Non-perturbative TMD parameters and p_T -spectra of electroweak bosons

Marco Guzzi, Pavel Nadolsky and Bowen Wang arXiv:1309.1393

"Studies of 3D Structure of Nucleon"

INT Workshop, Seattle, Feb 24-28, 2014

Motivation I

♠ TMD PDFs concept and TMD-factorization: CRUCIAL for processes sensitive to intrinsic parton transverse momentum.

♠ We have many examples in which TMD-factorization is at work at small transverse momentum: Drell-Yan (DY), (SIDIS), etc.

♠ TMD PDFs: useful tool in the construction of Monte Carlo event generators, where the details of final state kinematics are important.

♠ GPD and TMD PDFs: a road map for understanding the 3D structure of the proton

Motivation II

In this talk :

 \star we illustrate how recent Drell-Yan data can be used to extract the nonperturbative component of the CSS resummed cross section and estimate its dependence on arbitrary resummation scales and other factors.

 \bigstar We examine if the ϕ^*_η DY data corroborate the universal behavior of the resummed nonperturbative terms that is expected from the TMD factorization theorem.

 \bigstar The analysis: technically challenging, it requires to examine several effects that were negligible in the previous studies of the resummed nonperturbative terms.

Recent theory developments

A lot of progress is going on TMD factorization

- ► Collins and Rogers, PRD 2013
- ▶ Aybat, Collins, Qiu and Rogers, PRD 2012
- ► Echevarriá, Idilbi, Schäfer, Scimemi EPJ C 2012
- ▶ Aybat and Rogers PRD 2011
- ▶ J. C. Collins and F. Hautmann, PLB 472, 129 (2000); J. C. Collins and F. Hautmann, JHEP0103, 016 (2001).
- ▶ A. A. Henneman, D. Boer and P. J. Mulders, NPB 620, 331 (2002).
- ▶ A. V. Belitsky, X. Ji and F. Yuan, NPB 656, 165 (2003).
- ▶ D. Boer, P. J. Mulders and F. Pijlman, NPB667, 201 (2003).
- ▶ J.C. Collins, Acta Phys. Polon. B 34, 3103 (2003).
- ► F. Hautmann and D. E. Soper, PRD 75, 074020 (2007).
- ▶ J. C. Collins, T. C. Rogers and A. M. Stasto, PRD 77, 085009 (2008).
- ► I. O. Cherednikov and N. G. Stefanis, Phys. Rev. D 77, 094001 (2008); I. O. Cherednikov, A. I. Karanikas and N. G. Stefanis, NPB 840, 379 (2010).

What we are going to show

- Analysis of the Z/γ^* distribution in terms of the novel variable ϕ^*_{η} at D0 Tevatron and LHC. D0 Coll. Phys.Rev.Lett. 106 (2011) 122001; ATLAS Coll. Phys.Lett. B705 (2011) 415-434:
- ► These measurements are compared to a new improved version of ResBos at approx $NNLO + NNLL$ accuracy.
- \blacktriangleright We constrain non-perturbative effects in the small ϕ^*_η region (small Q_T) and we take into account the systematic uncertainties in the $70 < Q < 110$ GeV range.
- ▶ New simple parametrization for the NP Gaussian smearing: relevant for precise measurements of M_W .

New ϕ^*_η measurements will be available in the near future from DØ, ATLAS and CMS coll.

The Drell-Yan process

In the Drell-Yan process we consider decay angles ϕ_{CS} , θ_{CS} in the Collins-Soper frame (PRD 1977)

The CS frame is a rest frame of the vector boson in which the z axis bisects the angle formed by the momenta \vec{p}_1 and $-\vec{p}_2$ of the incident quark and antiquark. In the CS frame, the decay leptons escape back-to-back $(\vec{l}_1 + \vec{l}_2 = 0)$.

It requires knowledge of the lepton momenta and is thus susceptible to the effects of lepton momentum resolution.

Z/γ^* boson transverse momentum distribution in ϕ^*_η A new variable ϕ^*_η has been proposed by Banfi et al. EPJC 2011, PLB701 2011 to describe final state electron and muon angular distributions in hadronic collisions.

$$
\phi_{\eta}^* = \tan (\phi_{\text{acop}}/2) \sin \theta_{\eta}^*, \qquad \cos \theta_{\eta}^* = \tanh \left(\frac{\eta^- - \eta^+}{2} \right), \qquad (1)
$$

 $\phi_{acop} = \pi - \Delta \varphi$ and $\Delta \varphi$: azimuthal angle φ between the leptons; $\sin \theta_{\eta}^*$: scattering angle of the dileptons with respect to the beam in the dilepton rest frame. In the $Q_T \rightarrow 0$ limit one has

$$
\phi_{\eta}^* \approx a_T/M \qquad \cos \theta_{\eta}^* \approx \cos \theta_{cs}, \qquad (2)
$$

M is the dilepton invariant mass and a_T the component of Q_T normal to an axis in the transverse plane which coincides with the lepton axis (Banfi, Dasgupta, Delgado, JHEP 2009).

