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reliable 

bT

PT
PT ⌧ Q

Comments



2

A. The SIDIS cross section and asymmetries

The lepton-hadron cross section can be expressed in a model-independent way by a set of structure functions
[3, 6, 14, 15], which in the notation of Ref. [6] is:

d⌅

dxB dy d⌃ dzh d⇧h dP 2
h⌅

=
�2

xByQ2

y2

2 (1� ⌥)

⇧
1 +

⇥2

2xB

⌃ 
FUU,T + ⌥FUU,L +

�
2 ⌥(1 + ⌥) cos⇧h F

cos�h

UU

+ ⌥ cos(2⇧h)F
cos 2�h

UU + ⇤e

�
2 ⌥(1� ⌥) sin⇧h F

sin�h

LU

+ S�

⌥
�
2 ⌥(1 + ⌥) sin⇧h F

sin�h

UL + ⌥ sin(2⇧h)F
sin 2�h

UL

�

+ S�⇤e

⌥
�
1� ⌥2 FLL +

�
2 ⌥(1� ⌥) cos⇧h F

cos�h

LL

�

+ |S⌅|
⌥
sin(⇧h � ⇧S)

⇤
F sin(�h��S)
UT,T + ⌥F sin(�h��S)

UT,L

⌅

+ ⌥ sin(⇧h + ⇧S)F
sin(�h+�S)
UT + ⌥ sin(3⇧h � ⇧S)F

sin(3�h��S)
UT

+
�

2 ⌥(1 + ⌥) sin⇧S F sin�S

UT +
�
2 ⌥(1 + ⌥) sin(2⇧h � ⇧S)F

sin(2�h��S)
UT

�

+ |S⌅|⇤e

⌥
�

1� ⌥2 cos(⇧h � ⇧S)F
cos(�h��S)
LT +

�
2 ⌥(1� ⌥) cos⇧S F cos�S

LT

+
�
2 ⌥(1� ⌥) cos(2⇧h � ⇧S)F

cos(2�h��S)
LT

�⌦
, (1)
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For our purposes, we may assume x ⌅ xB , z ⌅ zh and ⇥ ⌅ 0. Individual structure functions can be projected from
the cross section using, e.g., spin asymmetries, which we introduce generically as
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, (3)

Here the labels X,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T ) of the beam and
target, respectively. The angles ⇧S and ⇧h specify the directions of the hadron spin polarization and the transverse
hadron momentum, respectively, relative to the lepton scattering plane. The cross sections d⌅⇥ and d⌅⇤ correspond
to opposite spin polarization of the incident lepton / target hadron. ⌥TODO: be a bit more specific? � The weighting
function F is a sine (or cosine) of a linear combination of the polarization angles, e.g., F(⇧h,⇧S) = sin(⇧h�⇧S). The
combination d⌅⇥ � d⌅⇤ in the numerator projects out the structure functions FF

XY in Eq. 1, while the combination
d⌅⇥ + d⌅⇤ in the denominator corresponds to the unpolarized structure function FUU,T :
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Weighted asymmetries are introduced in a similar way:
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where the weighting function W now can also contain di�erent powers of |P h⌅|, e.g., W(|P h⌅|,⇧h,⇧S) =
|P h�|
zM sin(⇧h � ⇧S), see Ref. [5].

SIDIS-CS  expressed thru structure functions

Structure functions & spin asymmetry projected 
from cross section  

XY-polarization     e.g. 
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Kotzinian NPB 95,  
Mulders Tangermann NPB 96, 
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Bacchetta et al JHEP 08

Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998

Φ(x, pT )=
1

2

n
f1(x, pT) /P + ih⊥

1 (x, pT)
[ /pT , /P ]

2M
− f⊥

1T (x, pT )
εij

T pTiSTj

M
/P · · ·

o

∆(z, kT )=
1

4

n
zD1(z, kT) /Ph + izH⊥

1 (z, kT )
[kT , /Ph]

2Mh
− zD⊥

1T(z, kT)
εij

T kTiSTj

Mh
/Ph + · · ·

o

dσ"N→"πX
{λ,Λ} ∝ f1 ⊗ dσ̂"q→"q ⊗ D1

+ h⊥
1 ⊗ dσ̂"q→"q ⊗ H⊥

1 · cos 2φ

+ |ST | · h1 ⊗ dσ̂"q→"q ⊗ H⊥
1 · sin(φ + φS) Collins

+ |ST | · f⊥
1T ⊗ dσ̂"q→"q ⊗ D1 · sin(φ − φS) Sivers

15

d�

dxdydzd�hdP
2
h?

⇠
n
FUU,T · · ·+ . . . |S?|

⇣
sin(�h � �S)F

sin(�h��S)
UT,T + sin(�h + �S)"F

sin(�h+�S)
UT . . .

⌘
. .



2

A. The SIDIS cross section and asymmetries

The lepton-hadron cross section can be expressed in a model-independent way by a set of structure functions
[3, 6, 14, 15], which in the notation of Ref. [6] is:

d⌅

dxB dy d⌃ dzh d⇧h dP 2
h⌅

=
�2

xByQ2

y2

2 (1� ⌥)

⇧
1 +

⇥2

2xB

⌃ 
FUU,T + ⌥FUU,L +

�
2 ⌥(1 + ⌥) cos⇧h F

cos�h

UU

+ ⌥ cos(2⇧h)F
cos 2�h

UU + ⇤e

�
2 ⌥(1� ⌥) sin⇧h F

sin�h

LU

+ S�

⌥
�
2 ⌥(1 + ⌥) sin⇧h F

sin�h

UL + ⌥ sin(2⇧h)F
sin 2�h

UL

�

+ S�⇤e

⌥
�
1� ⌥2 FLL +

�
2 ⌥(1� ⌥) cos⇧h F

cos�h

LL

�

+ |S⌅|
⌥
sin(⇧h � ⇧S)

⇤
F sin(�h��S)
UT,T + ⌥F sin(�h��S)

UT,L

⌅

+ ⌥ sin(⇧h + ⇧S)F
sin(�h+�S)
UT + ⌥ sin(3⇧h � ⇧S)F

sin(3�h��S)
UT

+
�

2 ⌥(1 + ⌥) sin⇧S F sin�S

UT +
�
2 ⌥(1 + ⌥) sin(2⇧h � ⇧S)F

sin(2�h��S)
UT

�

+ |S⌅|⇤e

⌥
�

1� ⌥2 cos(⇧h � ⇧S)F
cos(�h��S)
LT +

�
2 ⌥(1� ⌥) cos⇧S F cos�S

LT

+
�
2 ⌥(1� ⌥) cos(2⇧h � ⇧S)F

cos(2�h��S)
LT

�⌦
, (1)

where in DIS kinematics d⌃ ⌅ d⇧S and variables are defined as

xB =
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , ⇥ =
2Mx

Q
, ⌥ =

1� y � 1
4 ⇥

2y2

1� y + 1
2 y

2 + 1
4 ⇥

2y2
. (2)

For our purposes, we may assume x ⌅ xB , z ⌅ zh and ⇥ ⌅ 0. Individual structure functions can be projected from
the cross section using, e.g., spin asymmetries, which we introduce generically as

AF
XY ⇤ 2

↵
d⇧h d⇧S F(⇧h,⇧S)

�
d⌅⇥ � d⌅⇤⇥

↵
d⇧hd⇧S (d⌅⇥ + d⌅⇤)

, (3)

Here the labels X,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T ) of the beam and
target, respectively. The angles ⇧S and ⇧h specify the directions of the hadron spin polarization and the transverse
hadron momentum, respectively, relative to the lepton scattering plane. The cross sections d⌅⇥ and d⌅⇤ correspond
to opposite spin polarization of the incident lepton / target hadron. ⌥TODO: be a bit more specific? � The weighting
function F is a sine (or cosine) of a linear combination of the polarization angles, e.g., F(⇧h,⇧S) = sin(⇧h�⇧S). The
combination d⌅⇥ � d⌅⇤ in the numerator projects out the structure functions FF

XY in Eq. 1, while the combination
d⌅⇥ + d⌅⇤ in the denominator corresponds to the unpolarized structure function FUU,T :

d⌅⇥ + d⌅⇤ =
�2

sx2
By

2

�
1 + (1� y)2

⇥
FUU,T . (4)

Weighted asymmetries are introduced in a similar way:

AW
XY = 2

↵
d|P h⌅| |P h⌅| d⇧h d⇧S W(|P h⌅|,⇧h,⇧S)

�
d⌅⇥ � d⌅⇤⇥

↵
d|P h⌅| |P h⌅| d⇧h d⇧S (d⌅⇥ + d⌅⇤)

, (5)

where the weighting function W now can also contain di�erent powers of |P h⌅|, e.g., W(|P h⌅|,⇧h,⇧S) =
|P h�|
zM sin(⇧h � ⇧S), see Ref. [5].

