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Motivation I

♠ TMD PDFs concept and TMD-factorization: CRUCIAL for
processes sensitive to intrinsic parton transverse momentum.

♠ We have many examples in which TMD-factorization is at work
at small transverse momentum: Drell-Yan (DY), (SIDIS), etc.

♠ TMD PDFs: useful tool in the construction of Monte Carlo
event generators, where the details of final state kinematics are
important.

♠ GPD and TMD PDFs: a road map for understanding the 3D
structure of the proton



Motivation II

In this talk :
⋆ we illustrate how recent Drell-Yan data can be used to extract
the nonperturbative component of the CSS resummed cross
section and estimate its dependence on arbitrary resummation
scales and other factors.

⋆ We examine if the φ∗
η DY data corroborate the universal

behavior of the resummed nonperturbative terms that is expected
from the TMD factorization theorem.

⋆ The analysis: technically challenging, it requires to examine
several effects that were negligible in the previous studies of the
resummed nonperturbative terms.



Recent theory developments
A lot of progress is going on TMD factorization

◮ Collins and Rogers, PRD 2013
◮ Aybat, Collins, Qiu and Rogers, PRD 2012
◮ Echevarriá, Idilbi, Schäfer, Scimemi EPJ C 2012
◮ Aybat and Rogers PRD 2011
◮ J. C. Collins and F. Hautmann, PLB 472, 129 (2000); J. C. Collins

and F. Hautmann, JHEP0103, 016 (2001).
◮ A. A. Henneman, D. Boer and P. J. Mulders, NPB 620, 331 (2002).
◮ A. V. Belitsky, X. Ji and F. Yuan, NPB 656, 165 (2003).
◮ D. Boer, P. J. Mulders and F. Pijlman, NPB667, 201 (2003).
◮ J.C. Collins, Acta Phys. Polon. B 34, 3103 (2003).
◮ F. Hautmann and D. E. Soper, PRD 75, 074020 (2007).
◮ J. C. Collins, T. C. Rogers and A. M. Stasto, PRD 77, 085009

(2008).
◮ I. O. Cherednikov and N. G. Stefanis, Phys. Rev. D 77, 094001

(2008); I. O. Cherednikov, A. I. Karanikas and N. G. Stefanis, NPB
840, 379 (2010).



What we are going to show

◮ Analysis of the Z/γ∗ distribution in terms of the novel
variable φ∗

η at D0 Tevatron and LHC.
D0 Coll. Phys.Rev.Lett. 106 (2011) 122001;
ATLAS Coll. Phys.Lett. B705 (2011) 415-434:

◮ These measurements are compared to a new improved version
of ResBos at approx NNLO + NNLL accuracy.

◮ We constrain non-perturbative effects in the small φ∗
η region

(small QT ) and we take into account the systematic
uncertainties in the 70 ≤ Q ≤ 110 GeV range.

◮ New simple parametrization for the NP Gaussian smearing:
relevant for precise measurements of MW .

New φ∗
η measurements will be available in the near future from

DØ, ATLAS and CMS coll.



The Drell-Yan process

In the Drell-Yan process we consider decay angles φCS , θCS in
the Collins-Soper frame (PRD 1977)
The CS frame is a rest frame of the vector boson in which the z

axis bisects the angle formed by the momenta ~p1 and −~p2 of the
incident quark and antiquark. In the CS frame, the decay leptons
escape back-to-back (~l1 +~l2 = 0).
It requires knowledge of the lepton momenta and is thus
susceptible to the effects of lepton momentum resolution.



Z/γ∗ boson transverse momentum distribution in φ∗η
A new variable φ∗

η has been proposed by Banfi et al. EPJC 2011,
PLB701 2011 to describe final state electron and muon angular
distributions in hadronic collisions.

φ∗
η = tan (φacop/2) sin θ

∗
η, cos θ∗η = tanh

(
η− − η+

2

)
, (1)

φacop = π −∆ϕ and ∆ϕ: azimuthal angle ϕ between the leptons; sin θ∗η:
scattering angle of the dileptons with respect to the beam in the dilepton
rest frame. In the QT → 0 limit one has

φ∗
η ≈ aT/M cos θ∗η ≈ cos θcs , (2)

M is the dilepton invariant mass and aT the component of QT normal to
an axis in the transverse plane which coincides with the lepton axis
(Banfi, Dasgupta, Delgado, JHEP 2009).

