reflect the peak in 
the b-space
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Saddle point bsp 

n Generic features

n If Q is large, bsp is small, so the integrand is more dominant by the small b 
region when performing Fourier transformation

n roots enters through the derivative of the PDFs: high roots -> smaller bsp
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Example illustration

n At 1.8 TeV, left; at 14 TeV, right
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Qiu-Zhang 1999
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New Collins evolution + Gaussian ansatz

n Choose some Gaussian form for TMDs at initial scale Q0, then evolve 
to W/Z scale, to see if it describes the pt distribution
n It does not (use a reasonable bmax). It always leads to a rather flat pt 

distribution: the integrand in b-space is almost a delta-function concentrated 
at b=0

n It will then lead to a rather flat pt distribution: curvature much smaller than 
data
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Intuitive meaning of these parameters

n Let us understand these parameters

n Sivers asymmetry is very sensitive to g2 (though the Drell-Yan 
unpolarized cross section is not)
n Choose a wrong g2 leads to very different result

gpdf1 = �k2⊥�/4

gff1 = �p2⊥�/4

intrinsic transverse momentum width for PDFs at scale Q0

intrinsic transverse momentum width for FFs at scale Q0

g2 mimic the increase in the width observed by the experiments
large Q leads to more shower
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2
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Tune the parameters to describe all data

n Now we will try to tune these parameters to describe all the world 
data for pt distribution for SIDIS, DY, W/Z at all energies
n Let us choose               GeV^2, i.e., the HERMES scale
n At this scale, the intrinsic transverse momentum width is already extracted by 

different group: there are some freedom

20
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arXiv:1003.2190 & Torino
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Finding a way to describe both SIDIS and DY/WZ 

n Study unpolarized cross section, and pin-down g2 
n Slightly adjust g2 (within their fitted uncertainty) such that non-perturbative 

Sudakov can predict        at HERMES
n Once this is fixed, adjust         such that it gives a good description of SIDIS
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This actually works
n Description of W/Z data at Tevatron and LHC
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Drell-Yan lepton pair production
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Multiplicity distribution in SIDIS 1
n Comparison with COMPASS data
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Multiplicity distribution in SIDIS 2

n Comparison with HERMES data
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Sivers effect

n Now let us try to use the same formalism to describe Sivers effect

n Now F(x,b; Q) is given by

n The perturbative expansion gives Qiu-Sterman function
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Sivers function

n Sivers function: an asymmetric parton distribution in a transversly 
polarized nucleon (kt correlated with the spin of the nucleon)
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1
2
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Fitting parameters

n Similar form for non-perturbative Sudakov factor (note: g2 is spin-
independent, so use the same g2)

n Intrinsic kt-width for Sivers has to be fitted
n x-dependence has to be fitted

n Qiu-Sterman function

n Total parameters (11): 
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Fitted results

n COMPASS proton
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COMPASS Deuteron target
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HERMES pion
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HERMES Kaons
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JLab neutron target
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Fitted Qiu-Sterman function

n chi2/d.o.f = 1.3: slightly larger than the usual Gaussian fit. Feel more 
confident when extrapolated to the whole Q range

n Only u and d quark Sivers functions are constrained by SIDIS data, all 
the sea quark Sivers functions are not constrained
n If set all sea quark Sivers functions vanishing, one still obtains the almost the 

same chi2/d.o.f.
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Some predictions for asymmetries of DY and W

n At 510 GeV RHIC energy (DY: pt [0,1], Q [4,9]  W: pt [0,3] GeV)

35

-0.01
-0

0.01
0.02
0.03
0.04
0.05

-2 -1.5-1 -0.5 0 0.5 1 1.5 2

W-

y

A
N

-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03

-2 -1.5-1 -0.5 0 0.5 1 1.5 2

W+

y
A
N

-0.04

-0.03

-0.02

-0.01

0

0.01

-4 -3 -2 -1 0 1 2 3 4

DY

y

A
N

!"#

!"# $#
%#

&#
'#



Feb 27, 2014 Zhongbo Kang, LANL

Predictions for other experiments

n DY at COMPASS: 190 GeV pi- beam

n DY at Fermilab: xf>0 polarized beam; xf<0 polarized target
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Roadmap for global analysis of spin asymmetries
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Summary

n Perturbatively, the QCD evolution kernel for TMDs are the same in all 
existing approaches

n The difficult on the QCD evolution comes from pinning down the non-
perturbative part, which has to be fitted from experimental data 

n We find some simple non-perturbative form, which can describe all 
the data on SIDIS, DY, W/Z production

n Use the same non-perturbative form, we extract the Sivers function 
and predict the asymmetry for DY and W production at RHIC energy 
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Thank you


