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Motivation |

& TMD PDFs concept and TMD-factorization: CRUCIAL for
processes sensitive to intrinsic parton transverse momentum.

& We have many examples in which TMD-factorization is at work
at small transverse momentum: Drell-Yan (DY), (SIDIS), etc.

& TMD PDFs: useful tool in the construction of Monte Carlo
event generators, where the details of final state kinematics are
important.

& GPD and TMD PDFs: a road map for understanding the 3D
structure of the proton



Motivation |l

In this talk :

Y we illustrate how recent Drell-Yan data can be used to extract
the nonperturbative component of the CSS resummed cross
section and estimate its dependence on arbitrary resummation
scales and other factors.

% We examine if the ¢; DY data corroborate the universal
behavior of the resummed nonperturbative terms that is expected
from the TMD factorization theorem.

% The analysis: technically challenging, it requires to examine
several effects that were negligible in the previous studies of the
resummed nonperturbative terms.



Recent theory developments
A lot of progress is going on TMD factorization
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What we are going to show

» Analysis of the Z/~* distribution in terms of the novel
variable ¢; at DO Tevatron and LHC.
DO Coll. Phys.Rev.Lett. 106 (2011) 122001;
ATLAS Coll. Phys.Lett. B705 (2011) 415-434:

» These measurements are compared to a new improved version
of ResBos at approx NNLO + NNLL accuracy.

» We constrain non-perturbative effects in the small ¢;, region
(small Q1) and we take into account the systematic
uncertainties in the 70 < Q < 110 GeV range.

» New simple parametrization for the NP Gaussian smearing:
relevant for precise measurements of My .

New ¢; measurements will be available in the near future from
D@, ATLAS and CMS coll.



The Drell-Yan process
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In the Drell-Yan process we consider decay angles ¢¢s, f¢cs in
the Collins-Soper frame (PRD 1977)

The CS frame is a rest frame of the vector boson in which the z
axis bisects the angle formed by the momenta p; and —p» of the
incident quark and antiquark. In the CS frame, the decay leptons
escape back-to-back (I + b = 0).

It requires knowledge of the lepton momenta and is thus
susceptible to the effects of lepton momentum resolution.



Z/~* boson transverse momentum distribution in o

A new variable ¢} has been proposed by Banfi et al. EPJC 2011,
PLB701 2011 to describe final state electron and muon angular
distributions in hadronic collisions.

- _pt
¢y, = tan (¢acop/2) sin 0y, cos @, = tanh (77277> ) (1)

$acop =T — A and Ayp: azimuthal angle ¢ between the leptons; sin 6;:
scattering angle of the dileptons with respect to the beam in the dilepton
rest frame. In the Q1 — 0 limit one has

n~ar/M cos f; A cos O, (2)

M is the dilepton invariant mass and at the component of @7 normal to
an axis in the transverse plane which coincides with the lepton axis
(Banfi, Dasgupta, Delgado, JHEP 2009).

> less sensitivity to experimental resolution on lepton momenta.

> ¢, is accessed by a direct experimental measurement of track
directions — very precise!



¢, and the CSS variables

In the limit Q7 — 0, ¢; simplifies to

oy~ (QT/Q)sinpcs, (3)

since tan(pacop/2) = /(1 + cos Ap) / (1 — cos Ayp), and

&sin @cs 2
Q sinfcs )

0, — 0cs, cosAp— —1+2 < (4)

Measurement of ¢; thus directly probes Qr/Q at
Qr << Q.

More details with some algebra in the backup.



A graphical illustration

(1) QT Ar (2)

Recoill

taken from EPJC (2011) 71 1600; PRL 106 (2011) 122001,
arXiv:1010.0262 [hep-ex]



CSS Formalism: a brief overview

It is known for a long time that to have a good perturbative
description of QCD observables like transverse momentum
distributions, logarithmic contributions of the type L = In(Q%/Q?)
that have a singular behavior when Q@+ — 0, have to be
resummed.

