## uPDFs in Monte Carlo generators

H. Jung (DESY, Uni Antwerp)
F. Hautmann (Uni Oxford)

- uPDFs (TMDs) in MCs
  - why are they needed?
  - how can they determined?
    - CCFM gluon uPDF
      - fits to inclusive DIS and uncertainties
      - → description of DIS at HERA
      - → description of hard processes at the LHC?
  - the small kt region at small x

## Upsilon production



- Using TMDs with off-shell ME gives rather good description, without further tuning
- NNLO CSM is not as good!

## Charged particle spectra as fct of $p^*_t$ in DIS



H1 Coll. EPJC 73 (2013) 2406

- particle spectra as fct of  $p^*_t$  give constraints on hardness of partons in parton shower
- collinear shower models (RAPGAP) generate too soft spectra compared to measurement
- small x improved (CCFM) shower (CASCADE) and CDM (DJANGOH) generate harder spectrum → closer to measurement at large p\*<sub>t</sub>

### Kinematic effects in PDF determination

Determination of parton density functions using Monte Carlo event generator Federicon Samson-Himmelstjerna /afs/desy.de/group/h1/psfiles/theses/h1th-516.pdf

- perform fits to  $F_2$  using a Monte Carlo event generator which includes parton showers and intrinsic  $k_t$
- the resulting PDFs agree with standard LO ones if no PS and intrinsic  $k_t$  is applied.
- the final PDFs are different because of kinematic effects coming from transverse momenta of PS and intrinsic  $k_t$



H. Jung, F. Hautmann, uPDFs in MCs, INT-Wor

## Transverse momentum effects in pp

- Transverse momentum effects are relevant for many processes at LHC
- parton shower matched with NLO (POWHEG) generates additional  $k_t$ , leading to energy-momentum mismatch
- Transverse momentum effects are visible in high p<sub>t</sub> processes, not only at small x



log(x)

H. Jung, F. Hautmann, uPDFs in MCs, IN I-vvorkshop on "Studies of 3D Structure of Nucleon", Seattle 2014

log(x)

## uPDFs, x-sections and MCs

- basic elements are:
  - Matrix Elements:
    - on shell/off shell
  - PDFs
    - → unintegrated PDFs
  - Parton Shower
    - → angular ordering (CCFM)
- Proton remnant and hadronization handled by standard hadronization program, e.g. PYTHIA



$$\sigma(pp \to q\bar{q} + X) = \int \frac{dx_{g1}}{x_{g1}} \frac{dx_{g2}}{x_{g2}} \int d^2k_{t1} d^2k_{t2} \hat{\sigma}(\hat{s}, k_t, \bar{q}) \\
\times x_{g1} \mathcal{A}(x_{g1}, k_{t1}, \bar{q}) x_{g2} \mathcal{A}(x_{g2}, k_{t2}, \bar{q})$$

## Why off-shell matrix elements?

- Behavior of ME as function of  $k_t$ :
  - for small  $k_t$  converges to collinear result
  - for large  $k_t$  has suppression
  - \* suppression appears at "standard factorization scale":  $Q^2 + 4 \, m^2$
  - collinear factorization:  $\mu^2 \sim Q^2 + 4 m^2$ :

$$\int_0^{\mu^2} dk_{\perp} \hat{\sigma}(k_{\perp}, \ldots)$$





#### Which uPDFs?

take derivative of integrated PDF:

$$f(x, k_{\perp}^2) = rac{dg(x, k_{\perp}^2)}{dk_{\perp}^2} = \left[rac{lpha_{
m s}}{2\pi} \int_x^{1-\delta} P(z)g\left(rac{x}{z}, k_{\perp}^2
ight)dz
ight]$$

• KMR approach:

$$f(x, k_{\perp}^{2}, \mu^{2}) = \frac{dg(x, \mu^{2})}{d\mu^{2}} \exp\left(-\int_{k_{\perp}^{2}}^{\mu^{2}} \frac{\alpha_{s}}{2\pi} d\log k_{\perp}^{2} \sum_{i} \int_{0}^{1} P(z') dz'\right)$$