- ▶ less sensitivity to experimental resolution on lepton momenta.
- ► ϕ_{η}^* is accessed by a direct experimental measurement of track $directions \rightarrow \text{very precise}$!

ϕ_η^* and the CSS variables

In the limit $Q_{\mathcal{T}} \rightarrow 0$, ϕ_{η}^* simplifies to

$$
\phi_{\eta}^* \approx (Q_T/Q)\sin\varphi_{CS},\qquad(3)
$$

since $\tan(\phi_{acop}/2) = \sqrt{\left(1 + \cos \Delta \varphi\right)/\left(1 - \cos \Delta \varphi\right)}$, and

$$
\theta_{\eta}^* \to \theta_{CS}, \qquad \cos \Delta \varphi \to -1 + 2 \left(\frac{Q_T}{Q} \frac{\sin \varphi_{CS}}{\sin \theta_{CS}} \right)^2. \tag{4}
$$

Measurement of ϕ^*_{η} thus directly probes $Q_{\mathcal{T}}/Q$ at $Q_T \ll Q$. More details with some algebra in the backup.

A graphical illustration

taken from EPJC (2011) 71 1600; PRL 106 (2011) 122001, arXiv:1010.0262 [hep-ex]

CSS Formalism: a brief overview

It is known for a long time that to have a good perturbative description of QCD observables like transverse momentum distributions, logarithmic contributions of the type $L = \ln (Q_T^2/Q^2)$ that have a singular behavior when $Q_T \rightarrow 0$, have to be resummed.

This reorganization is achieved by the Collins, Soper and Sterman (CSS) formalism (NPB 1985), according to which the Q_T distribution of hadronically produced lepton pairs $h_1h_2 \rightarrow V(\rightarrow l_1l_2)X$ is described by the following combination

$$
\frac{d\sigma}{dQ_T} = \frac{d\sigma}{dQ_T}\Big|_{W-Resummed} + \frac{d\sigma}{dQ_T}\Big|_{F.O.} - \frac{d\sigma}{dQ_T}\Big|_{Asymptotic}
$$
 (5)

CSS Formalism: the basic structure

QCD factorization as a function of q_T

- \blacksquare $k_{\mathcal{T}}$ -dependent PDFs $\mathcal{P}(\mathsf{x},\vec{k}_{\mathcal{T}})$
- Sudakov function $\mathcal{S}(x,\vec{k}_{T})$

⊲ actually, their impact parameter (b) space transforms

- Collinear PDFs $f_a(x,\mu)$
- hard matrix elements H of order N

 Truncated perturbative expansion

Factorization at $Q_T \ll Q$

$$
\left. \frac{d\sigma_{AB\to\mathsf{VX}}}{dQ^2dydQ^2_T} \right|_{Q^2_T \ll Q^2} = \sum_{a,b=g, {^{(-)}_{a}, {^{(-)}_{a}, \cdots}} \atop {a,b=g, {^{(+)}_{a}, {^{(-)}_{a}, \cdots}}}\int \frac{d^2b}{(2\pi)^2} e^{-i\vec{q}_T \cdot \vec{b}} \widetilde{W}_{ab}(b,Q,x_A,x_B)
$$

 $\widetilde{W}_{ab}(b,Q,x_A,x_B) = |\mathcal{H}_{ab}|^2 e^{-S(b,Q)} \overline{\mathcal{P}}_a(x_A,b) \overline{\mathcal{P}}_b(x_B,b)$

 \mathcal{H}_{ab} is the hard vertex, S is the soft (Sudakov) factor, $\overline{\mathcal{P}}_{a}(x, b)$ is the unintegrated PDF in the gauge $\eta \cdot \mathcal{A} = 0$, $\eta^2 < 0$

$$
\overline{\mathcal{P}}_a(x,b)=\int d^{n-2}\vec{k}_{\mathcal{T}}e^{i\vec{k}_{\mathcal{T}}\cdot\vec{b}}\mathcal{P}_a(x,\vec{k}_{\mathcal{T}}).
$$