Bacchetta et al JHEP 08



Factorization  Parton Model 
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Figure 1. Kinematics of the SIDIS process, compare Refs. [8, 22].

consider x moments of TMD PDFs and introduce a method to study Fourier transformed

moments in lattice QCD and compare with experiment. Our conclusions are presented in

Section 7.

2 The SIDIS cross section in Fourier space at tree level

2.1 Elements of the SIDIS cross section

The lepton-hadron cross section of SIDIS !(l)+N(P, S) → !(l)+h(Ph)+X can be expressed

[4, 8, 20, 21] in the notation of Ref. [8] as
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where we assume one photon exchange. Lµν and W µν are the leptonic and hadronic tensors

respectively, and the vector P h⊥ is the transverse momentum of the produced hadron in

a frame where the virtual photon and the target are collinear, e.g. in the target rest frame

or γ∗P center of mass frame. It makes an azimuthal angle φh with the lepton scattering

plane defined by the momenta of the incoming and the final leptons l and l′ (see Figure 1).

We define q ≡ l− l′, and q2 = −Q2 is the virtuality of the photon. ψ is the azimuthal angle

of l′ around the lepton beam axis relative to S⊥, in DIS kinematics dψ ≈ dφS [21]. The

subscript “⊥” denotes transverse projection in the target rest frame while the subscript “T ”

denotes transverse projection in the light-cone frame. We use definitions for the kinematic

variables and the ratio of of longitudinal and transverse photon flux ε as in Ref. [8],
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where M is the mass of the target nucleon. We employ the standard light-cone decompo-

sition of four-vectors ωµ = ω+nµ
+ + ω−nµ

− + ωµ
T . In the γ∗P center of mass frame with the

proton three-momentum pointing in positive z-direction, the nucleon carries no transverse

momentum, PT = 0, and x ≡ p+/P+ denotes the momentum fraction carried by the quark

(parton) of momentum p. Further definitions of kinematic variables and details on the

leptonic and hadronic tensor are given in Appendix A and Ref. [8].
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Factorization  Parton Model-predicts existence of T-odd 
PDFs and TSSAs--Boer-Mulders PRD 1998



T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003

. . .

. . .

k

p

P

K

Φ

∆

. . .

Φ

∆

etc . . .

• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.

14

Gauge link for TMDs
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Gauge link determined re-summing leading gluon interactions btwn soft and hard 
Efremov,Radyushkin Theo. Math. Phys. 1981, Collins, Soper NPB 1981, 1982,Collins PLB 2002,  
Belitsky, Ji, Yuan NPB 2003, Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD, 
Collins 2011

• The path [C] is fixed by hard subprocess within hadronic process.
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∫

dξ−d2ξT

2(2π)3
eip·ξ〈P |ψ(0)U [C]

[0,ξ]ψ(ξ−, ξT )|P 〉|ξ+=0

∆[U[C]](z, kT ) =
∫

dξ+d2ξT

4z(2π)3
eik·ξ 〈0 |U [C]

[0,ξ]ψ(0)|X; Ph〉〈X;Ph|ψ(ξ+, ξT )|0〉|ξ−=0

• See Ch. 3 Ph.D Thesis C. Bomhof

36 chapter 3: gauge links
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Figure 3.1: Examples of diagrams with an additional gluonic interaction be-
tween the soft and the hard functions.

new aspects in small steps at a time. In the first section we will treat SIDIS and Drell-
Yan scattering, two of the simplest processes, as they only involve initial or final state
interactions. Then we will consider a particular contribution to prompt photon production
as an example of a process where more gluonic interactions are possible. In section 3.3
a prescription will be given to more easily predict the structure of the gauge link for
arbitrary hard functions. Using this prescription we will calculate the Wilson lines that
occur in direct photon production and dijet production in proton-proton scattering, since
these are the processes that will be studied in more detail in the next chapter. To conclude
this chapter we will try to argue the validity of the prescription in section 3.4.

3.1 Electroweak Processes: SIDIS and Drell-Yan
In section 2.4 we have hypothesized that if the momenta of the incoming and outgoing
hadrons in semi-inclusive deep inelastic scattering are well-separated it is reasonable to
assume that the observed hadron in the final state has materialized from the soft radiation
emitted by the current quark (i.e. the active quark). In that case the quark contribution to
the hadron tensor can be written in terms of quark correlators Φ(p) and quark fragmenta-
tion correlators ∆(k) connected to each other through hard functions H(p,k):

Wµν =
1

2M

∫
d4pd4k δ4(p+q−k) Tr

[
Φ(p) H†µ(p,k)∆(k) Hν (p,k)

]
, (3.1)

where we have suppressed the summation over quark flavors. Comparing to expres-
sion (2.31) it is seen that at tree-level the hard function is just an electromagnetic vertex
Hµ(p,k)= ieqγµ (the proton charge factors e have been extracted and appear in the struc-
ture constant α in the cross section (2.30)). In the parton model contribution the quark
distribution and fragmentation correlators are given by expressions (2.28) and (2.32). Ob-
viously, this is not a physically meaningful expression, since the correlators are not gauge
invariant. However, in the diagrammatic approach an expression that involves the properly
gauge invariant correlators can be obtained by resumming all collinear gluon interactions
between the soft and the hard factors [57], such as those in Figure 3.1. The result will be
the same as the expression in (3.1) and with the same hard function Hµ(p,k)= ieqγµ as in

Minimal Requirement for PARTON MDL Factorization
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Using the equation of motion for the quark field, the following relations can be established
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ĥ ·pT

M

(

xf⊥
L D1 −

Mh

M
h⊥

1L

H̃

z

)]

, (4.7)

F sin 2φh

UL = C
[

−
2
(
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ĥ ·kT

) (
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Ẽ

z
+

m

Mh
D1, (3.76)

D⊥

z
=

D̃⊥

z
+ D1, (3.77)

G⊥

z
=

G̃⊥

z
+

m

Mh
H⊥

1 , (3.78)

H

z
=

H̃

z
+

k2
T

M2
h

H⊥
1 . (3.79)

4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we
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ĥ ·kT

Mh

(

xeH⊥
1 +

Mh

M
f1

G̃⊥

z

)

+
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Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(
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Semi-inclusive Deep Inelastic Scattering

Semi-inclusive hadron production in deep inelastic scattering (SIDIS) provides a power-
ful probe of the transverse momentum dependent (TMD) quark distributions of nucleons.
Common kinematic variables have been described in the DIS section (see the Sidebar on
page 19). In SIDIS, the kinematics of the final state hadrons can be specified as follows
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Figure 2.11: Semi-inclusive hadron production
in DIS processes: e+N ! e0 + h+X, in the
target rest frame. P

hT

and S? are the trans-
verse components of P

h

and S with respect to
the virtual photon momentum q = k � k

0.

�h, �s Azimuthal angles of the final state
hadron and the transverse polarization
vector of the nucleon with respect to
the lepton plane.

PhT Transverse momentum of the final state
hadron with respect to the virtual pho-
ton in the center-of-mass of the virtual
photon and the nucleon.

z = P
h

· P/q · P gives the momentum frac-
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twist TMDs classified ac-
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The distributions f?,q
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and
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1

are called naive-time-
reversal-odd TMDs. For glu-
ons a similar classification of
TMDs exists.

The di↵erential SIDIS cross section can be written as a convolution of the transverse
momentum dependent quark distributions f(x, k

T

), fragmentation functions D(z, p
T

), and
a factor for a quark or antiquark to scatter o↵ the photon. At the leading power of 1/Q,
we can probe eight di↵erent TMD quark distributions as listed in Fig. 2.12. These distri-
butions represent various correlations between the transverse momentum of the quark k

T

,
the nucleon momentum P , the nucleon spin S, and the quark spin s

q

.
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Comments on Weighting 

• Transverse momentum  weighting with an appropriate power of             
possible to convert the convolutions in the cross section into simple products

• Transverse momentum weighted asymmetries provide model independent  
observables which are generalizations of  conventional WA                 
Kotzinian, Mulders PLB 97,  Boer, Mulders PRD 98 

• Explore impact these BWA have on studying the scale dependence of the 
SIDIS cross section at small to moderate transverse momentum where the 
TMD framework is expected to give a good description of the cross section     
Boer, LG,Musch,Prokudin JHEP 2011
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Weighted asymmetries proposed as model independent 
deconvoltuion of CS in terms of moments of TMDs

Kotzinian, Mulders PLB 97,  Boer, Mulders PRD 98 

A
|P h�|
zhM sin(�h��s)

UT = �2
�

a e2
a f�(1)

1T (x) Da(0)
1 (z)

�
a e2

a fa(0)
1 (x) Da(0)

1 (z)

e.g.