- generated from integrated PDF, only last emission generates transverse momentum via sudakov form factor.
- appropriate form DGLAP with strong ordering....
- this is what is done in all standard parton shower MCs

## Which uPDFs? CCFM approach

ullet Color coherence requires angular ordering instead of  $p_t$  ordering ...

$$q_i > z_{i-1}q_{i-1}$$

with 
$$q_i = rac{p_{ti}}{1-z_i}$$



- → at small x, no restriction on q  $p_{ti}$  can perform a random walk
- → splitting fct:



$$\tilde{P}_{g}(z,q,k_{t}) = \bar{\alpha}_{s} \left[ \frac{1}{1-z} - 1 + \frac{z(1-z)}{2} + \left( \frac{1}{z} - 1 + \frac{z(1-z)}{2} \right) \Delta_{ns} \right]$$

$$\log \Delta_{ns} = -\bar{\alpha}_{s} \int_{0}^{1} \frac{dz'}{z'} \int \frac{dq^{2}}{q^{2}} \Theta(k_{t} - q) \Theta(q - z' p_{t})$$

CataniCiafaloniFioraniMarchesini evolution forms a bridge between DGLAP and BFKL evolution

## Initial state parton showers using uPDFs

- Backward evolution from hard scattering towards proton
- No change in kinematics of hard scattering, since  $k_t$  of initial state partons treated by uPDF
- In all branchings kinematics are constraint by uPDF
- using the same frame for uPDF evolution and parton shower, no free or additional parameters are left for shower



For precision predictions need precision uPDFs with uncertainties!

## Evolution equation and uPDFs

$$x\mathcal{A}(x, k_t, q) = x\mathcal{A}(x, k_t, q_0) \Delta_s(q) + \int dz \int \frac{dq'}{q'} \cdot \frac{\Delta_s(q)}{\Delta_s(q')} \tilde{P}(z, k_t, q') \frac{x}{z} \mathcal{A}\left(\frac{x}{z}, q'\right)$$

solve integral equation via iteration:

$$x\mathcal{A}_0(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q)$$
 from q' to  $q$  w/o branching branching at q' from  $q_0$  to q' w/o branching  $x\mathcal{A}_1(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q) + \int \frac{dq'}{q'} \frac{\Delta(q)}{\Delta(q')} \int dz \tilde{P}(z) \frac{x}{z} \mathcal{A}(x/z,k_t',q_0)\Delta(q')$ 

Note: evolution equation formulated with Sudakov form factor is equivalent to "plus" prescription, but better suited for numerical solution for treatment of kinematics



# uPDFs from $F_2(x,Q^2)$ at small x – general case



$$\begin{array}{cccc} & \frac{d\sigma}{dxdQ^2} & = & \int dx_g \big[ dk_\perp^2 x_g \mathcal{A}_i(x_g,k_\perp^2,p) \big] \\ & & \times \hat{\sigma}(x_g,k_\perp^2,x,\mu_f^2,Q^2) \end{array}$$

 $\hat{\sigma}(x_g,k_\perp^2,x,\mu_f^2,Q^2)$  is (off-shell,  $k_t$  -dependent) hard scattering cross section