◮ less sensitivity to experimental resolution on lepton momenta.

◮ φ∗
η is accessed by a direct experimental measurement of track

directions → very precise!



φ∗η and the CSS variables

In the limit QT → 0, φ∗
η simplifies to

φ∗
η ≈ (QT/Q) sinϕCS , (3)

since tan(φacop/2) =
√
(1 + cos∆ϕ) / (1− cos∆ϕ), and

θ∗η → θCS , cos∆ϕ→ −1 + 2

(
QT

Q

sinϕCS

sin θCS

)2

. (4)

Measurement of φ∗
η thus directly probes QT/Q at

QT << Q.
More details with some algebra in the backup.



A graphical illustration
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CSS Formalism: a brief overview

It is known for a long time that to have a good perturbative
description of QCD observables like transverse momentum
distributions, logarithmic contributions of the type L = ln(Q2

T/Q
2)

that have a singular behavior when QT → 0, have to be
resummed.

This reorganization is achieved by the Collins, Soper and Sterman
(CSS) formalism (NPB 1985), according to which the QT

distribution of hadronically produced lepton pairs
h1h2 → V (→ l1l2)X is described by the following combination

dσ

dQT

=
dσ

dQT

∣∣∣
W−Resummed

+
dσ

dQT

∣∣∣
F .O.
− dσ

dQT

∣∣∣
Asymptotic

(5)



CSS Formalism: the basic structure

dQT
dσ

n
s
n
s

α n
s

= + −

RES             +            FO     −    SUBTRACTION

Calculate in
perturbative QCD

Calculate as an
expansion of RES

=

αat order  at order  at order  α up to order

Piece containing
the Sudakov exponent

T

T

d σ
dq

q



QCD factorization as a function of qT
(according to Collins, Soper, and Sterman approach)

Small-qT term

Λ2
QCD ≪ q2T ≪ Q2

Large-qT term

Λ2
QCD ≪ q2T ∼ Q2

Overlap term

P(x; k

T

)

P(x; k

T

)

S H

H

H

f(x)

f(x)

P(x; k

T

)

P(x; k

T

)

S H

H+ −

FO
� kT -dependent PDFs

P(x , ~kT )
� Sudakov function

S(x , ~kT )
⊲ actually, their impact
parameter (b) space
transforms

� Collinear PDFs
fa(x , µ)

� hard matrix elements
H of order N

� Truncated
perturbative expansion

N∑

k=0

αk
s

2k−1∑

m=0

ckm lnm
(
q2T
Q2

)



Factorization at QT ≪ Q

dσAB→VX

dQ2dydQ2
T

∣∣∣∣
Q2

T
≪Q2

=
∑

a,b=g ,
(−)
u ,

(−)

d ,...

∫
d2b

(2π)2
e−i~qT ·~bW̃ab(b,Q, xA, xB)

W̃ab(b,Q, xA, xB) = |Hab|2 e−S(b,Q)Pa(xA, b)Pb(xB , b)

Hab is the hard vertex, S is the soft (Sudakov) factor, Pa(x , b) is
the unintegrated PDF in the gauge η · A = 0, η2 < 0

Pa(x , b) =
∫
dn−2~kT e

i~kT ·~bPa(x , ~kT ).

When b ≪ 1 GeV−1, S(b,Q) and Pa(x , b) are calculable in
perturbative QCD;

Pa/A(x , b) =
(
Cja ⊗ fa/A

)
(x , b;µF ) +O(b2)



The differential cross section
The result for the differential cross section is given by

dσ
(
h1h2 → Z (→ l1 l̄2)X

)

dQ2dydq2TdΩ
=

1

48πS

Q2

(Q2 −M2
Z )

2 + Q4Γ2Z/M
2
Z

× 1

(2π)2





∫
d2be i~qT ·

~b
∑

j ,k

W̃j k̄(b∗,Q, x1, x2,Ω,C1,C2,C3)∗

W̃NP
jk̄

(b,Q, x1, x2) + Y (qT ,Q, x1, x2,Ω,C4)
}
, (6)

where (Balazs and Yuan PRD 1997)

W̃j k̄(b∗,Q, x1, x2,Ω,C1,C2,C3) ∝
e−S(b,Q,C1,C2)

(
Cja ⊗ fa/h1

)
(x1)

(
Ck̄a ⊗ fb/h2

)
(x2) . (7)

The parameter b∗ is the separation scale at which the perturbative
W̃ factorizes from the non-perturbative W̃NP .