When $b \ll 1$ GeV $^{-1}$, $\mathcal{S}(b, Q)$ and $\overline{\mathcal{P}}_a(x, b)$ are calculable in perturbative QCD;

$$
\overline{\mathcal{P}}_{a/A}(x,b) = (\mathcal{C}_{ja} \otimes f_{a/A})(x,b;\mu_F) + \mathcal{O}(b^2)
$$

The differential cross section

The result for the differential cross section is given by

$$
\frac{d\sigma (h_1 h_2 \to Z(\to l_1 \bar{l}_2)X)}{dQ^2 dy dq^2 \sigma Q^2} = \frac{1}{48\pi S} \frac{Q^2}{(Q^2 - M_Z^2)^2 + Q^4 \Gamma_Z^2/M_Z^2}
$$

$$
\times \frac{1}{(2\pi)^2} \left\{ \int d^2 b e^{i\vec{q}_T \cdot \vec{b}} \sum_{j,k} \tilde{W}_{j\bar{k}}(b_*, Q, x_1, x_2, \Omega, C_1, C_2, C_3) * \tilde{W}_{j\bar{k}}^{NP}(b, Q, x_1, x_2) + Y(q_T, Q, x_1, x_2, \Omega, C_4) \right\},
$$
(6)

where (Balazs and Yuan PRD 1997)

$$
\tilde{W}_{j\bar{k}}(b_*, Q, x_1, x_2, \Omega, C_1, C_2, C_3) \propto
$$
\n
$$
e^{-S(b, Q, C_1, C_2)} (\mathcal{C}_{ja} \otimes f_{a/h_1}) (x_1) (\mathcal{C}_{\bar{k}a} \otimes f_{b/h_2}) (x_2).
$$
\n(7)

The parameter b_* is the separation scale at which the perturbative \tilde{W} factorizes from the non-perturbative \tilde{W}^{NP}

The Sudakov exponent

The Sudakov exponent is given by

$$
S(b,Q,C_1,C_2)=\int_{C_1^2/b^2}^{C_2^2Q^2}\frac{d\bar{\mu}^2}{\mu^2}\left[A(\alpha_s(\bar{\mu}),C_1)\ln\left(\frac{C_2^2Q^2}{\bar{\mu}^2}\right)+B(\alpha_s(\bar{\mu}),C_1,C_2)\right],
$$

$$
A(\alpha_s(\bar{\mu}), C_1) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s(\bar{\mu})}{\pi}\right)^n A^{(n)}(C_1),
$$

\n
$$
B(\alpha_s(\bar{\mu}), C_1, C_2) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s(\bar{\mu})}{\pi}\right)^n B^{(n)}(C_1, C_2),
$$
\n(9)

where coefficients $A^{(n)}(\mathcal{C}_1)$ and $B^{(n)}(\mathcal{C}_1,\mathcal{C}_2)$ are known from the literature, while parton convolutions are defined as

$$
\left(\mathcal{C}_{ja} \otimes f_{a/h_1}\right)(x_1) = \int_{x_1}^{1} \frac{d\xi_1}{\xi_1} \mathcal{C}_{ja}\left(\frac{x_1}{\xi_1}, b, \mu = \frac{C_3}{b}, C_1, C_2\right) f_{a/h_1}(\xi_1, \mu = \frac{C_3}{b}).
$$
 (10)

The Y contribution

The Y term which is defined as the difference between the fixed order perturbative contribution and those obtained by expanding the perturbative part of $\tilde{W}_{j\bar{k}}$ is given by

$$
Y(Q_T, Q, x_1, x_2, \theta, \phi, C_4) = \int_{x_1}^1 \frac{d\xi_1}{\xi_1} \int_{x_2}^1 \frac{d\xi_2}{\xi_2} \sum_{n=1}^\infty \left[\frac{\alpha_s(C_4 Q)}{\pi} \right]^n
$$

$$
f_{a/h_1}(\xi_1, C_4 Q) R_{ab}^{(n)}(Q_T, Q, \frac{x_1}{\xi_1}, \frac{x_2}{\xi_2}, \theta, \phi) f_{b/h_2}(\xi_2, C_4 Q), \quad (11)
$$

where $R^{(n)}_{ab}$ are less singular than Q_T^{-2} or $Q_T^{-2} \left(Q_T^2/Q^2 \right)$ when $Q_{\tau} \rightarrow 0$.