- until now, only gluon uPDFs were determined
- valence quarks from starting distribution of HERAPDF1.5

$$xQ_v(x, k_t, p) = xQ_{v0}(x, k_t, p) + \int \frac{dz}{z} \int \frac{dq^2}{q^2} \Theta(p - zq)$$

$$\times \Delta_s(p, zq)P(z, k_t) \ xQ_v\left(\frac{x}{z}, k_t + (1 - z)q, q\right)$$

$$P(z, k_t) = \bar{\alpha}_s\left(k_t^2\right) \frac{1 + z^2}{1 - z}$$

## Determination of uPDFs (TMDs)

- Apply formalism to describe HERA F<sub>2</sub> measurements
  - start with gluon only for small x
  - CCFM with full angular ordering → no k<sub>t</sub> ordering at small x
  - include valence quarks (for large x)
  - starting distribution for gluon at  $q_0$ :

$$x\mathcal{A}_0(x,k_\perp) = Nx^{-B} \cdot (1-x)^C \left(1 - Dx + E\sqrt{x}\right) \exp\left[-k_t^2/\sigma^2\right]$$

• starting distribution for valence quarks at  $q_0$ :

$$xQ_{v0}(x,k_t,p)=xQ_{v0}(x,k_t,q_0)\Delta_s(p,q_0)$$
  $xQ_{v0}(x,k_t,q_0)=xQ_{v ext{CTEQ66pdf}}(x,q_0)\exp[-k_t^2/\sigma^2]$  With  $\sigma^2=q_0^2/2$ 

## From HERA: small x improved gluon uPDF



- fit performed with herafitter package (full treatment of corr. and uncorr. uncertianties)
  - $F_{2}^{c}(x,Q^{2})$ :  $Q^{2} \ge 2.5$  GeV
  - $F_2(x,Q^2)$ :  $x \le 0.005$ ,  $Q^2 \ge 5$  GeV
- very good  $\chi^2/ndf$  obtained ( ~ 1)

## uPDF - integrated





- CCFM gluon is different from standard collinear gluon, since no sea quarks are included in fit
- valence quarks in CCFM are similar to CTEQ, but evolution is different due to different  $\alpha_s$

## CCFM gluon from $F_2$ and $F_2 \& F_2{}^c$ fit



Fit function:

$$\mathcal{A}_0(x) = N_g x^{-B_g} (1-x)^{C_g} \times (1-D_g x + E_g \sqrt{x} + F_g x^2)$$

- 2-loop  $\alpha_s$
- gluon splitting function with nonsingular terms
- fits:
  - set 1  $F_2$  : Q<sup>2</sup> > 5 GeV,  $x \le 0.005$
  - set 2  $F_2 \& F_2^c$ : Q<sup>2</sup> > 2.5 GeV
- new fit gives  $\chi^2/ndf \sim 1.2$
- details are different from previous uPDF set A<sub>0</sub>

## uncertainties of CCFM gluon





#### small $k_t$ , small $p^2$

- experimental uncertainties result in 10-20 % for gluon uncertainty at medium and large x
- uncertainties at small x very small
- factorization and renormalisation scale uncertainties large at large x, since no constrain from data:  $x < 0.005, Q^2 > 5 \text{ GeV}^2$

## uncertainties of CCFM gluon





#### large $k_t$ , large $p^2$

- experimental uncertainties result in 10-20 % for gluon uncertainty at medium and large x
- uncertainties at small x very small
- factorization and renormalisation scale uncertainties large at large x, since no constrain from data:  $x < 0.005, Q^2 > 5 \text{ GeV}^2$

## Application to W + jet production at LHC



H. Jung, F. Hautmann, uPDFs in MCs, INT-Workshop on "Studies of 3D Structure of Nucleon", Seattle 2014

## Application to W + jet production at LHC



- off-shell ME + CCFM k<sub>t-</sub> shower predicts correct x-section and shape for 3rd jet (similar to NLO W+2jet)!
  - 3rd jet comes from CCFM k<sub>t-</sub> shower

## W + n-jets: $k_t$ shower vrs NLO





- off-shell ME + CCFM  $k_t$  shower for x-section and shape for  $\Delta \phi$  between first 2 jets agrees with measurements within uncertainties:
  - sensitive probe of shower:
    - decorrelation region well reproduced!