The Sudakov exponent
The Sudakov exponent is given by

S(b,Q,C1,C2) =

∫ C 2
2Q

2

C 2
1 /b

2

d µ̄2

µ2

[
A(αs(µ̄),C1) ln

(
C 2
2Q

2

µ̄2

)
+ B(αs(µ̄),C1,C2)

]
, (8)

A(αs(µ̄),C1) =
∞∑

n=1

(
αs(µ̄)

π

)n

A
(n)(C1) ,

B(αs(µ̄),C1,C2) =

∞∑

n=1

(
αs(µ̄)

π

)n

B
(n)(C1,C2) , (9)

where coefficients A(n)(C1) and B(n)(C1,C2) are known from the
literature, while parton convolutions are defined as

(
Cja ⊗ fa/h1

)
(x1) =

∫ 1

x1

dξ1
ξ1
Cja
(
x1

ξ1
, b, µ =

C3

b
,C1,C2

)
fa/h1(ξ1, µ =

C3

b
).(10)



The Y contribution

The Y term which is defined as the difference between the fixed
order perturbative contribution and those obtained by expanding
the perturbative part of W̃j k̄ is given by

Y (QT ,Q, x1, x2, θ, φ,C4) =

∫ 1

x1

dξ1
ξ1

∫ 1

x2

dξ2
ξ2

∞∑

n=1

[
αs(C4Q)

π

]n

fa/h1(ξ1,C4Q)R
(n)
ab

(
QT ,Q,

x1

ξ1
,
x2

ξ2
, θ, φ

)
fb/h2(ξ2,C4Q), (11)

where R
(n)
ab are less singular than Q−2

T or Q−2
T

(
Q2

T/Q
2
)
when

QT → 0.



Non-perturbative function

The non-perturbative W̃NP(b,Q) function as originally
parametrized in CSS paper (1985), is given by

W̃NP
jk̄

(b,Q,Q0, x1, x2) = exp

[
−F1(b) ln

(
Q2

Q2
0

)

−Fj/h1(x1, b)− Fk̄/h2(x2, b)
]
, (12)

where functions F1(b), Fj/h1 and Fk̄/h2 have to be determined by
fits to the experimental data.



bW̃ (b,Q) in Z boson production
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◮ b . 0.5 GeV−1

(µb ∼ 1/b > 2 GeV)

◮ dominated by the leading-power (logarithmic) term, calculable
in PQCD:
W̃ (b,Q) ≈ W̃LP(b,Q)

◮ contributes most of the rate at large Q



bW̃ (b,Q) in Z boson production
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◮ higher-order terms in αs and bp modify dσ/dQT at
QT . 10 GeV

◮ constrained within a global QT fit (similar to PDF’s),
especially by the Drell-Yan process at Q = 3− 10 GeV



bW̃ (b,Q) in Z boson production
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◮ terra incognita; tiny contributions ?

◮ negligible effect ?
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We need tools:

⋆ ResBos by Balazs, Yuan (1997); Balazs Qiu and Yuan (1995);
Brock, Landry, Nadolsky, Yuan (2002)

⋆ Fully differential NNLO computations

◮ FEWZ by K. Melnikov and F. Petriello PRD 74 (2006) 114017

◮ DYNNLO by G.Bozzi, S.Catani, M.Grazzini, D. De Florian,
NPB 737 (2006) 73

⋆ Resummed NNLL/NNLO computation

◮ Ferrera, Grazzini et al.