Undefined w/o subtractions 
perscription regularization

to subtract infinite contribution at 
large transverse momentum

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

can be studied experimentally by analyzing angular modulations in the differential cross

section, so called spin and azimuthal asymmetries. These modulations are a function of

the azimuthal angles of the final state hadron momentum about the virtual photon direc-

tion, as well as that of the target polarization (see e.g., ref. [8] for a review). TMD PDFs

enter the SIDIS cross section in momentum space convoluted with transverse momentum

dependent fragmentation functions (TMD FFs). However, after a two-dimensional Fourier

transform of the cross section with respect to the transverse hadron momentum P h⊥, these

convolutions become simple products of functions in Fourier bT -space. The usefulness of

Fourier-Bessel transforms in studying the factorization as well as the scale dependence of

transverse momentum dependent cross section has been known for some time [9–15]. In

this paper we exhibit the structure of the cross section in bT -space and demonstrate how

this representation results in model independent observables which are generalizations of

the conventional weighted asymmetries [6, 7]. Further we explore the impact that these

observables have in studying the scale dependence of the SIDIS cross section at small to

moderate transverse momentum where the TMD framework is designed to give a good

description of the cross section. In particular we study how the so called soft factor cancels

from these observables. The soft factor [14–19] is an essential element of the cross section

that emerges in the proofs of TMD factorization [11, 13–15]. It accounts for the collective

effect of soft momentum gluons not associated with either the distribution or fragmentation

part of the process and it is shown to be universal in hard processes [17]. Depending on

the factorization framework, it appears explicitly in the structure functions and thus in the

factorized cross section (see refs. [14, 18]), or it is completely absorbed in the definition

of TMD PDFs and TMD FFs (see refs. [15, 19]). At tree level (zeroth order in αS) the

soft factor is unity, which explains its absence in the factorization formalism considered for

example in ref. [8]. However, for a correct description of the energy scale dependence of

the cross sections and asymmetries involving TMD PDFs, it is essential to include the soft

factor. Yet, it is possible to consider observables where the soft factor is indeed absent or

cancels out, these are precisely the weighted asymmetries.

1.1 Overview on weighted asymmetries

The concept of transverse momentum weighted single spin asymmetries (SSA) was proposed

some time ago in refs. [6, 7]. Using the technique of weighting enables one to disentangle

in a model independent way the cross sections and asymmetries in terms of the transverse

(momentum) moments of TMD PDFs. A comprehensive list of such weights was derived

in ref. [7] for semi-inclusive deep inelastic scattering (SIDIS). A prominent example is the

weighted Sivers asymmetry, obtained from the differential cross section dσ according to

Aw1 sin(φh−φS)
UT,T = (1.1)

2

∫
d|P h⊥| |P h⊥|dφh dφS w1(|P h⊥|) sin(φh − φS)

{
dσ(φh,φS) − dσ(φh,φS + π)

}
∫

d|P h⊥| dφh |P h⊥|dφS w0(|P h⊥|)
{
dσ(φh,φS) + dσ(φh,φS + π)

} ,

where the integrations are performed over the observed transverse hadron momentum

|P h⊥|, the hadron azimuthal angle φh and the spin direction φS of the transversely polar-

ized target, and the weights are w1 = |P h⊥|/zM , w0 = 1. At tree level and leading twist
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• Propose generalize Bessel Weights-”BW”

• BW procedure has advantages

★ Structure functions become simple product 
rather than convolution

★ CS has simple S/T interpretation as a 
multipole expansion in terms of                      
conjugate to

Comments

P h�
bT [GeV�1]

P[ ]
C[ ]



★ The usefulness of Fourier-Bessel transforms in 
studying the factorization as well as the scale 
dependence of transverse momentum dependent 
cross section has been known for over 30 years. 

★ Is the natural language for TMD Evolution                                   
★ Collins Soper (81), Collins, Soper, Sterman (85),  Boer (01) (09) (13), 

Ji,Ma,Yuan (04), Collins-Cambridge University Press (11), Aybat Rogers PRD 
(11), Abyat, Collins, Qiu, Rogers (11),  Aybat, Prokudin, Rogers  (11), 
Bacchetta, Prokudin (13),  Sun, Yuan (13), Aidala, Field, Gamberg, Rogers (14) 



• Provides a regularization of infinite contributions at lg 
transverse momentum when       is non-zero for moments

• Study scale changes in TMD picture, soft factor eliminated 
from Sivers and ....weighted asymmetries                                         
Boer, LG,Musch,Prokudin JHEP 2011  

• Cancellation of perturbative Sudakov Broadening        
mentioned by D. Boer NPB 1999, 2007

• Cancellation hard cross section                                          
Boer, LG,Musch,Prokudin JHEP 2011

• Some asymmetry e.g. Sivers TSSA less sensitive scale changes-
observable for different scales.... could be useful for EIC 

Further Comments
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Advantages of Bessel Weighting

“Deconvolution”-CS-struct fncts simple product  “   “P
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The state |P, S〉 represents a nucleon with four-momentum P and spin polarization vector

S, and quark fields are located at position “0” and “b” in coordinate space. The gauge link

U [Cb] ensures gauge invariance of the correlator [23, 25]. It corresponds to a path in b space

which is determined by the color flow in the hard sub-process [26, 27]. We will discuss the

details of the definition of the correlator and the role of the gauge link U [Cb] in section 4.

Analogous expressions define the fragmentation correlator ∆ij(z,pT ) (see e.g. [8]).

2.2 Representation in Fourier space

In this section, we rewrite the SIDIS cross section and its transverse momentum dependent

components in coordinate bT space, similar as previously done in ref. [28]. Here however,

we take advantage of the rotational invariance of TMD PDFs and FFs.

First we use the representation of the δ-function

δ(2)(zpT + KT − P h⊥) =

∫
d2bT

(2π)2
eibT (zpT +KT −Ph⊥) , (2.6)

along with the following definitions,

W µν(P h⊥) ≡
∫

d2bT

(2π)2
e−ibT ·Ph⊥ W̃ µν(bT ) , (2.7)

Φ̃ij(x, zbT ) ≡
∫

d2pT eizbT ·pT Φij(x,pT )

=

∫
db−

(2π)
eixP+b− 〈P, S|ψ̄j(0)U [Cb]ψi(b)|P, S〉

∣∣∣∣
b+=0

, (2.8)

∆̃ij(z, bT ) ≡
∫

d2KT eibT ·KT ∆ij(z,KT ) , (2.9)

to re-write the leading term in the hadronic tensor, eq. (2.3), in Fourier space

2MW̃ µν =
∑

a

e2
a Tr

(
Φ̃(x, zbT )γµ∆̃(z, bT )γν

)
. (2.10)

The advantage of the bT space representation is clear: the hadronic tensor is no longer

a convolution of pT and KT dependent functions but a simple product of bT -dependent

functions. This motivates us to re-write the entire cross section in terms of the Fourier

transform

dσ

dx
B

dy dψ dzh dφh |P h⊥|d|P h⊥|
=

∫
d2bT

(2π)2
e−ibT ·Ph⊥

{
α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW̃ µν

}
.

(2.11)

Next, we decompose the correlators Φ̃ and ∆̃ into TMD PDFs and FFs in Fourier space.

Using the trace notation (see also eqs. (A.8) and (A.9) in the appendix)

Φ̃[Γ] ≡
1

2
Tr(Φ̃Γ) , (2.12)
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Using the equation of motion for the quark field, the following relations can be established

between the functions appearing in the above correlator and the functions in the quark-

quark correlator (3.38):

E

z
=

Ẽ

z
+

m

Mh
D1, (3.76)

D⊥

z
=

D̃⊥

z
+ D1, (3.77)

G⊥

z
=

G̃⊥

z
+

m

Mh
H⊥

1 , (3.78)

H

z
=

H̃

z
+

k2
T

M2
h

H⊥
1 . (3.79)

4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we

introduce the unit vector ĥ = P h⊥/|P h⊥| and the notation

C
[

wf D
]

= x
∑

a

e2
a

∫

d2pT d2kT δ(2)
(

pT − kT − P h⊥/z
)

w(pT ,kT ) fa(x, p2
T )Da(z, k2

T ),

(4.1)

where w(pT ,kT ) is an arbitrary function and the summation runs over quarks and anti-

quarks. The expressions for the structure functions appearing in eq. (2.7) are

FUU,T = C
[

f1D1
]

, (4.2)

FUU,L = 0, (4.3)

F cos φh

UU =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xhH⊥
1 +

Mh

M
f1

D̃⊥

z

)

−
ĥ ·pT

M

(

xf⊥D1 +
Mh

M
h⊥

1
H̃

z

)]

, (4.4)

F cos 2φh

UU = C
[

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

MMh
h⊥

1 H⊥
1

]

, (4.5)

F sin φh

LU =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xeH⊥
1 +

Mh

M
f1

G̃⊥

z

)