Non-perturbative function

The non-perturbative $\tilde{W}^{NP}(b, Q)$ function as originally parametrized in CSS paper (1985), is given by

$$
\tilde{W}_{jk}^{NP}(b, Q, Q_0, x_1, x_2) = \exp\left[-F_1(b) \ln\left(\frac{Q^2}{Q_0^2}\right) -F_{j/h_1}(x_1, b) - F_{\bar{k}/h_2}(x_2, b)\right],
$$
\n(12)

where functions $F_1(b)$, F_{j/h_1} and $F_{\bar{k}/h_2}$ have to be determined by fits to the experimental data.

$bW(b, Q)$ in Z boson production

$$
\qquad \qquad \blacktriangleright \ \frac{b \lesssim 0.5 \ \mathrm{GeV}^{-1}}{\left(\mu_b \sim 1/b > 2 \ \mathrm{GeV} \right)}
$$

- \triangleright dominated by the leading-power (logarithmic) term, calculable in PQCD: $\widetilde{W}(b, Q) \approx W_{LP}(b, Q)$
- \triangleright contributes most of the rate at large Q

$bW(b, Q)$ in Z boson production

► 0.5 $\lesssim b \lesssim 1.5 - 2$ GeV⁻¹ $(0.5 - 0.7 \lesssim \mu_b \lesssim 2 \text{ GeV})$

- \blacktriangleright higher-order terms in $\alpha_{\sf s}$ and $b^{\sf p}$ modify $d\sigma/dQ_{\sf T}$ at $Q_{\mathcal{T}} \lesssim 10 \,\, \mathrm{GeV}$
- ► constrained within a global Q_T fit (similar to PDF's), especially by the Drell-Yan process at $Q = 3 - 10$ GeV

$bW(b, Q)$ in Z boson production

 \blacktriangleright b $\geq 1.5 - 2$ GeV⁻¹

- \triangleright terra incognita; tiny contributions ?
- ► negligible effect ?

Can new data sets from hadron colliders set constraints on W^{NP} ?

Let's check it out!

We need tools:

 \star ResBos by Balazs, Yuan (1997); Balazs Qiu and Yuan (1995); Brock, Landry, Nadolsky, Yuan (2002)

 \bigstar Fully differential NNLO computations

- \triangleright FEWZ by K. Melnikov and F. Petriello PRD 74 (2006) 114017
- ▶ DYNNLO by G.Bozzi, S.Catani, M.Grazzini, D. De Florian, NPB 737 (2006) 73
- \star Resummed NNLL/NNLO computation
	- ► Ferrera, Grazzini et al.
	- ▶ A.Banfi, M.Dasgupta, S.Marzani, L.Tomlinson JHEP 1201 (2012) 044

Current version of ResBos

(see Pavel Nadolsky's talk for a more general description of ResBos)

★ Approximated Resummed NNLL/NNLO computations

- ► $ResBox + CAMDIA$ (\leftarrow M.G., A. Cafarella, C. Corianò 2006)
	- -Approximate NNLO $(\mathcal{C}^{(2)}$ found numerically)
	- NNLL resummation $A^{(3)},B^{(2)}$

♠ The current accuracy of ResBos is competitive with full NNLL/NNLO resummed computations.

♠ It's fast and includes all the dominant components of the full NNLO calculation.

Systematic uncertainties in this study

Main corrections in our computation

- ► EM corrections $\approx 2\%$ at small $\phi^*_{\eta},$
- ► NNLO corrections.
- \triangleright Kinematic corrections \rightarrow dependence on the matching (already discussed in Nadolsky's talk)

Main source of systematic uncertainties

- ► Scale dependence,
- \triangleright Non-perturbative function,
- ▶ PDF uncertaintv.

Scale dependence of the CSS resummed form factor

At small b, the scale-dependent expression of the CSS resummed form factor takes the form

$$
\widetilde{W}_{\alpha,j}^{pert} = \sum_{j=u,d,s...} |H_{\alpha,j}(Q,\Omega,C_2Q)|^2
$$
\n
$$
\times \exp\left[-\int_{C_1^2/b^2}^{C_2^2 Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} A(\bar{\mu};C_1) \ln\left(\frac{C_2^2 Q^2}{\bar{\mu}^2}\right) + B(\bar{\mu};C_1,C_2)\right]
$$
\n
$$
\times \sum_{a=g,q,\bar{q}} [C_{ja} \otimes f_{a/h_1}] \left(\chi_1,\frac{C_1}{C_2},\frac{C_3}{b}\right) \sum_{b=g,q,\bar{q}} [C_{\bar{j}b} \otimes f_{b/h_2}] \left(\chi_2,\frac{C_1}{C_2},\frac{C_3}{b}\right),
$$

 $\mu_F = C_3/b$ is the factorization scale at which Wilson coefficient functions are evaluated.