◮ A.Banfi, M.Dasgupta, S.Marzani, L.Tomlinson JHEP 1201
(2012) 044



Current version of ResBos

(see Pavel Nadolsky’s talk for a more general description of
ResBos)
⋆ Approximated Resummed NNLL/NNLO computations

◮ ResBos + CANDIA ( ← M.G., A. Cafarella, C. Corianò

2006)

-Approximate NNLO (C(2) found numerically)
- NNLL resummation A(3),B (2)

♠ The current accuracy of ResBos is competitive with full
NNLL/NNLO resummed computations.

♠ It’s fast and includes all the dominant components of the full
NNLO calculation.



Systematic uncertainties in this study
Main corrections in our computation

◮ EM corrections ≈ 2% at small φ∗
η,

◮ NNLO corrections,

◮ Kinematic corrections → dependence on the matching
(already discussed in Nadolsky’s talk)

Main source of systematic uncertainties

◮ Scale dependence,

◮ Non-perturbative function,

◮ PDF uncertainty.



Scale dependence of the CSS resummed form factor

At small b, the scale-dependent expression of the CSS resummed
form factor takes the form

W̃
pert
α,j =

∑

j=u,d,s...

|Hα,j(Q,Ω,C2Q)|2

× exp

[
−
∫ C2

2Q
2

C2
1 /b

2

d µ̄2

µ̄2
A(µ̄;C1) ln

(
C 2
2Q

2

µ̄2

)
+ B(µ̄;C1,C2)

]

×
∑

a=g,q,q̄

[
Cja ⊗ fa/h1

](
χ1,

C1

C2
,
C3

b

) ∑

b=g,q,q̄

[
Cj̄b ⊗ fb/h2

](
χ2,

C1

C2
,
C3

b

)
,

µF = C3/b is the factorization scale at which Wilson coefficient functions are
evaluated.

In our study we have used “non-canonical” choice representations

corresponding to C1 = C3 = {2b0, b0}, with C2 = 1/2.

This sets the resummation scale to MZ/2 and improves the agreement

with the φ∗
η data.



Perturbative and NP form factors

Given the strong suppression of the deeply nonperturbative large-b
region in Z boson production, only contributions from the
transition region of b of about 1 GeV−1 are non-negligible
compared to the perturbative contribution from b < 1 GeV−1. In
the transition region, W̃ (b,Q) is approximatly given by the

extrapolated leading-power, or perturbative, part W̃ pert(b,Q), and

the nonperturbative smearing factor W̃NP(b,Q):

W̃α,j(b,Q, yZ ) = W̃
pert
α,j (b∗,Q, yZ )W̃

NP(b,Q, yZ ). (13)

When b is large, the slow b dependence in W̃
pert
α,j (b∗,Q) can be

neglected, compared to the rapidly changing W̃NP(b,Q).



b∗ prescription: one way of doing the separation

To avoid divergence due to the Landau pole in αs(µ) at µ→ 0,

scales of order 1/b in W̃ pert(b,Q) are redefined according to the
b∗ prescription (J.Collins 1981,1984) dependent on two
parameters. In the Sudakov exponential, the lower limit (C1/b)

2 is
replaced by (C1/b∗(b, bmax))

2, with

b∗(b, bmax) ≡
b√

1 + (b/bmax)2
, (14)

where bmax is set to 1.5 GeV−1 (Konychev, Nadolsky 2005)



More on the NP function
In a broad range of Q values in the Drell-Yan process, the behavior
of experimentally observed QT distributions is described by

W̃NP (b,Q) = exp

[
−b2

(
a1 + a2 ln

(
Q

2 Q0

)
+ a3 ln

(
x
(0)
1 x

(0)
2

0.01

))]
,

(15)

with x
(0)
1,2 = Q√

s
e±y , free parameters a1, a2, a3, and a fixed

dimensional parameter Q0 = 1.6 GeV.
In the vicinity of Q around MZ , Eq. (15) reduces to

W̃NP (b,Q ≈ MZ ) = exp

[
−b2aZ

]
(16)

with

aZ = a1 + a2 ln

(
MZ

2 Q0

)
+ a3 ln

(
M2

Z

0.01 s

)
. (17)



Independent scans of a(Q) in 5 experiments
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a
2
 = 0.19 GeV2

FNP(b,Q) ≈ a(Q)b2−β

◮ All experiments prefer β ≈ 0
◮ a(Q) ≈ a1 + a2 ln(Q/3.2)

◮ a2 ∼ 0.18 GeV2 agrees well with the IR renormalon + lattice
QCD estimate, (a2)IR = 0.19+0.12

−0.09 GeV2

◮ Improve the large-Q constraints using φ∗
η data.