+
ĥ ·pT

M

(

xg⊥D1 +
Mh

M
h⊥

1
Ẽ

z

)]

, (4.6)

F sin φh

UL =
2M

Q
C
[

−
ĥ ·kT

Mh

(

xhLH⊥
1 +

Mh

M
g1L

G̃⊥

z

)

+
ĥ ·pT

M

(

xf⊥
L D1 −

Mh

M
h⊥

1L

H̃

z

)]

, (4.7)

F sin 2φh

UL = C
[

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

MMh
h⊥

1LH⊥
1

]

, (4.8)

FLL = C
[

g1LD1
]

, (4.9)
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transforms according to

TΦ

(
Φ̃(b, w)

)
=

∫
d4p eTΦ(−i) p·b TΦ (Φ(p,w))

=

∫
d4q eTΦ(−i)T −1

p (q)·b Φ (q,Tw(w))

=

∫
d4q eTΦ(−i) q·Tp(b) Φ (q,Tw(w))

= Φ̃

(
TΦ(i)

i
Tp(b),Tw(w)

)
. (C.7)

For example, Φ̃ transforms under hermitian conjugation as

(†) :
[
Φ̃[Γ]

unsub(b, P, S; v)
]∗

= Φ̃[γ0Γ†γ0]
unsub (−b, P, S; v) . (C.8)

Let f(p,w) be any of the structures preceding the invariant amplitudes in the param-

eterization of Φ. The structure f(p,w) is a homogeneous function of some degree

n in p, i.e., f(αp,w) = αnf(p,w) for any number α. For example, the structure

f(p,w) = 1
M(v·P )(p·S)εµναβPνpαvβ preceding B(+)

9 in eq. (4.3) has degree n = 2. If we

define f̃(b, w) ≡ f(−iM2b, w), then

TΦ

(
f̃(b, w)

)
=TΦ(−iM2)n TΦ (f(b, w))=f

(
TΦ(−iM2)Tp(b),Tw(w)

)
= f̃

(
TΦ(i)

i
b, w

)
. (C.9)

This shows that f̃ transforms like Φ̃ in eq. (C.7). We conclude that the parameterization

of Φ̃ can be found by the substitution p → −iM2b in the structures parameterizing Φ, and

we arrive at eq. (4.4). The amplitudes Ã(+)
i and B̃(+)

i introduced this way are no longer

constrained to be real valued functions. Instead, hermitian conjugation eq. (C.8) yields the

relation
[
Ã(+)

i (b2, b·P, v·b/(v·P ), ζ−2, µ2)
]∗

= Ã(+)
i (b2,−b·P,−v·b/(v·P ), ζ−2, µ2) . (C.10)

D Structure functions in terms of Fourier transformed TMD PDFs and

FFs

The structure functions of ref. [8] can be expressed in terms of Fourier-transformed TMD

PDFs and FFs as

FUU,T =x
B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) f̃a
1 (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.1)

F sin(φh−φS)
UT,T =−x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz f̃⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ), (D.2)

FLL =x
B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) g̃a
1L(x, z2b2

T ) D̃a
1(z, b2

T ) , (D.3)

F cos(φh−φs)
LT =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz g̃⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.4)
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F cos φh

LL =
2M

Q
C
[

ĥ ·kT

Mh

(

xeLH⊥
1 −

Mh

M
g1L

D̃⊥

z

)

−
ĥ ·pT

M

(

xg⊥L D1 +
Mh

M
h⊥

1L

Ẽ

z

)]

, (4.10)

F sin(φh−φS)
UT,T = C

[

−
ĥ ·pT

M
f⊥
1TD1

]

, (4.11)

F sin(φh−φS)
UT,L = 0, (4.12)

F sin(φh+φS)
UT = C

[

−
ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(

ĥ ·pT

) (

pT ·kT

)

+ p2
T

(

ĥ ·kT

)

− 4 (ĥ ·pT )2 (ĥ ·kT )

2M2Mh
h⊥

1T H⊥
1

]

, (4.14)

F sinφS

UT =
2M

Q
C
{(

xfTD1 −
Mh

M
h1

H̃

z

)

−
kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

−
(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.15)

F sin(2φh−φS)
UT =

2M

Q
C
{

2 (ĥ ·pT )2 − p2
T

2M2

(

xf⊥
T D1 −

Mh

M
h⊥

1T

H̃

z

)

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

+

(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.16)

F cos(φh−φS)
LT = C

[

ĥ ·pT

M
g1T D1

]

, (4.17)

F cos φS

LT =
2M

Q
C
{

−
(

xgT D1 +
Mh

M
h1

Ẽ

z

)

+
kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

+

(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

, (4.18)

F cos(2φh−φS)
LT =

2M

Q
C
{

−
2 (ĥ ·pT )2 − p2

T

2M2

(

xg⊥T D1 +
Mh

M
h⊥

1T

Ẽ

z

)

+
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

−
(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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F sin(φh+φS)
UT =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mhz h̃a
1(x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) , (D.5)

F cos(2φh)
UU =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |3J2(|bT | |P h⊥|)MMhz2 h̃⊥a(1)
1 (x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) ,

(D.6)

F sin(2φh)
UL =x

B

∑

a

e2
a

∫
d|bT |
(2π)

|bT |3 J2(|bT | |P h⊥|)MMhz2 h̃⊥a(1)
1L (x, z2b2

T ) H̃⊥a(1)
1 (z, b2

T ) ,

(D.7)

F sin(3φh−φS)
UT =xB

∑

a

e2
a

∫
d|bT |
(2π)

|bT |4 J3(|bT | |P h⊥|)
M2Mhz3

4
h̃⊥a(2)

1T (x, z2b2
T ) H̃⊥a(1)

1 (z, b2
T ) .

(D.8)

E Cancellation of the soft factor in the Sivers asymmetry

Making use of the closure relation of the Bessel function
∫ ∞

0
d|P h⊥| |P h⊥|Jn(|P h⊥| |bT |)Jn(|P h⊥| BT ) =

1

BT
δ(|bT |− BT ) , (E.1)

we obtain for the expression in eq. (5.6)

∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥|BT )

∫
d|bT |
(2π)

|bT |J0(|bT ||P h⊥|)FUU,T (E.2)

=x
B

∑

a

e2
a HUU,T (Q2, µ2, ρ)

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS J0(|P h⊥|BT )

×
∫

d|bT |
(2π)

|bT |J0(|P h⊥| |bT |)f̃
(0)a
1 (x, z2b2

T ;µ2, ζ, ρ) S̃(+)(b2
T ;µ2, ρ) D̃(0)a

1 (z, b2
T ;µ, ζ̂, ρ)

=2πx
B

∑

a

e2
a HUU,T (Q2, µ2, ρ) f̃ (0)a

1 (x, z2B2
T ;µ2, ζ, ρ)S̃(+)(B2

T ;µ2, ρ)D̃(0)a
1 (z,B2

T ;µ, ζ̂, ρ)

Next, we consider the following expression in the numerator of the asymmetry, eq. (5.7),

∫
d|P h⊥||P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS)

×
∫

d|bT |
(2π)

|bT |2J1(|bT | |P h⊥|)F
sin(φh−φS)
UT,T

=

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS) (E.3)

×xB

∑

a

e2
a Hsin(φh−φS)

UT,T (Q2, µ2, ρ)

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)

×Mzf̃⊥(1)a
1T (x, z2b2

T , µ2, ζ, ρ) S̃(+)(b2
T , µ2, ρ) D̃(0)a

1 (z, b2
T , µ2, ζ̂, ρ)

= 2πx
B

∑

a

e2
a Hsin(φh−φS)

UT,T (Q2, µ2, ρ)f̃⊥(1)a
1T (x, z2B2

T , µ2, ζ, ρ)

×S̃(+)(B2
T , µ2, ρ)D̃(0)a

1 (z,B2
T , µ2, ζ̂/z, ρ),
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F cos φh

LL =
2M

Q
C
[

ĥ ·kT

Mh

(

xeLH⊥
1 −

Mh

M
g1L

D̃⊥

z

)

−
ĥ ·pT

M

(

xg⊥L D1 +
Mh

M
h⊥

1L

Ẽ

z

)]

, (4.10)

F sin(φh−φS)
UT,T = C

[

−
ĥ ·pT

M
f⊥
1TD1

]

, (4.11)

F sin(φh−φS)
UT,L = 0, (4.12)

F sin(φh+φS)
UT = C

[

−
ĥ ·kT

Mh
h1H

⊥
1

]

, (4.13)

F sin(3φh−φS)
UT = C

[

2
(

ĥ ·pT

) (

pT ·kT

)

+ p2
T

(

ĥ ·kT

)

− 4 (ĥ ·pT )2 (ĥ ·kT )