In our study we have used "non-canonical" choice representations corresponding to $C_1 = C_3 = \{2b_0, b_0\}$, with $C_2 = 1/2$. This sets the resummation scale to $M_Z/2$ and improves the agreement with the ϕ^*_η data.

Perturbative and NP form factors

Given the strong suppression of the deeply nonperturbative large-b region in Z boson production, only contributions from the transition region of b of about $1\,{\rm GeV^{-1}}$ are non-negligible compared to the perturbative contribution from $b < 1$ GeV $^{-1}$. In the transition region, $W(b, Q)$ is approximatly given by the extrapolated leading-power, or perturbative, part $\widetilde{W}^{pert}(b, Q)$, and the nonperturbative smearing factor $\widetilde{W}^{NP}(b, Q)$:

$$
\widetilde{W}_{\alpha,j}(b,Q,y_Z)=\widetilde{W}_{\alpha,j}^{\text{pert}}(b_*,Q,y_Z)\widetilde{W}^{\text{NP}}(b,Q,y_Z). \hspace{1cm} (13)
$$

When b is large, the slow b dependence in $\widetilde{W}^{pert}_{\alpha,j}(b_*,Q)$ can be neglected, compared to the rapidly changing $W_{NP}(b, Q)$.

b_* prescription: one way of doing the separation

To avoid divergence due to the Landau pole in $\alpha_{s}(\overline{\mu})$ at $\overline{\mu}\rightarrow 0$, scales of order $1/b$ in $W^{pert}(b, Q)$ are redefined according to the b_* prescription (J. Collins 1981, 1984) dependent on two parameters. In the Sudakov exponential, the lower limit $(C_1/b)^2$ is replaced by $(C_1/b_*(b, b_{max}))^2$, with

$$
b_*(b, b_{\text{max}}) \equiv \frac{b}{\sqrt{1 + (b/b_{\text{max}})^2}},\tag{14}
$$

where b_{max} is set to $1.5\;{\rm GeV}^{-1}$ (Konychev, Nadolsky 2005)

More on the NP function

In a broad range of Q values in the Drell-Yan process, the behavior of experimentally observed Q_T distributions is described by

$$
\widetilde{W}^{NP}(b,Q) = \exp \left[-b^2 \left(a_1 + a_2 \ln \left(\frac{Q}{2 Q_0} \right) + a_3 \ln \left(\frac{x_1^{(0)} x_2^{(0)}}{0.01} \right) \right) \right],
$$
\n(15)

with $x_{1,2}^{(0)} = \frac{Q}{\sqrt{2}}$ $\frac{1}{s}e^{\pm y}$, free parameters a_1 , a_2 , a_3 , and a fixed dimensional parameter $Q_0 = 1.6$ GeV. In the vicinity of Q around M_Z , Eq. [\(15\)](#page-27-0) reduces to

$$
\widetilde{W}^{NP}(b, Q \approx M_Z) = \exp\left[-b^2 a_Z\right] \tag{16}
$$

with

$$
a_Z = a_1 + a_2 \ln\left(\frac{M_Z}{2\ Q_0}\right) + a_3 \ln\left(\frac{M_Z^2}{0.01\ s}\right). \tag{17}
$$

- All experiments prefer $\beta \approx 0$
- \triangleright a(Q) \approx a₁ + a₂ ln(Q/3.2)
- ► $a_2 \sim 0.18$ GeV² agrees well with the IR renormalon + lattice QCD estimate, $(a_2)_{IR} = 0.19^{+0.12}_{-0.09}~\rm GeV^2$
- \blacktriangleright Improve the large-Q constraints using ϕ^*_η data.
- ▶ Include scale dependence and other factors.