◮ Include scale dependence and other factors.



Gaussian smearing from previous global pT fits
a1,2,3 found from the fit are correlated with the assumed form of

W̃NP (value of bmax)

Landry, Brock, Nadolsky, Yuan,

2002 (bmax = 0.5 GeV−1):

a(Q) =

0.21︸︷︷︸
a1

+0.68︸︷︷︸
a2

ln Q
3.2−0.13︸︷︷︸

a3

ln(100xAxB)

� a3 is comparable to a1, a2

� For
√
s = 1.96 TeV,

a(MZ ) ≈ 2.7 GeV2

(surprisingly large)

Konychev-Nadolsky, 2006

(bmax = 1.5 GeV−1):

a(Q) =

0.20+0.19 ln Q
3.2−0.03 ln(100xAxB)

� a2 ∼ 0.19 GeV2

� a3 ≪ a1, a2; in Z production,
a(MZ ) ≈ 0.9 GeV2

� reduced χ2/d .o.f . in the fit



It is worthy to do a new investigation on the bmax

dependence by using φ∗
η data from Tevatron and LHC.

We want to know where transitions happen.



Important message

The modifications on the QT (φ∗
η) spectrum due to

variations of the scale dependence (scale parameters
C1,C2,C3,C4 in CSS)

are DIFFERENT

from the modifications due to variations of the NP
function!

The small-QT/φ∗
η spectrum cannot be fully described by

employing perturbative scale variations only. The
constraining power of φ∗

η differential distribution data
allows us to estimate the size of these nonperturbative
effects.



Results of the analysis by which we determine
the NP parameter aZ from very precise data
on the Z φ∗η distribution at DØ Tevatron.



Z and W production: aZ from fit to the data.

We determine the value of aZ from a fit to the

D0 φ∗η distribution data using two methods.

⋆ Method I: we compute the χ2 without including
the shifts due to variations of C1,C2,C3.

⋆ Method II: we compute the χ2 by including the
covariance matrix due to these shifts.



Method I: χ2/Npt as a function of aZ with fixed C1,2,3.
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Fit results for φ∗
η ≤ 0.1

Npt χ2
min/Npt aZ ± δaZ (GeV2)

|yZ | ≤ 1, e + µ 24 3.24 0.79+0.2
−0.03

2.83 1.14± 0.08

1 ≤ |yZ | ≤ 2, e + µ 24 1.87 0.79± 0.05
3.03 1.12+0.14

−0.13

|yZ | ≥ 2, e 12 0.74 0.8+0.03
−0.05

0.58 1.04+0.18
−0.16

All yZ bins, 60 2.19 0.79± 0.03
weighted average 2.46 1.12± 0.07



Method II: we allow for shifts in C1,2,3.
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C1,C2, C3 are independent in each yZ bin

Npt χ2
min/Npt aZ ± δaZ (GeV2) Best-fit C1,2,3

|yZ | ≤ 1, e + µ 24 1.0 0.56+0.95
−0.02 0.21, 0.18, 7.56

1.16 0.85+0.3
−0.15 1.47, 0.3, 1.46

1 ≤ |yZ | ≤ 2, e + µ 24 1.48 1.22+0.27
−0.36 18, 0.58,0.1

1.70 0.79+0.2
−0.1 1.69, 0.37, 0.77

|yZ | ≥ 2, e 12 - - -
0.59 0.99+0.99

−0.31 1.74, 0.48, 2.12

Weighted average 60 0.97± 0.25
of all bins 0.82± 0.12



Recapitulation: main findings of this analysis
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C1,2,3 scale dependence for the electron channel
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Conclusions

◮ We have shown that a significant nonperturbative Gaussian
smearing is necessary to describe features of the low φ∗

η spectrum.
A non-zero NP function is present even if all the perturbative scale
parameters of the CSS formalism are varied.