This reorganization is achieved by the Collins, Soper and Sterman
(CSS) formalism (NPB 1985), according to which the Q1
distribution of hadronically produced lepton pairs

hih, — V(— hhk)X is described by the following combination

do  do n do _ do
dQT - dQT W — Resummed dQT F.O. dQT

Asymptotic



CSS Formalism: the basic structure

dQT / / - SUBTRACTION

Piece containing Calculate in Calculate as an

erturbative QCD expansion of RES
the Sudakov exponen gt orderag Q up to order of




QCD factorization as a function of g1

(according to Collins, Soper, and Sterman approach)
Small-g7 term Large-g1 term Overlap term

Noep < g5 < @2 Nocp < g5 ~ Q2

B kr-dependent PDFs

P(x, kr) B Coll PDF M Truncated
B Sudakov function f(Xoﬂl)near S perturbative expansion
S(X, ET)

. N 2k—1
B hard matrix elements x i qr
> actually, their impact H of order N Zas Z Ckm 1N\ 52

parameter (b) space
transforms




Factorization at Q1 < @

d?b . o~
= Z /We_'qrbwab(b, Q, xa, xB)

Q2 Q? (—) (=)
a,b=

doag—vx

dQ>dydQ3

Wib(b, Q, x4, x8) = [Hap|* e SEDP,(xa, b)Py(xs, b)

H.p is the hard vertex, S is the soft (Sudakov) factor, P,(x, b) is
the unintegrated PDF in the gauge - A =0, > < 0

Pa(x,b)= [ d"’zlzre"’?T'EPa(X, k7).

When b < 1 GeV~!, S(b, Q) and P,(x, b) are calculable in
perturbative QCD;

fa/A(X7 b) = (Cja by f:a/A) (X7 b; /’LF) + O(bz)



The differential cross section
The result for the differential cross section is given by
do (hhy — Z(— hb)X) 1 Q?
dQ2dydqZdQ) 487S (@2 — M2)? + QT3 /M2

/dzbe’ﬁT'EZ Wj;(b*, Q,x1,x2,9, G, G, G3)*
ik

VNVJ%IP(b, Q,x1, %) + Y(q7, Q, x1, %2, 2, C4) } ; (6)
where (Balazs and Yuan PRD 1997)
,;(b*, Q,x1,x2,9, C1, G, (3)
e QG (0l @ fm ) (x1) (Cra @ Foymy) (x2). (T7)

The parameter b, is the separation scale at which the perturbative
W factorizes from the non-perturbative WNP .



The Sudakov exponent
The Sudakov exponent is given by

G 4 212
5(6.0.6.C) = [ S [ ). Goin (EE )+ Bes(). €1, )
A, 6) = Y- (24 40,
B(as(p), Gi, G) = Z (0457(1-}7)>" B"(G, G), (9)

where coefficients A("(C;) and B("(Cy, C,) are known from the
literature, while parton convolutions are defined as

(Cia ® foymy) (1) =

1 dfl X1 G G
gcja <§17 b:u = ?7 C17 C2> fa/hl(glhu = ?)(10)
X1



The Y contribution

The Y term which is defined as the difference between the fixed
order perturbative contribution and those obtained by expanding
the perturbative part of Wk is given by

onannac [ [ L[
& X2 n=1

X1 X2

f, C R(”)( ,
/hl(fl 4Q) ab QT QE f

,0 ¢> fo/n, (&2, CaQ), (11)

where Riz) are less singular than Q;z or 0;2 (QZT/Q2) when

QT—>0.