Gaussian smearing from previous global p_T fits $a_{1,2,3}$ found from the fit are correlated with the assumed form of W_{NP} (value of b_{max})

Landry, Brock, Nadolsky, Yuan, ${\sf 2002} \; \bigl(\textit{b}_{\textit{max}} = 0.5 \; \textsf{GeV}^{-1} \bigr)$:

 $a(Q) =$ $0.21\!\pm\!0.68$ \sum_{a_1} $\sum_{\mathbf{a}}$ $a₂$ $\ln \frac{Q}{3.2} - 0.13$ a₃ $\ln(100x_Ax_B)$

 \Box a₃ is comparable to a_1, a_2

For $\sqrt{s} = 1.96$ TeV, $a(M_Z) \approx 2.7$ GeV² (surprisingly large)

Konychev-Nadolsky, 2006 $(b_{max} = 1.5 \text{ GeV}^{-1})$:

 $a(Q) =$ $0.20+0.19$ ln $\frac{Q}{3.2}-0.03$ ln $(100x_Ax_B)$

■ a₂ \sim 0.19 GeV²

a₃ $\ll a_1, a_2$; in Z production, $a(M_Z) \approx 0.9$ GeV²

n reduced $\chi^2/d.o.f.$ in the fit

It is worthy to do a new investigation on the b_{max} dependence by using ϕ^\ast_η data from Tevatron and LHC. We want to know where transitions happen.

Important message

The modifications on the $Q_{\mathcal{T}}$ $\left(\phi^*_{\eta}\right)$ spectrum due to variations of the scale dependence (scale parameters C_1, C_2, C_3, C_4 in CSS)

are DIFFERENT

from the modifications due to variations of the NP function!

The small- $Q_{\mathcal{T}}/\phi_{\eta}^*$ spectrum cannot be fully described by employing perturbative scale variations only. The constraining power of ϕ^*_η differential distribution data allows us to estimate the size of these nonperturbative effects.

Results of the analysis by which we determine the NP parameter a_Z from very precise data on the Z ϕ^*_{η} distribution at DØ $\,$ Tevatron.

Z and W production: a_z from fit to the data.

We determine the value of a_z from a fit to the D0 ϕ^*_η distribution data using two methods.

 \bigstar Method I: we compute the χ^2 without including the shifts due to variations of C_1 , C_2 , C_3 .

 \bigstar Method II: we compute the χ^2 by including the covariance matrix due to these shifts.

Method I: χ^2/N_{pt} as a function of a_Z with fixed $C_{1,2,3}$.

Method II: we allow for shifts in $C_{1,2,3}$.

Recapitulation: main findings of this analysis

68% C.L. ranges for $a\overline{z}$ in individual $y\overline{z}$ bins and in all bins. All fits consistently yield a_z values that are at least 5_{σ} from zero. No pronounced rapidity dependence in contrast to Berge,

Nadolsky, Olness, Yuan

$C_{1,2,3}$ scale dependence for the electron channel

Muons in the backup

Conclusions

- \triangleright We have shown that a significant nonperturbative Gaussian smearing is necessary to describe features of the low ϕ^*_{η} spectrum. A non-zero NP function is present even if all the perturbative scale parameters of the CSS formalism are varied.
- \blacktriangleright Values of a_Z smaller than 0.5 GeV² are disfavoured by the fit to the recent DØ data.
- ► The constraining power of ϕ^*_η differential distribution data allows us to estimate the size of these nonperturbative effects.
- \triangleright RESBOS is a valuable tool for investigations at low transverse momentum regions at colliders. It will be
- ► Precise measurements of hadronic cross sections at small Q_T will verify the TMD formalism for QCD factorization and shed light on the nonperturbative QCD dynamics.

BACKUP

Scan over b_{max}

The 2005 p_T analysis

- \blacktriangleright leads to a consistent picture of the power-suppressed term
- ► supports dominance of soft contributions in $\mathcal{F}_{NP}(b, Q)$
- \blacktriangleright suggests
	- \triangleright Gaussian $\mathcal{F}_{\mathsf{NP}}(b,Q) = b^2 \left[0.20 + 0.19 \ln (Q/3.2) - 0.026 \ln (100 \text{x}_A \text{x}_B) \right]$
	- \triangleright linear In Q dependence (consistent with SIDIS)
	- ► small \sqrt{s} dependence
	- \triangleright no tangible flavor dependence
	- ► uncertainty translates into $\delta M_W \approx 15$ MeV
- ► applies to light-flavor (u, d, s) scattering at $x \gtrsim 10^{-2}$