2M2Mh
h⊥

1T H⊥
1

]

, (4.14)

F sinφS

UT =
2M

Q
C
{(

xfTD1 −
Mh

M
h1

H̃

z

)

−
kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

−
(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.15)

F sin(2φh−φS)
UT =

2M

Q
C
{

2 (ĥ ·pT )2 − p2
T

2M2

(

xf⊥
T D1 −

Mh

M
h⊥

1T

H̃

z

)

−
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xhT H⊥
1 +

Mh

M
g1T

G̃⊥

z

)

+

(

xh⊥
T H⊥

1 −
Mh

M
f⊥
1T

D̃⊥

z

)]}

, (4.16)

F cos(φh−φS)
LT = C

[

ĥ ·pT

M
g1T D1

]

, (4.17)

F cos φS

LT =
2M

Q
C
{

−
(

xgT D1 +
Mh

M
h1

Ẽ

z

)

+
kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

+

(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

, (4.18)

F cos(2φh−φS)
LT =

2M

Q
C
{

−
2 (ĥ ·pT )2 − p2

T

2M2

(

xg⊥T D1 +
Mh

M
h⊥

1T

Ẽ

z

)

+
2
(

ĥ ·kT

) (

ĥ ·pT

)

− kT ·pT

2MMh

[(

xeT H⊥
1 −

Mh

M
g1T

D̃⊥

z

)

−
(

xe⊥T H⊥
1 +

Mh

M
f⊥
1T

G̃⊥

z

)]}

. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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act as basis functions of the combined transform to (|P h⊥|,φh)-space. Due to the fact

that the multipole expansion of the physical cross section terminates, only a finite number

of terms appear in the cross section, with J3 being the Bessel function of highest order.

The structures F ···
XY,Z are functions of |bT |, x and z, but no longer depend on the angular

variables. Introducing a short-hand notation for products

P[f̃ (n)D̃(m)] ≡ x
B

∑

a

e2
a (zM |bT |)n (zMh|bT |)m f̃a(n)(x, z2b2

T ) D̃a(m)(z, b2
T ) , (2.22)

the leading twist tree level analysis in eqs. (2.10), (2.13) and (2.15) reveals that the Fourier

transformed structures in the cross section are simple products of TMD PDFs and TMD

FFs

FUU,T = P[f̃ (0)
1 D̃(0)

1 ] , (2.23)

F sin(φh−φS)
UT,T = −P[f̃⊥(1)

1T D̃(0)
1 ] , (2.24)

FLL = P[g̃(0)
1L D̃(0)

1 ] , (2.25)

Fcos(φh−φs)
LT = P[g̃(1)

1T D̃(0)
1 ] , (2.26)

F sin(φh+φS)
UT = P[h̃(0)

1 H̃⊥(1)
1 ] , (2.27)

Fcos(2φh)
UU = P[h̃⊥(1)

1 H̃⊥(1)
1 ] , (2.28)

F sin(2φh)
UL = P[h̃⊥(1)

1L H̃⊥(1)
1 ] , (2.29)

F sin(3φh−φS)
UT =

1

4
P[h̃⊥(2)

1T H̃⊥(1)
1 ]. (2.30)

For completeness, we also list the above results in terms of the momentum-space struc-

ture functions F ···
XY,Z of ref. [8] in appendix D. Note that TMD evolution equations are

typically derived in bT -space and are thus obtained in terms of the same (derivatives of)

Fourier transformed TMD PDFs and TMD FFs that appear in the equations above, see,

e.g., ref. [28], where a similar representation of the structure functions in Fourier space has

been employed.

3 Beyond tree level

The formalism becomes more involved once diagrams beyond leading order in αs are taken

into account. Various strategies have been proposed to address extra divergences that

appear at the one loop level and higher order [15–19, 30–34]. The development of these

frameworks for transverse momentum dependent factorization and the establishing of the

corresponding factorization theorems is an active field of research (see e.g., refs. [15, 35]).

The proposed strategies require the introduction of new variables that act as regularization

scales, and most importantly as it pertains to the content of this paper, the so called soft

factors coming from soft-gluon radiation. As stated in the introduction, depending on the

framework, the soft factors appear explicitly in the structure functions [14, 18], or are

absorbed into the definition of TMD PDFs and TMD FFs (see e.g., refs. [15, 19]). We will

present general arguments that soft factors cancel in weighted asymmetries, independent
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the leading twist tree level analysis in eqs. (2.10), (2.13) and (2.15) reveals that the Fourier

transformed structures in the cross section are simple products of TMD PDFs and TMD

FFs

FUU,T = P[f̃ (0)
1 D̃(0)

1 ] , (2.23)

F sin(φh−φS)
UT,T = −P[f̃⊥(1)

1T D̃(0)
1 ] , (2.24)

FLL = P[g̃(0)
1L D̃(0)

1 ] , (2.25)

Fcos(φh−φs)
LT = P[g̃(1)

1T D̃(0)
1 ] , (2.26)

F sin(φh+φS)
UT = P[h̃(0)

1 H̃⊥(1)
1 ] , (2.27)

Fcos(2φh)
UU = P[h̃⊥(1)

1 H̃⊥(1)
1 ] , (2.28)

F sin(2φh)
UL = P[h̃⊥(1)

1L H̃⊥(1)
1 ] , (2.29)

F sin(3φh−φS)
UT =

1

4
P[h̃⊥(2)

1T H̃⊥(1)
1 ]. (2.30)

For completeness, we also list the above results in terms of the momentum-space struc-

ture functions F ···
XY,Z of ref. [8] in appendix D. Note that TMD evolution equations are

typically derived in bT -space and are thus obtained in terms of the same (derivatives of)

Fourier transformed TMD PDFs and TMD FFs that appear in the equations above, see,

e.g., ref. [28], where a similar representation of the structure functions in Fourier space has

been employed.

3 Beyond tree level

The formalism becomes more involved once diagrams beyond leading order in αs are taken

into account. Various strategies have been proposed to address extra divergences that

appear at the one loop level and higher order [15–19, 30–34]. The development of these

frameworks for transverse momentum dependent factorization and the establishing of the

corresponding factorization theorems is an active field of research (see e.g., refs. [15, 35]).

The proposed strategies require the introduction of new variables that act as regularization

scales, and most importantly as it pertains to the content of this paper, the so called soft

factors coming from soft-gluon radiation. As stated in the introduction, depending on the

framework, the soft factors appear explicitly in the structure functions [14, 18], or are

absorbed into the definition of TMD PDFs and TMD FFs (see e.g., refs. [15, 19]). We will

present general arguments that soft factors cancel in weighted asymmetries, independent

– 8 –
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Spin	  orbit

�
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AN =
�
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�
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P

ST

−
Ph⊥

L

R

Ph⊥

RR

Ph⊥
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Correlator w/ explicit spin orbit correlations

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

and restricting ourselves to leading twist projections, we obtain the following structures

for Φ̃

Φ̃[γ+](x, bT ) = f̃1(x, b2
T ) − i ερσ

T bTρSTσ Mf̃⊥(1)
1T (x, b2

T ) ,

Φ̃[γ+γ5](x, bT ) = SL g̃1L(x, b2
T ) + i bT ·ST M g̃(1)

1T (x, b2
T ) ,

Φ̃[iσα+γ5](x, bT ) = Sα
T h̃1(x, b2

T ) + i SL bα
T M h̃⊥(1)

1L (x, b2
T )

+
1

2

(
bα
T bρ

T +
1

2
b2

T gαρ
T

)
M2 STρh̃

⊥(2)
1T (x, b2

T )

−i εαρ
T bTρMh̃⊥(1)

1 (x, b2
T ) , (2.13)

where α = 1, 2 and ρ = 1, 2. Similarly, we obtain the following structures for ∆̃

∆̃[γ−](z, bT ) = D̃1(z, b2
T ) − i ερσ

T bTρShTσ zMhD̃⊥(1)
1T (x, b2

T ) ,

∆̃[γ−γ5](z, bT ) = ShL G̃1L(z, b2
T ) − i bT ·ShT zMh G̃(1)

1T (z, b2
T ) ,

∆̃[iσα−γ5](z, bT ) = Sα
hT H̃1(z, b2

T ) − i ShL bαzMh H̃⊥(1)
1L (z, b2

T )

+
1

2

(
bα
T bρ

T +
1

2
b2

T gαρ
T

)
z2M2

h ShTρH̃
⊥(2)
1T (z, b2

T ) (2.14)

−i εαρ
T bTρzMhH̃⊥(1)

1 (z, b2
T ) . (2.15)

For future applications, we have written down the latter decomposition for the more general

case of a spin-1
2 hadron; the expression for a spinless hadron is obtained by setting Sh = 0.