Non-perturbative function

The non-perturbative WNP(b, Q) function as originally
parametrized in CSS paper (1985), is given by

2 2
VVJ%IP(b’ Q, Qo, x1,%2) = exp [—Fl(b) In (gg)
—Fim (2. b) = Py, (2. 6)] (12)

where functions F1(b), Fj/p, and Fg,, have to be determined by
fits to the experimental data.



bW(b, Q) in Z boson production

bW(b,Q) bW(b,Q) in Z boson production
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» dominated by the leading-power (logarithmic) term, calculable
in PQCD:
W(b, Q) ~ W[_p(b, Q)

» contributes most of the rate at large @



bW(b, Q) in Z boson production

bW(b,Q) bW(b,Q) in Z boson production
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» higher-order terms in s and b? modify do/dQr at
QT S, 10 GeV

» constrained within a global Q7 fit (similar to PDF’s),
especially by the Drell-Yan process at Q@ =3 — 10 GeV



bW(b, Q) in Z boson production
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» terra incognita; tiny contributions 7

» negligible effect ?
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Can new data sets from hadron colliders set constraints
on WNP ?

Let’s check it out!



We need tools:

% ResBos by Balazs, Yuan (1997); Balazs Qiu and Yuan (1995);
Brock, Landry, Nadolsky, Yuan (2002)

% Fully differential NNLO computations
» FEWZ by K. Melnikov and F. Petriello PRD 74 (2006) 114017

» DYNNLO by G.Bozzi, S.Catani, M.Grazzini, D. De Florian,
NPB 737 (2006) 73

% Resummed NNLL/NNLO computation
» Ferrera, Grazzini et al.

» A.Banfi, M.Dasgupta, S.Marzani, L. Tomlinson JHEP 1201
(2012) 044



Current version of ResBos

(see Pavel Nadolsky's talk for a more general description of
ResBos)
% Approximated Resummed NNLL/NNLO computations

» ResBos + CANDIA ( < M.G., A. Cafarella, C. Coriand
2006)
-Approximate NNLO (C® found numerically)
- NNLL resummation A®), B()

& The current accuracy of ResBos is competitive with full
NNLL/NNLO resummed computations.

@ It's fast and includes all the dominant components of the full
NNLO calculation.



Systematic uncertainties in this study
Main corrections in our computation

» EM corrections ~ 2% at small qu;,
» NNLO corrections,

» Kinematic corrections — dependence on the matching
(already discussed in Nadolsky's talk)

Main source of systematic uncertainties

» Scale dependence,
» Non-perturbative function,

» PDF uncertainty.



Scale dependence of the CSS resummed form factor

At small b, the scale-dependent expression of the CSS resummed
form factor takes the form

WPt = S Ha(Q.9Q, GQ)P

j=u,d,s..
c202 di? C2Q?
X exp |:—/ 72/4(#, Cl) In < Q ) + B(ﬁ; G, Cz)
/2 M w2
G C G C
X Z Ja®f/h1 (X17?17?3) Z [Cjb®fb/h2] (X27?17?3> )
a=g,q,q 2 b=g,q,q 2

ur = G3/b is the factorization scale at which Wilson coefficient functions are
evaluated.

In our study we have used “non-canonical” choice representations
corresponding to C; = G = {2bo, bo}, with & =1/2.

This sets the resummation scale to Mz/2 and improves the agreement
with the ¢; data.



Perturbative and NP form factors

Given the strong suppression of the deeply nonperturbative large-b
region in Z boson production, only contributions from the
transition region of b of about 1 GeV~! are non-negligible
compared to the perturbative contribution from b <1 GeVL In
the transition region, W(b, Q) is approximatly given by the
extrapolated leading-power, or perturbative, part W”e’t(b, Q), and
the nonperturbative smearing factor WP (b, Q):

Wo i(b, Q,yz) = WP (b.,Q.yz) WP (b, Q.yz).  (13)

When b is large, the slow b dependence in Wo’fjrt(b*, Q) can be

neglected, compared to the rapidly changing WNP(b, Q).



b, prescription: one way of doing the separation

To avoid divergence due to the Landau pole in as() at @ — 0,
scales of order 1/b in WPe(b, Q) are redefined according to the
b, prescription (J.Collins 1981,1984) dependent on two

parameters. In the Sudakov exponential, the lower limit (C;/b)? is
replaced by (Ci/b,(b, bmax))?, with

by (b, bmax) = b (14)

1+ (b/bmax)?’

where bpay is set to 1.5 GeV ™1 (Konychev, Nadolsky 2005)




More on the NP function

In a broad range of @ values in the Drell-Yan process, the behavior
of experimentally observed Q1 distributions is described by

WNP (b Q) — exp *b2 a + a0 In <Q) n 2 n X£0)X§O)
’ 2 Qo 0.01 :

(15)
with xf?z) = %eiy, free parameters a;, ap, as, and a fixed
dimensional parameter Qg = 1.6 GeV.