$O(\alpha_s^2)$ $\frac{2}{s}$) corrections in ResBos at approx: current setup

- \blacktriangleright the FO contribution, is computed up to $O(\alpha_s^2)$ for the leading structure functions.
- \blacktriangleright The $Y = Y_{\sf NLO} K_{\sf NNLO}$ piece is computed up to $O(\alpha_{\sf s}^2)$ by using the K-factors as in Arnold and Reno Nucl.Phys. B319 (1989); Arnold and Kauffman Nucl.Phys. B349 (1991), for the dominant F_{-1} only.
- \triangleright The W piece is computed up to NNLL approximation in the Sudakov exponent, while the finite part of the coefficient functions $C^{(n)}(\xi, b, \mu, C_1, C_2)$ is computed up to $O(\alpha_s^2)$ by using K-factors obtained by CANDIA (Cafarella, Corianò, M.G., JHEP 0708 (2007); CPC 179 (2008)).
- In $C^{(2)}(\xi, b, \mu, C_1, C_2)$ included is also the logarithmic dependence on the coefficients $\mathcal{C}_1, \mathcal{C}_2$ up to $O(\alpha_s^2).$

Size of electromagnetic corrections

Final state EM radiation is accounted for by using PHOTOS (Barberio and Was CPC79 1994). Here Theory is ResBos at approx NNLO

p pbar → **Z0/**γ***** → **l1 l2, S = 1.96 TeV**

These are around 2% at small ϕ^*_{η}

ϕ_η^* and $\mathsf{a}_\mathcal{T}$

$$
\sin \theta_{\eta}^* = \frac{2l_{\mathcal{T}}}{M} \tag{18}
$$

since

$$
\tan(\phi_{acop}/2) = \sqrt{\left(1 + \cos \Delta\varphi\right) / \left(1 - \cos \Delta\varphi\right)}\tag{19}
$$
\n
$$
Q_T^2 = l_{T1}^2 + l_{T2}^2 + 2l_{T1}^2 l_{T2}^2 \cos \Delta\varphi
$$
\nIn the soft limit $Q_T \to 0$ we have $l_{T1} \approx l_{T2}$.
\nIn this limit the leptons are nearly back-to-back in the transverse plane which results in $l_{T1}^2 - l_{T2}^2 = Q_T \cos\alpha$ where α is the angle made by the Q_T vector with the lepton axis in the transverse plane.

$$
Q_T^2 \sin^2 \alpha \approx 2l_T^2 (1 + \cos \Delta \varphi)
$$

\n
$$
\tan(\phi_{acop}/2) = \sqrt{(1 + \cos \Delta \varphi)/(1 - \cos \Delta \varphi)} = \frac{Q_T \sin \alpha}{2l_T} = a_T/M
$$

ϕ^*_{η} and the CSS variables: general expression

One can write cos θ^*_η as a function of the lepton momenta in the lab frame as

$$
\cos \theta_{\eta}^{*} = \tanh \left(\frac{\eta_{1} - \eta_{2}}{2} \right) = \frac{\sqrt{l_{1}^{+} l_{2}^{-}} - \sqrt{l_{1}^{-} l_{2}^{+}}}{\sqrt{l_{1}^{+} l_{2}^{-}} + \sqrt{l_{1}^{-} l_{2}^{+}}} = \frac{f \left(\cos \theta_{CS} \right) - f \left(-\cos \theta_{CS} \right)}{f \left(\cos \theta_{CS} \right) + f \left(-\cos \theta_{CS} \right)},
$$
\n
$$
\text{where } l_{1,2}^{\pm} = \left(l_{1,2}^{0} \pm l_{1,2}^{z} \right) / \sqrt{2}, \tag{20}
$$

$$
f(\cos\theta_{CS}) \equiv \sqrt{M_T^2 + 2M_T Q \cos\theta_{CS} + Q^2 \cos^2\theta_{CS} - Q_T^2 \sin^2\theta_{CS} \cos^2\varphi_{CS}},
$$

and
$$
M_T^2 = Q^2 + Q_T^2.
$$
 We also write $\cos \Delta \varphi$ as (21)

 $\cos \Delta \varphi = (Q_T^2 - Q^2 \sin^2 \theta_{CS} - Q_T^2 \sin^2 \theta_{CS} \cos^2 \varphi_{CS})$ $\times [(Q^2 \sin^2\theta_{CS} + Q^2_T \sin^2\theta_{CS} \cos^2\varphi_{CS} + Q^2_T)^2 - 4 M^2_T Q^2_T \sin^2\theta_{CS} \cos^2\varphi_{CS}]^{-\frac{1}{2}} .$ (22)