The above decompositions can be deduced from the existing expressions for Φ and ∆ in

momentum space [5, 29], or starting from the symmetry properties of the correlators Φ̃

and ∆̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also section 4

and appendix C. The functions f̃1(x, b2
T ), g̃1L(x, b2

T ), . . . are the Fourier transforms of

the usual TMD PDFs f1(x,p2
T ), g1L(x,p2

T ), . . .. For a generic TMD PDF called f and a

generic TMD FF called D, this Fourier transform is given by

f̃(x, b2
T )≡

∫
d2pT eibT ·pT f(x,p2

T )

= 2π

∫
d|pT ||pT | J0(|bT ||pT |) f(x,p2

T ) , (2.16)

D̃(z, b2
T ) ≡

∫
d2KT eibT ·KT D(z,K2

T )=2π

∫
d|KT ||KT |J0(|bT ||KT |)D(z,K2

T ) . (2.17)

Additionally, in eqs. (2.13) and (2.15) not only Fourier transformed TMD PDFs and TMD

FFs, but also their b2
T -derivatives appear, which we denote as

f̃ (n)(x, b2
T ) ≡ n!

(
−

2

M2
∂b2

T

)n

f̃(x, b2
T )

=
2π n!

(M2)n

∫
d|pT ||pT |

(
|pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) , (2.18)

D̃(n)(z, b2
T ) ≡ n!

(
−

2

z2M2
h

∂b2
T

)n

D̃(z, b2
T )

=
2π n!

(z2M2
h)n

∫
d|KT ||KT |

(
|KT |
|bT |

)n

Jn(|bT ||KT |) D(z,K2
T ) . (2.19)
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★ CS has simpler S/T interpretation--multipole 
expansion in terms of               conjugate to

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued and f̃ (0) = f̃ , D̃(0) = D̃. Taking the

“asymptotic limit” |bT | → 0 on the right hand side of eqs. (2.19), we formally obtain the

conventional moments of the TMD PDFs and TMD FFs, f (n)(x) and D(n)(z) respectively,

f̃ (n)(x, 0) =

∫
d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =

∫
d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z). (2.20)

Thus we find that the derivatives in bT -space are directly related to moments of TMD

PDFs and FFs. Finally we re-write the SIDIS cross section of ref. [8] in the γ∗P center

of mass frame with the proton three-momentum pointing in the negative z-direction (so

called Trento conventions [22]), as

dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

) ∫
d|bT |
(2π)

|bT |
{

J0(|bT ||P h⊥|)FUU,T + εJ0(|bT ||P h⊥|)FUU,L

+
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Fcos φh
UU + ε cos(2φh)J2(|bT ||P h⊥|)F

cos(2φh)
UU

+ λe

√
2 ε(1 − ε) sin φh J1(|bT ||P h⊥|)F sin φh

LU

+ S‖

[√
2 ε(1 + ε) sin φh J1(|bT ||P h⊥|)F sin φh

UL + ε sin(2φh)J2(|bT ||P h⊥|)F sin 2φh
UL

]

+ S‖λe

[√
1 − ε2 J0(|bT ||P h⊥|)FLL +

√
2 ε(1 − ε) cos φh J1(|bT ||P h⊥|)Fcos φh

LL

]

+ |S⊥|
[
sin(φh − φS)J1(|bT ||P h⊥|)

(
F sin(φh−φS)

UT,T + εF sin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)F
sin(φh+φS)
UT

+ ε sin(3φh − φS)J3(|bT ||P h⊥|)F
sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sin φS J0(|bT ||P h⊥|)F sin φS

UT

+
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)F
sin(2φh−φS)
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)F

cos(φh−φS)
LT

+
√

2 ε(1 − ε) cos φS J0(|bT ||P h⊥|)Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)J2(|bT ||P h⊥|)F
cos(2φh−φS)
LT

]}
(2.21)

The structure of the cross section is what one gets from a multipole expansion in bT -

space followed by a Fourier transform, see appendix B. Each of the structure functions

F ···
XY,Z in bT -space corresponds to the Hankel (or Fourier-Bessel) transform of the corre-

sponding structure function F ···
XY,Z in the usual momentum space representation of the cross

section. The combinations sin(nφh + . . .)Jn(|bT ||P h⊥|) and cos(nφh + . . .)Jn(|bT ||P h⊥|)

– 7 –
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• Taking the asymptotic form of the Bessel 
function the conventional weights  appear as 
the leading term of the Taylor expansion of the 
of Bessel Weight

Based on the expansion of the SIDIS cross section in terms of Bessel functions J
n

of

transverse momentum and impact parameter in Eq. (2.21), we exploit the orthogonality to

generalize the weighting procedure. Now the weighting is of the form

AW
XY

(B
T

) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

2

R

d|P
h?| |P h?| d�h

d�
S

W(|P
h?|,�h

;B
T

) d�
XY

R

d|P
h?| |P h?| d�h

d�
S

J
0

(|P
h?|BT

) d�
XY

: for XY = UU

2

R

d|P
h?| |P h?| d�h

d�
S

W(|P
h?|,�h

,�
S

;B
T

)
⇣

d�"
XY

� d�#
XY

⌘

R

d|P
h?| |P h?| d�h

d�
S

J
0

(|P
h?|BT

)
⇣

d�"
XY

+ d�#
XY

⌘ : else,

(5.2)

where the weight function W corresponds to that of conventional weighted asymmetries,

except that we replace

|P
h?|n ! J

n

(|P
h?|BT

)n!

✓

2

B
T

◆

n

. (5.3)

As mentioned earlier, taking the asymptotic form of the Bessel function the conventional

weights [6, 7] which are / |P
h?|n appear as the leading term of the Taylor expansion

of the right hand side of Eq. (5.3). Furthermore we note that the parameter B
T

> 0

regularizes UV divergences in moments of TMD PDFs and FFs. More importantly, we will

show that the parameter B
T

> 0 allows us to scan TMD PDFs and TMD FFs in Fourier

space. In fact, the form of Eq. (5.2) already indicates that the weighting implements a

Fourier-decomposition of the cross section in transverse momentum space.

Now we summarize the cancellation of the soft factor. We will illustrate this for the

Sivers Bessel-weighted asymmetry (for details see Appendix F). One can see from Eq. (2.21)

that the appropriate weight for the Sivers asymmetry is

W =
2 J

1

(|P
h?|BT

)

zMB
T

sin(�
h

� �
S

), i.e., w
1

=
2 J

1

(|P
h?|BT

)

zMB
T

, (5.4)

corresponding to |P
h?|/zM in the limit |P

h?| ⌧ 1/B
T

. Then the Bessel-weighted Sivers

asymmetry is

A
2 J

1

(|Ph?|BT )

zMBT
sin(�h��S)

UT

(B
T

) =

2

R

d|P
h?| |P h?| d�h

d�
S

2 J

1

(|P h?|BT )

zMBT
sin(�

h

� �
S

)
�

d�" � d�#�

R

d|P
h?| |P h?| d�h

d�
S

J
0

(|P
h?| BT

) (d�" + d�#)
, (5.5)

where the axially symmetric denominator is given by

2↵2

xByQ
2

y2

(1� ")

✓

1 +
�2

2xB

◆

Z

d|P
h?| |P h?| d�h

d�
S

J
0

(|P
h?|BT

)

⇥
Z

d|b
T

|
(2⇡)

|b
T

|J
0

(|b
T

||P
h?|)FUU,T

, (5.6)
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J BT
1 (|P hT |)

zM
=

2 J1(|P hT |BT )
zMBT

A
JBT

1 (|P hT |)
zM sin(�h��S)

UT (BT ) =

2
�

d|P h�| |P h�| d�h d�S
JBT

1 (|P hT |)
zM sin(�h � �S)

�
d�� � d��

�
�

d|P h�| |P h�| d�h d�S J BT
0 (|P hT |) (d�� + d��)

Bessel weighting-projecting out Sivers 
orthogonality of Bessel Fncts. 

A

JBT
1 (|PhT |)

zM sin(�h��s)
UT (BT ) = �2

P
a e

2
a f̃

?(1)a
1T (x, z2B2

T ) D̃
a
1(z,B2

T )P
a e

2
a f̃

a
1 (x, z

2B2
T ) D̃

a
1(z,B2

T )

“Parton Model”



lim
BT�0

w1 = 2J1(|P h�|BT )/zMBT �� |P h�|/zM

A
|P h�|
zhM sin(�h��s)

UT = �2
�

a e2
a f�(1)

1T (x) Da(0)
1 (z)

�
a e2

a fa(0)
1 (x) Da(0)

1 (z)

Traditional weighted asymmetry recovered but UV divergent

undefined w/o 
regularization Bacchetta et al. JHEP 08



TMDs in “config” space--Bessel MOMENTS

f̃(x, b2
T ) �

�
d2pT eibT ·pT f(x,p2

T )

= 2�

�
d|pT ||pT | J0(|bT ||pT |) fa(x,p2

T ) ,

f̃ (n)(x, b2
T ) � n!