◮ Values of aZ smaller than 0.5 GeV2 are disfavoured by the fit to the
recent DØ data.

◮ The constraining power of φ∗
η differential distribution data allows us

to estimate the size of these nonperturbative effects.

◮ ResBos is a valuable tool for investigations at low transverse
momentum regions at colliders. It will be

◮ Precise measurements of hadronic cross sections at small QT will
verify the TMD formalism for QCD factorization and shed light on
the nonperturbative QCD dynamics.
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The 2005 pT analysis

◮ leads to a consistent picture of the power-suppressed term

◮ supports dominance of soft contributions in FNP(b,Q)

◮ suggests

◮ Gaussian
FNP(b,Q) = b2 [0.20 + 0.19 ln(Q/3.2)− 0.026 ln(100xAxB)]

◮ linear lnQ dependence (consistent with SIDIS)

◮ small
√
s dependence

◮ no tangible flavor dependence

◮ uncertainty translates into δMW ≈ 15 MeV

◮ applies to light-flavor (u, d , s) scattering at x & 10−2



O(α2
s ) corrections in ResBos at approx: current

setup

◮ the FO contribution, is computed up to O(α2
s ) for the leading

structure functions.

◮ The Y = YNLOKNNLO piece is computed up to O(α2
s ) by

using the K-factors as in Arnold and Reno Nucl.Phys. B319
(1989); Arnold and Kauffman Nucl.Phys. B349 (1991), for
the dominant F−1 only.

◮ The W piece is computed up to NNLL approximation in the
Sudakov exponent, while the finite part of the coefficient
functions C(n)(ξ, b, µ,C1,C2) is computed up to O(α2

s ) by
using K-factors obtained by CANDIA (Cafarella, Corianò,
M.G., JHEP 0708 (2007); CPC 179 (2008)).

◮ In C(2)(ξ, b, µ,C1,C2) included is also the logarithmic
dependence on the coefficients C1,C2 up to O(α2

s ).



Size of electromagnetic corrections
Final state EM radiation is accounted for by using PHOTOS ( Barberio

and Was CPC79 1994). Here Theory is ResBos at approx NNLO
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These are around 2% at small φ∗
η



φ∗η and aT

sin θ∗η =
2lT
M

(18)

since

tan(φacop/2) =
√
(1 + cos∆ϕ) / (1− cos∆ϕ) (19)

Q2
T = l2T1 + l2T2 + 2l2T1l

2
T2 cos∆ϕ

In the soft limit QT → 0 we have lT1 ≈ lT2.
In this limit the leptons are nearly back-to-back in the transverse
plane which results in l2T1 − l2T2 = QT cosα where α is the angle
made by the QT vector with the lepton axis in the transverse plane.

Q2
T sin2 α ≈ 2l2T (1 + cos∆ϕ)

tan(φacop/2) =
√
(1 + cos∆ϕ) / (1− cos∆ϕ) =

QT sinα

2lT
= aT/M



φ∗η and the CSS variables: general expression
One can write cos θ∗η as a function of the lepton momenta in the
lab frame as

cos θ∗η = tanh
(η1 − η2

2

)
=

√
l+1 l

−

2 −
√

l−1 l+2√
l+1 l

−

2 +
√

l−1 l+2

=
f (cos θCS)− f (− cos θCS)

f (cos θCS) + f (− cos θCS)
,

(20)
where l±1,2 = (l01,2 ± l z1,2)/

√
2,

f (cos θCS) ≡
√

M2
T + 2MTQ cos θCS + Q2 cos2 θCS − Q2

T sin2 θCS cos2 ϕCS ,

(21)
and M2

T = Q2 + Q2
T . We also write cos∆ϕ as

cos∆ϕ = (Q2
T − Q2 sin2 θCS − Q2

T sin2 θCS cos
2 ϕCS)

×[(Q2 sin2 θCS + Q2
T sin2 θCS cos

2 ϕCS + Q2
T )

2 − 4M2
TQ

2
T sin2 θCS cos

2 ϕCS ]
−

1
2 .