Approximated $C^{(2)}$ Wilson Coeff. function

$$
C_{ja}^{(2)}\left(\xi, \frac{C_1}{C_2}, C_3\right) = C_{ja}^{(2,c)}(\xi) + \delta_{ja}\delta(1-\xi)L^{(2)}(C_1, C_2) + \left\{\frac{\beta_0}{2}C_{jb}^{(1,c)}(\xi) - [C_{jb}^{(1,c)} \otimes P_{ba}^{(1)}](\xi) - P_{ja}^{(2)}(\xi)\right\} \ln \frac{\mu_F b}{b_0} + \frac{1}{2}[P_{jb}^{(1)} \otimes P_{ba}^{(1)}](\xi) \ln^2 \frac{\mu_F b}{b_0}.
$$
 (23)

$$
C_{j_a}^{(2)}(\xi, C_1/C_2, C_3) \approx \left\{ \langle \delta C^{(2,c)} \rangle + L^{(2)}(C_1, C_2) \right\} \delta(1-\xi) \delta_{j_a}, \qquad (24)
$$

where $\langle \delta C^{(2,c)} \rangle$ denotes the average value of the Wilson coefficient in Z production for the canonical scale combination and $L^{(2)}(\mathcal{C}_1,\mathcal{C}_2)$ contains the scale dep. when C_1, C_2, C_3 is "non-canonical".

Reduction on C_2 -sensitivity

Renormalization constant C_2 dependence: approx NNLO vs NLO.

 $C_{1,2,3}$ scale dependence Muons

χ^2 definition for Method I

In method I a_Z is determined from the DØ data by minimization of a function

$$
\chi^2(a_Z) = \sum_{i=1}^{N_{pt}} \left(\frac{D_i - \overline{T}_i(a_Z)}{s_i} \right)^2, \qquad (25)
$$

where D_i are the data points; $\bar{\mathcal{T}}_i({\mathfrak {a}}_{{\mathcal Z}})$ are the theoretical predictions for fixed scale parameters $\{\bar{\mathsf{C}}_1,\bar{\mathsf{C}}_2,\bar{\mathsf{C}}_3\}$; si are the uncorrelated experimental uncertainties; and N_{pt} is the number of points.

χ definition for Method II

We introduce a linearized approximation for the covariance matrix. For each scale parameter C_{α} , $\alpha = 1, 2, 3$, we define a nuisance parameter $\lambda_\alpha \equiv \log_2(C_\alpha/\bar C_\alpha)$ and compute the finite-difference derivatives of theory cross sections

$$
\beta_{i\alpha}\equiv \frac{T_i(a_Z,\lambda_{\alpha}=+1)-T_i(a_Z,\lambda_{\alpha}=-1)}{2},\qquad \alpha=1,2,3;\quad i=1,\ldots,N_{pt}
$$

over the interval $\lambda_{\alpha} = \pm 1$ corresponding to $\bar{C}_{\alpha}/2 \leq C_{\alpha} \leq 2\bar{C}_{\alpha}$. Variations of λ_{α} introduce correlated shifts in theory cross sections $T_i(a_Z, C_{1,2,3})$ with respect to the fixed-scale theory cross sections $T_i(a_Z, \bar{C}_{1,2,3}) \equiv \bar{T}_i(a_Z)$. We can reasonably assume that the probability distribution over each λ_{α} is similar to a Gaussian one with a central value of 0 and half-width σ_{λ} , taken to be the same for all λ_{α} . The goodness-of-fit function is then defined as

$$
\chi^2(a_Z, \lambda_{1,2,3}) = \sum_{i=1}^{N_{pt}} \left(\frac{D_i - \overline{T}_i(a_Z) - \sum_{\alpha=1}^3 \beta_{\alpha i} \lambda_\alpha}{s_i} \right)^2 + \sum_{\alpha=1}^3 \frac{\lambda_\alpha^2}{\sigma_\lambda^2}.
$$
 (26)

The minimum with respect to λ_{α} can be found algebraically for every $a_{\overline{z}}$

Comparison to other predictions

The ratios to the central theoretical prediction of the DØ electron data at $|y_Z| \leq 1$ and alternative theoretical predictions. The central prediction is computed assuming $C_1 = C_3 = 2b_0$. $C_2 = 1/2$, $a_Z = 1.1$ GeV², and kinematical correction 1. Theory predictions based on alternative kinematical corrections (0 and 2) and BLNY nonperturbative parametrization are also shown.

Data vs. theory ratios for the Q_T distribution by ATLAS 7 TeV, $35-40$ ${\sf pb}^{-1}$ (ATLAS coll. 2011) and ϕ^*_η distribution ATLAS 7 TeV, 4.6 fb $^{-1}$ (ATLAS coll. 2012)