In the vicinity of @ around Mz, Eq. (15) reduces to
WP (b, @ ~ Mz) = exp [~ b%az] (16)
with )
Mz M3
= In [ —% | . 17
7z ‘91+"2”<2 Qo>+a3n<0.01s> (17)



Independent scans of a(Q) in b experiments
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a(Q) ~ a1+ a2In(Q/3.2)

a» ~ 0.18 GeV? agrees well with the IR renormalon + lattice

QCD estimate, (a2),5 = 0.1973:22 GeV?

Improve the large-Q constraints using ¢; data.

Include scale dependence and other factors.
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Gaussian smearing from previous global pr fits
a1,23 found from the fit are correlated with the assumed form of
Whp (value of bpmax)

Landry, Brock, Nadolsky, Yuan, Konychev-Nadolsky, 2006

2002 (bpax = 0.5 GeV™): (Bmax = 1.5 GeV™1):

a(Q) = a(Q) =
0.21+0.68 In 2 —0.13 In(100xaxg) 0.204-0.19In 5% —0.03 In(100x4x5)
ar an as

_ W 2, ~ 0.19 GeV?
B a3 is comparable to a1, a»

B For /s = 1.96 TeV, B a3 < a1, ap; in Z production,
a(Mz) =~ 2.7 GeV/? a(Mz) ~ 0.9 GeV/?

isingly |
SR S B reduced x2/d.o.f. in the fit



It is worthy to do a new investigation on the b,
dependence by using ¢; data from Tevatron and LHC.
We want to know where transitions happen.



Important message

The modifications on the Q7 (¢;) spectrum due to
variations of the scale dependence (scale parameters
Cl, C2, C3, C4 in CSS)

are DIFFERENT

from the modifications due to variations of the NP
function!

The smaII—QT/gb;*] spectrum cannot be fully described by
employing perturbative scale variations only. The
constraining power of ¢ differential distribution data
allows us to estimate the size of these nonperturbative
effects.



Results of the analysis by which we determine
the NP parameter a; from very precise data
on the Z ¢; distribution at D@ Tevatron.



Z and W production: ay from fit to the data.

We determine the value of az from a fit to the

DO ¢, distribution data using two methods.

% Method |: we compute the x? without including
the shifts due to variations of C;, G, ;.

% Method Il: we compute the x? by including the
covariance matrix due to these shifts.



Method I: x?/N,; as a function of az with fixed C; 3.

¥
| Ci=Cs=2by,

h Co=1/2 J Cp=172
/ /
’ . ’
/ s /
/. 1<lyal<2 R [ 1< -
e -
N «
e -
~ .
a2 . o b2
. N N
o Fraas -
05 10 15 20 25 30 05 10 15 20 25 3.0
a [GeV?] a, [GeV?]

| Fit results for ¢, < 0.1 |

Npt | Xmin/Npt | 3z £ daz (GeV?)
vzl <1, e+p 24 3.24 0.79°52,
2.83 1.14 +0.08
1<|yz| <2, e+u | 24 1.87 0.79 £ 0.05
3.03 1.12%% %%
lyz| >2, e 12 0.74 0.873%
0.58 1.04797%
All yz bins, 60 2.19 0.79 +0.03
weighted average 2.46 1.12+0.07




Method II: we allow for shifts in C; 3.