## How to determine directly TMD of gluon?

- Higgs as gluon trigger
   P. Cipriano, S. Dooling, A. Grebenyuk, P. Gunnellini, F. Hautmann, H. Jung, P. Katsas (arXiv:1308.1655 and Phys. Rev. D 88, 097501 (2013)
- comparison with DY production at same mass range
- pT spectrum of DY and Higgs: difference in soft gluon resummation



H. Jung, F. Hautmann, uPDFs in MCs, INT-Workshop on "Studies of 3D Structure of Nucleon", Seattle 2014

## How to determine directly TMD of gluon?

Until last year, perspectives for QCD studies at HL LHC were rather bad.....

- BUT now, with Higgs, we have new and exciting options, which opens up a completely new world for QCD studies
- gluon fusion processes with color singlet final state at large masses



Differential cross sections of the higgs boson measured in the diphoton decay channel using 8 TeV pp collisions. ATLAS-CONF-2013-072.



H. Jur

## pp: factorization issues



- $k_t$  of initial partons a priori not restricted, extends to large  $k_t$
- factorization at small x proven for heavy flavor production or gauge boson production
- with  $k_t$  of initial partons, identification of hard scattering no longer trivial for light partons

# What happens at small x and small $k_t$ ?

## Accessing low $p_t$ and low $k_t$ region

 Basic partonic perturbative cross section

$$\sigma_{\rm hard}(p_{\perp \rm min}^2) = \int_{p_{\perp \rm min}^2} \frac{d\sigma_{\rm hard}(p_{\perp}^2)}{dp_{\perp}^2} dp_{\perp}^2$$

diverges faster than  $1/p_{t\ min}^2$  as  $p_{t\ min} \to 0$  and exceeds eventually total inelastic (non-diffractive) cross section

- mechanism needed which tames rise:
- damping of xsection
  - saturation effects?
  - Multiparton Interactions ?



already in  $\eta$  range accessible by experiment

## Taming of x-section in PYTHIA

• taming of xsection ( $\propto 1/p_t^4$ ) in PYTHIA:

$$\sigma 
ightarrow \sigma imes rac{lpha_s(p_t + p_{t0})}{lpha_s(p_t)} rac{p_t^4}{\left(p_t^2 + p_{t0}^2\right)^2}$$

•  $p_{to}$  is a free parameter!



## Relation to saturation and TMDs

- using TMDs
  - saturation happens at small k<sub>t</sub>
  - gluon density vanishes

#### A. Grebenyuk, DIS2013, Marseille

Modification of unintegrated PDF such that it goes to zero for  $k_T \rightarrow 0$ :





• using TMDs with saturation at small  $k_t$  gives correct behavior of xsection

## Comparison with CMS measurement



#### P. Katsas (CMS), DIS2013, Marseille



- QGSJETII-04 and Herwig++ fail to describe the measurements
- EPOS LHC in good agreement with the data

Panos Katsas (DESY) FSQ-12-026 report DIS 2013 15 / 19

## TMDplotter and TMDlib

- combine and collect different ansaetze and approaches
- library of parametrizations of different TMDs and uPDFs similar to LHApdf
  - started by F. Hautmann, H. Jung,
     P. Mulders, A. Signori, T. Rogers
- plotter for easy comparison of different TMDs and uPDFs: http://tmdplotter.desy.de
- support, contributions and help for TMDplotter and TMDlib projects are very welcome!



### Conclusion

- TMD uPDFs are important
  - effects form transverse momentum in small x processes ( $\Upsilon$  production etc) but also in higher x processes (W+2jets, etc)
  - precision determination of TMD-gluon from inclusive DIS HERA data
    - now with model- and experimental uncertainties
- TMD uPDF gives a consistent recipe for initial state parton shower
  - no kinematic corrections are needed
- very small x processes
  - saturation comes naturally from TMDs vanishing at small  $k_t$  and small  $k_t$  and small  $k_t$  and can be implemented in MCs
- TMD uPDF together with off-shell ME applied to ep and pp scattering