�
� 2

M2
�b2

T

�n

f̃(x, b2
T )

=
2� n!
(M2)n

�
d|pT ||pT |

�
|pT |
|bT |

�n

Jn(|bT ||pT |) f(x,p2
T ) ,

f̃ (n)(x, 0) =
�

d2pT

�
p2

T

2M2

�n

f(x,p2
T ) � f (n)(x)

b)  n.b. connection to        moments

 a) F.T.  SIDIS cross section w/ following Bessel  moments

pT



P

Ph

q

p

k

S

∆

Φ

Collins Soper NPB 1981, Collins Metz PRL 2004, Ji, Ma, Yuan PRD 2004,  Collins 2011, Collins Rogers 2012 

CS NPB 81,CSS NPB 1985 Collins, Hautman PLB 00, 
Boer NPB 2001, Collins Metz PRL 2004

Idilbi, Ji, Ma, Yuan PRD 05, 
Boer NPB 2009

Cherednikov, Karanikas, Stefanis  NPB 10,         
Collins Oxford Press 2011, 
 Abyat, Rogers PRD 2011, 

Abyat, Collins, Qiu, Rogers PRD 2012 ...
Echevarria,Idilbi, Scimemi JHEP 2012

•Extra divergences at one loop and higher
•Extra variables needed to regulate 
      light-cone, soft & collinear divergences 
•Modifies convolution integral introduction of soft factor
•Effects cancel in Bessel weighted asymmetries

Soft factor

Further Beyond “tree level” factorization



Comments on Soft factor

• Collective effect soft gluons not associated with distribution frag 
function-factorizes into a matrix of Wilson lines in QCD vacuum

• Subtracts rapidity divergences from TMD pdf and FF

• Considered to be universal in hard processes                                
(Collins Soper 81, .... , Collins & Metz PRL 04, Ji, Ma, Yuan PRD 05)

• At tree level (zeroth order       ) unity-parton model

• Absent tree level pheno analyses of experimental data                   
(e.g. Anselmino et al PRD 05 & 07, Efremov et al PRD 07) 

• Potentially, results of  analyses can be difficult to compare at 
different energies issue for EIC

• Correct description of energy scale dependence of cross section 
and asymmetries in TMD picture, soft factor must be included      
( Ji, Ma, Yuan 2004, Collins Camb. Univ. Press 2011,  Abyat, Collins, Rogers PRD 2011)   

• However, possible to consider observables  where its affects 
cancels e.g. weighted asymmetries Boer, LG, Musch, Prokudin JHEP 2011

�s



Momentum space convolution 

Hard

TMD Soft FF

C
�
H;wfSD

�
� xBH(Q2, µ2, �)

�

a

e2
a

�
d2pT d2KT d2�T �(2)

�
zpT + KT + �T � Ph�

�
w

�
pT ,�KT

z

�

�fa(x, p2
T , µ2, x�, �) S(�2T , µ2, �) Da(z,K2

T , µ2, �̂/z, �)

CS 81, Idilbi, Ji, Ma, Yuan PRD 05  ....    

P

Ph

q

p

k

S

∆

Φ



P
d�

dxB dy d�S dzh d�h d|P h�|2
� �2

xBQ2

�
d|bT |
(2�)

|bT | S̃(b2
T )

�
. . .

+J0(|bT ||P h�|)P[f̃1 D̃1]

+ |S�| sin(�h � �S) J1(|bT ||P h�|) P[f̃�(1)
1T D̃1]

+� cos(2�h) J2(|bT ||P h�|)P[h̃�(1)
1 H̃�(1)

1 ]

+ . . . 15 more structure functions

  Products in terms of   “     moments “bT

�Soft factor is
• spin blind
• flavor blind
• factors in
• Universal

P

Idilbi,Ji,Ma,Yuan PRD 05

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

of the specific factorization framework; however for definiteness we work with the JMY

framework [14, 18], which is based on the ideas of Collins, Soper, and Sterman for the

factorization of e+e− and Drell Yan scattering [13, 30]. Again we consider the structure

function giving rise to the Sivers asymmetry,

F sin(φh−φS)
UT,T = Hsin(φh−φS)

UT,T (Q2, µ2, ρ) S̃(+)(b2
T , µ2, ρ) P[f̃ (1)

1T D̃(0)
1 ] + Ỹ sin(φh−φS)

UT,T (Q2, b2
T ) .

(3.1)

The first term in the following referred to as the “TMD expression”, dominates in the

region where |P h⊥| is small, |P h⊥|/z ≈ QT " Q. The second term is necessary to properly

describe the structure function for large transverse momentum, where QT ∼ Q, and where

fixed order perturbation theory and collinear factorization apply. Here Hsin(φh−φS)
UT,T is the

hard part, and S̃(+) is a soft factor appearing explicitly in the structure function within

the JMY formalism. It is the same in all the structure functions F ···
XY,Z , see ref. [28]. All

other structure functions of eqs. (2.23)–(2.30) need to be modified analogous to eq. (3.1).

The term Ỹ sin(φh−φS)
UT,T (Q2, b2

T ) represents contributions that are relevant only in the

region of large transverse momentum |P h⊥| [19, 36]. Qualitatively, this corresponds to the

very small bT region, z|bT | ! 1/Q. Since our aim is to study TMD PDFs, we want to

focus on the region |P h⊥|/z " Q where we expect them to give the dominant contribution

if z|bT | $ 1/Q. Nevertheless, since we are considering weighted integrals of structure

functions, the integrals do include the region of very large |P h⊥|. As a result, the Ỹ term

in eq. (3.1) is non-zero even if z|bT | $ 1/Q. We note that the Ỹ term is expected to be

particularly important in the case of a “mismatch” between the tail of the TMD term and

the |P h⊥|-behavior obtained from the collinear formalism in the regime of intermediate

|P h⊥|, i.e., M " QT " Q. Matches and mismatches between the collinear and TMD

formalism have been discussed in detail in ref. [37]. An important example for the case

of a mismatch is the cos(2φh) asymmetry. One possibility to avoid the discussion of the

Ỹ -term is to explicitly cut off the |P h⊥| integrals at some upper value ΛTMD. This cutoff

introduces an error in our extracted TMD expression, for which we give an estimate in

appendix G.3. Another option is to simply ignore the Ỹ term. This amounts to keeping

the TMD term in the large |P h⊥| region, i.e., to include the large-|P h⊥|-tail generated

by the TMD term, which would otherwise be corrected by the Y term. In appendix G.3,

we show that in the z|bT | $ 1/Q region of interest this produces an error that falls off

at least as a fractional inverse power with increasing |bT |. It should be mentioned that

this estimate of the behavior of the error applies to the Bessel weighting which we discuss

below. By contrast, no such error estimate exists for conventional weighting with powers

of |P h⊥| since such integrals are divergent. Better error estimates, or equivalently, a better

determination of the TMD region in BT , can be obtained by an explicit treatment of the

Ỹ term, which we will leave for future analyses.

In summary, we find that weighted integrals based on the TMD expression alone are

valid only in a limited range of BT . Finally, beyond tree level, the product notation

P[fD] defined in eq. (2.22) has to be updated to include further dependences on the

renormalization and cutoff parameters µ2, ρ, ζ and ζ̂ appearing in the JMY formalism

– 9 –

Soft factor deconvoluted in Fourier Bessel rep cross sec.
 versus C



• Y term corrects the structure functions at     
PT ~ Q ,  where the factorized structure fnct. 
does a good job in the PT << Q

•We will focus the kinematic regime PT << Q 
where TMD factorization is appropriate 

See talks of Pavel Nadowsky, Ted Rogers, Marco Guzzi
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How does this emerge in CSS + JCC 2011 
Factorization formulation

•Here we see the cancellation of spin independent 
&  “Universal” parts of the evolution kernal
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•  Divergent$contribu;on$at$l+$=$0.$
$

•  Cancela;on$in$the$integral$over$all$lt.$
$

•  What$if$we$don’t$integrate?$



Factoriza;on$and$Lightcone$
Divergences$

•  Lightlike$Wilson$lines$
–  Infinite$rapidity$QCD$radia;on$in$the$wrong$direc;on.$
–  In$so]$factor/fragmenta;on$func;on$too.$$
$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$

35 
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in TMDs
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Introduces rapidity scale parameter  

y

5

the factorization formula for SIDIS takes the form:

Wµν =
∑

f

|Hf (Q;µ)2|µν ×

∫

d2k1T d2k2T Ff/p(x,k1T ;µ; ζF )Dh/f (z, zk2T ;µ; ζD)×

× δ(2)(k1T + qT − k2T )

+ Y (Q,qT ) +O((Λ/Q)a). (2)