1| Free C;, shared
e and yu scales

i\"‘* e -
0 0.5 1.0 15 20 25 3.0
az [GeV?]
Ci,G, G are independent in each yz bin
Npe | X2m/Npe | 2z £ 0az (GeV2) | Bestfit Cros
vzl <1, e+p 24 1.0 0.56}232,3 0.21, 0.18, 7.56
1.16 0.85793, 1.47, 0.3, 1.46
1<|yz|<2, e+pu | 24 1.48 1.227%%% 18, 0.58,0.1
1.70 0.797%3 1.69, 0.37, 0.77
lyzl >2, e 12 - - -
0.59 0.997%% 1.74, 0.48, 2.12
Weighted average 60 0.97 £ 0.25
of all bins 0.82 +0.12




Recapitulation: main findings of this analysis
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68% C.L. ranges for az in individual yz bins and in all bins.

All fits consistently yield az values that are at least 50 from
zero.

No pronounced rapidity dependence in contrast to Berge,
Nadolsky, Olness, Yuan



(i1 23 scale dependence for the electron channel
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Muons in the backup



Conclusions

» We have shown that a significant nonperturbative Gaussian
smearing is necessary to describe features of the low ¢; spectrum.
A non-zero NP function is present even if all the perturbative scale
parameters of the CSS formalism are varied.

» Values of az smaller than 0.5 GeV? are disfavoured by the fit to the
recent D@ data.

> The constraining power of ¢; differential distribution data allows us
to estimate the size of these nonperturbative effects.

» RESBOS is a valuable tool for investigations at low transverse
momentum regions at colliders. It will be

» Precise measurements of hadronic cross sections at small Q7 will
verify the TMD formalism for QCD factorization and shed light on
the nonperturbative QCD dynamics.



BACKUP



Scan over b,
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Best fit: bpax ~ 1.5 GeV ™1, 3 = 0733 (set to 0), a; ~ 0.23,
ar ~ 0.18, a3 =~ —0.05



The 2005 p7 analysis

» leads to a consistent picture of the power-suppressed term
» supports dominance of soft contributions in Fyp(b, Q)

> suggests

» Gaussian
Fne(b, Q) = b2[0.20 + 0.191In(Q/3.2) — 0.026 In(100x4x5)]

» linear In @ dependence (consistent with SIDIS)
» small /s dependence
» no tangible flavor dependence

» uncertainty translates into My, ~ 15 MeV

» applies to light-flavor (u, d, s) scattering at x > 1072



O(a?) corrections in ResBos at approx: current

setup

» the FO contribution, is computed up to O(a?2) for the leading

structure functions.

The Y = YyroKnnio piece is computed up to O(a?) by
using the K-factors as in Arnold and Reno Nucl.Phys. B319
(1989); Arnold and Kauffman Nucl.Phys. B349 (1991), for
the dominant F_; only.

The W piece is computed up to NNLL approximation in the
Sudakov exponent, while the finite part of the coefficient
functions C(" (&, b, i, C1, ) is computed up to O(a?2) by
using K-factors obtained by CANDIA (Cafarella, Coriano,
M.G., JHEP 0708 (2007); CPC 179 (2008)).

In CA)(¢, b, 1, C1, G2) included is also the logarithmic
dependence on the coefficients Ci, G, up to O(a?2).



Size of electromagnetic corrections

Final state EM radiation is accounted for by using PHOTOS ( Barberio
and Was CPC79 1994). Here Theory is ResBos at approx NNLO

ppbar — ZOW* - 112,\'S = 1.96 TeV

z 13F H‘ ‘ ——
@ =
£ 125 Electrons |y ,|<1
% = . after NLO EM contr. (PHOTOS) is subtracted
o 12F A with final state EM contribution A
1.15 |-
11 Ne
o s o]
105 |- 3 i +
1 E 7 % . r’i* 4’ z I 3
S E——— R 8. & § T T E
= — :g 3
0.95 | =
09 - —
= ! ! ! 3
0.85 S > -~
10 10 10

._.
5

E]

These are around 2% at small (o



¢, and ar
Y
sin6;; = VT (18)
since
tan(Gacop/2) = /(1 4 cos Ap) / (1 — cos Ay) (19)

Q2 =12, + I35+ 2[%, /2, cos Ay

In the soft I|m|t Q1 — 0 we have I+ =~ I».