(22)



Approximated C(2) Wilson Coeff. function

C(2)ja

(
ξ,

C1

C2
,C3

)
= C(2,c)ja (ξ) + δjaδ(1− ξ)L(2)(C1,C2)

+

{
β0

2
C(1,c)jb (ξ)− [C(1,c)jb ⊗ P

(1)
ba ](ξ)− P

(2)
ja (ξ)

}
ln

µFb

b0

+
1

2
[P

(1)
jb ⊗ P

(1)
ba ](ξ) ln

2 µFb

b0
. (23)

C(2)ja (ξ,C1/C2,C3) ≈
{
〈δC(2,c)〉+ L(2)(C1,C2)

}
δ(1− ξ) δja, (24)

where 〈δC(2,c)〉 denotes the average value of the Wilson coefficient in Z

production for the canonical scale combination and L(2)(C1,C2) contains
the scale dep. when C1,C2,C3 is “non-canonical”.



Reduction on C2-sensitivity
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C1,2,3 scale dependence Muons
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χ2 definition for Method I

In method I aZ is determined from the DØ data by minimization of
a function

χ2(aZ ) =

Npt∑

i=1

(
Di − T̄i (aZ )

si

)2

, (25)

where Di are the data points; T̄i (aZ ) are the theoretical predictions
for fixed scale parameters {C̄1, C̄2, C̄3}; si are the uncorrelated
experimental uncertainties; and Npt is the number of points.



χ2 definition for Method II
We introduce a linearized approximation for the covariance matrix. For
each scale parameter Cα, α = 1, 2, 3, we define a nuisance parameter
λα ≡ log2(Cα/C̄α) and compute the finite-difference derivatives of theory
cross sections

βiα ≡
Ti (aZ , λα = +1)− Ti (aZ , λα = −1)

2
, α = 1, 2, 3; i = 1, . . . ,Npt

over the interval λα = ±1 corresponding to C̄α/2 ≤ Cα ≤ 2C̄α.
Variations of λα introduce correlated shifts in theory cross sections
Ti (aZ ,C1,2,3) with respect to the fixed-scale theory cross sections
Ti (aZ , C̄1,2,3) ≡ T̄i (aZ ). We can reasonably assume that the probability
distribution over each λα is similar to a Gaussian one with a central value
of 0 and half-width σλ, taken to be the same for all λα. The
goodness-of-fit function is then defined as

χ2(aZ , λ1,2,3) =

Npt∑

i=1

(
Di − T̄i (aZ )−

∑3
α=1 βαiλα

si

)2

+
3∑

α=1

λ2
α

σ2
λ

. (26)

The minimum with respect to λα can be found algebraically for every aZ

as in Pumplin 2001



Comparison to other predictions
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The ratios to the central theoretical prediction of the DØ electron
data at |yZ | ≤ 1 and alternative theoretical predictions. The
central prediction is computed assuming C1 = C3 = 2b0,
C2 = 1/2, aZ = 1.1 GeV2, and kinematical correction 1. Theory
predictions based on alternative kinematical corrections (0 and 2)
and BLNY nonperturbative parametrization are also shown.



φ∗η at ATLAS

 (GeV)
T

Q1 10 210

D
at

a/
T

he
or

y

0.7

0.8

0.9

1

1.1

1.2

1.3

Scale parameter dependence
 CT10 NNLO kc1µµCombined ee+

/Npt=1.132χ   
best

Data/Theory

 = 7 TeVS l1+l2+X,  → Z0 →p+p 

η
*φ

-310 -210 -110 1

D
at

a/
T

he
or

y
0.85

0.9

0.95

1

1.05

1.1

 all binsµµee+
Data/Theory  KN2

 = 0.5
1

a
 = 0.7

1
a

 = 0.8
1

a
 = 0.9

1
a

 = 1.0
1

a
 = 1.1

1
a

 = 1.2
1

a
 = 1.4

1
a

 = 1.7
1

a

-1 Ldt=4.6 fb∫ = 7 TeV, S l1 l2, →* γ Z0/→ATLAS pp 

Data vs. theory ratios for the QT distribution by ATLAS 7 TeV,
35− 40 pb−1 (ATLAS coll. 2011) and φ∗

η distribution ATLAS 7

TeV, 4.6 fb−1 (ATLAS coll. 2012)