In this limit the leptons are nearly back-to-back in the transverse
plane which results in I%l — /2T2 = Q7 cosa where « is the angle
made by the Q1 vector with the lepton axis in the transverse plane.

Q% sin® o &~ 2/%(1 + cos Ay)

tan(Pacop/2) = /(1 4+ cos Ap) / (1 — cos Ayp) =

QRTsina
T2/T =ar/M



¢, and the CSS variables: general expression

One can write cos¢; as a function of the lepton momenta in the
lab frame as

cosO* — tanh (7]1 —7]2) . \/ II+I; - \/ Ifler _ f(cos@cs) — f(—COS@cs)
K 2 //1+I{ " /Il’l;r f(cosOcs) + f (—cosfcs)’

(20)
where Iitz = (/{),2 =+ /11,2)/\5'

f(cosbcs) = \/I\/lzT +2M7Q cosfcs + Q2 cos? fcs — Q% sin? Ocs cos? pcs,
(21)

and M% = Q° + Q%. We also write cos Ay as

cos Ay = (QZT — Q%sin® Ocs — Q% sin? Ocs cos? ©vcs)
X [(Q2 sin? Ocs + Q% sin? Ocs cos? pcs + QZT)2 — 4M2 Q% sin® O¢s cos? npcs]_%.

(22)



Approximated C® Wilson Coeff. function

¢y (57 2 ca) = U+ 081 - LG, o)
2
5 ,C < H b
b B 109 o e - PRt
1 b
+ SlPR @ PRI In? F (23)

C}f)(& G/G,G)~ {(50(2’c)> +LO(q, Cz)} 0(1—¢€)0ja,  (24)

where (5C(%)) denotes the average value of the Wilson coefficient in Z
production for the canonical scale combination and L(®)(C;, G,) contains
the scale dep. when Ci, G, Gz is “non-canonical”.



Reduction on Cy-sensitivity

C, scale dependence
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Renormalization constant C, dependence: approx NNLO vs NLO.



(i1 23 scale dependence Muons
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x? definition for Method |

In method | a7 is determined from the D@ data by minimization of
a function

Vo)=Y (27 Te) (29)

where D; are the data points; T; (az) are the theoretical predictions
for fixed scale parameters {Cl, G, C3} s; are the uncorrelated
experimental uncertainties; and Ny is the number of points.



x? definition for Method II

We introduce a linearized approximation for the covariance matrix. For
each scale parameter C,, a = 1,2, 3, we define a nuisance parameter
Ao = log,(C,/C,) and compute the finite-difference derivatives of theory
cross sections

T,'(az,)\a = +1) — T,'(é)z,)xa = —1)
ﬁia )
2
over the interval A\, = +1 corresponding to C,/2 < C, < 2C,.
Variations of )\, introduce correlated shifts in theory cross sections
Ti(az, Ci.2.3) with respect to the fixed-scale theory cross sections
Ti(az, (_:1,273) = Ti(az). We can reasonably assume that the probability
distribution over each )\, is similar to a Gaussian one with a central value
of 0 and half-width o, taken to be the same for all A\,. The
goodness-of-fit function is then defined as

a=1,23 i=1,.. Ny

Nyt 3 2 3
Di — Ti(az) — > o—1 Baira A2
Y}(az, Aip3) = Z < (32) ~ 2o P ) + Z —.  (26)

Si o
i=1 ! A

a=1
The minimum with respect to A, can be found algebraically for every az



Comparison to other predictions

Kinematic Corrections

|
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The ratios to the central theoretical prediction of the D@ electron
data at |yz| <1 and alternative theoretical predictions. The

central prediction is computed assuming C; = C3 = 2by,
G=1/2,az=11 GeV2, and kinematical correction 1. Theory

predictions based on alternative kinematical corrections (0 and 2)

and BLNY nonperturbative parametrization are also shown.
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¢7 at ATLAS
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