The first term on the right-hand side of this equation
(responsible for the low-qT behavior) has exactly the
structure of the partonic TMD-factorization formula in
Eq. (1), apart from the scale dependence denoted by
µ, ζF and ζD. The arguments ζF and ζD will be dis-
cussed more in the explanation of the TMD definitions
in Sect. IV. They are left over from the need to regu-
late light-cone divergences, and should obey

√
ζF ζD ∼

O(Q2). In terms of more familiar variables, they are de-
fined as:

ζF = 2M2
px

2e2(yP−ys) (3)

and

ζD = 2(M2
H/z2)e2(ys−yh). (4)

Here, x and z are the usual Bjorken scaling and frag-
mentation variables, Mp is the proton mass and Mh is
the mass of the produced hadron. The rapidities of the
proton and produced hadron are yp and yh respectively.
The rapidity ys is an arbitrary low-rapidity cutoff param-
eter that separates partons with large forward rapidity
(in the proton direction) from backward rapidity (in the
produced hadron direction). Variations of these functions
with ys will be determined by the evolution equations.
The scale µ is the standard renormalization

group (RG) scale. The TMD correlation functions,
Ff/p(x,k1T ;µ; ζF ) and Dh/f (z, zk2T ;µ; ζD), have
definite and consistent operator definitions. They
include the effects from soft gluons in such a way that
no soft factor appears explicitly in Eq. (2). Evolu-
tion can be implemented on Ff/p(x,k1T ;µ; ζF ) and
Dh/f (z, zk2T ;µ; ζD) independently, and the basic steps
closely follow the usual CSS approach. We will discuss
the definitions more in the next section, but for now we
mention that they solve most of the theoretical problems
summarized in Refs. [21, 25] and Sect. II C, including
the appearance of light-cone divergences and Wilson line
self-interactions.
The term, Y (Q, qT ), accounts for the large-qT de-

pendence of the cross section, where the approxima-
tions needed for TMD-factorization break down. There,
collinear factorization becomes the appropriate frame-
work. The error term is suppressed by (Λ/Q)a where
a > 0. The first term on the right side of Eq. (2) is valid
up to corrections of order (qT /Q)a, but the Y (Q,qT ) is
needed for a valid treatment of factorization over the full
range of qT .

The derivation of Eq. (2) within pQCD factoriza-
tion, with consistent definitions for the TMDs, is an im-
portant breakthrough because it connects TMD studies
from a GPM framework with formal QCD and clarifies
the meaning of TMD evolution. We will use Eq. (2),
along with the associated definitions for the TMDs from
Ref. [26], to obtain momentum space fits for use in phe-
nomenology. The non-perturbative input can be ob-
tained from already existing models or fits made at fixed
scales. For the TMD PDFs, much information about the
non-perturbative input is already available from fits that
use the standard bT -space formulation of the CSS for-
malism in the DY process.

III. SETUP AND NOTATION

We start by setting up the basic notation. In our
convention for light-cone variables, a four-vector V µ =
(V +, V −,VT ) has components,

V ± =
V 0 ± V z

√
2

VT = (V x, V y). (5)

The z-component picks out the forward direction. Note
that V 2 = 2V +V − −V2

T .
For the processes we are interested in, there are always

two relevant light-like directions which we label uA and
uB and define to be:

uA = (1, 0,0t) uB = (0, 1,0t). (6)

In the SIDIS example, uA and uB characterize the direc-
tions of the incoming proton and the produced jet. A
Wilson line from a coordinate x to ∞ along the direction
of a four-vector n is defined as usual:

W (∞, x;n) = P exp

[

−ig0

∫ ∞

0
ds n ·Aa

0(x+ sn)ta
]

.

(7)
In these definitions, the bare fields and couplings are
used, P is a path-ordering operator, and ta is the gener-
ator for the gauge group in the fundamental representa-
tion, with color index a.
As discussed in the previous section, light-cone diver-

gences must be regulated by tilting the direction of the
Wilson line away from the exactly light-like direction.
Therefore, we need to define another set of vectors nA

and nB analogous to Eq. (6) but slightly tilted, so that
they have rapidities yA and yB:

nA = (1,−e−2yA,0t) nB = (−e2yB , 1,0t). (8)

Note that the tilted Wilson line directions are space-like,
n2
A = n2

B < 0. The use of space-like directions for the
Wilson lines ensures maximum universality for the def-
initions of the TMDs, as explained in Ref. [64]. In all
of our calculations, µ is the standard MS mass scale in
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Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



Emergence of Soft Factor in Cross section

TMDs are still  “entangled”  not yet full factorization 
Collins 2011 Cam. Univ. Press
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Understanding the Definition:
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S̃(+∞,−∞)S̃(+∞, ys)

Separately 
Well-defined

34

Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

34

Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

35

Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)

Separately 
Well-defined

 Soft factor repartitioned  
This is done  to both

 
1) cancel LC divergences and 
2) separate “right & left” movers i.e. factorize

Emergence of Soft Factor in TMDs
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• Collins-Soper Equation:

–

• RG:

–

–

Evolution

∂ ln F̃ (x, bT , µ, ζ)

∂ ln
√
ζ

= K̃(bT ;µ)

dK̃

d lnµ
= −γK(g(µ))

d ln F̃ (x, bT ;µ, ζ)

d lnµ
= −γF (g(µ); ζ/µ2)

K̃(bT ;µ) =
1

2

∂

∂yn
ln
S̃(bT ; yn,−∞)
S̃(bT ; +∞, yn)

Perturbatively 
calculable, from 
definitions

Perturbatively 
calculable from 
definition at small b.

Factoriza;on$and$Lightcone$
Divergences$

•  Lightlike$Wilson$lines$
–  Infinite$rapidity$QCD$radia;on$in$the$wrong$direc;on.$
–  In$so]$factor/fragmenta;on$func;on$too.$$
$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$

35 
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definitions

Perturbatively 
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definition at small b.

Now effects of Soft factor soft gluon 
radiation  in evolution kernal

TMD Evolution...CSS + JCC 2011

Evolution follows from their operator definition



Solve CS eq. & RGE equation to obtain Evolution kernal 

.... and RGE
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One TMD factorization entire range of PT or bT

• TMD formalism of Collins 2011 interpolates/
matches the “TMD” and collinear picture 

• Maximizes the perturbative content while providing 
a TMD formalism that is applicable over the entire 
range of PT

Collins Soper Sterman NPB 85

where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale ! is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling "SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of ! and #F, ! ¼ Q and #F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions $F and
$K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b$ in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV&1 in [33], and bmax ¼ 1:5 GeV&1 in [34]. Next
we write

~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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FIG. 1 (color online). The (negative of the) up quark Sivers
function at x ¼ 0:1 evolved fromQ ¼

ffiffiffiffiffiffiffi
2:4

p
GeV (solid maroon)

to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
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~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)
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evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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logs of bT ). The functions g

1

(x, bT ; bmax

), g
2

(z, bT ; bmax

) and gK(bT ; bmax

) correspond to gj/HA
(x, bT ), gHA/f (zA, bT ),

and gK(bT ) in Eqs. (13.70) and (13.110) of Ref. [3]. The definition of gK(bT ; bmax

) is given in Eq. (13.60) of Ref. [3]
and the definition of g

2

(z, bT ) (gHA/f (zA, bT )) is given in Eq. (13.68), and there is an exactly similar definition for
g
1

(x, bT ; bmax

) (gj/HA
(x, bT )). The functions g

1

(x, bT ; bmax

) and g
2

(z, bT ; bmax

) are specific to the type of hadron and
the fragmentation function, respectively. The interpretation is that they describe the corrections needed to account
for the higher orders and intrinsic non-perturbative transverse motion of the bound state partons in the limit of large
bT .6

It is important to note that, although gK(bT ; bmax

) is totally universal, g
1

(x, bT ; bmax

) and g
2

(z, bT ; bmax

) depend
in general on the species of the incoming and outgoing hadrons respectively, as well as on the fact that one TMD is
a PDF while the other is an FF, just as in the case of collinear PDFs and FFs.

Let us introduce two further definitions to simplify notation. The purpose of the present paper is not to implement
a detailed perturbative treatment of the small bT -dependence, but rather to investigate the large bT behavior at
relatively small Q. Therefore, let us define,

� g
PDF

(x, bT ; bmax

) ⌘ �g
1

(x, bT ; bmax

) + ln
⇣
F̃H1

(x, b
⇤

;µb, µ
2

b)
⌘
, (17)

and

� g
FF

(z, bT ; bmax

) ⌘ �g
2

(z, bT ; bmax

) + ln
⇣
D̃H2(z, b⇤;µb, µ

2

b)
⌘
. (18)

Then, Eqs. (15)-(16) become

D̃H2
(z, bT ;Q,Q2) = exp

⇢
�g

FF

(z, bT ; bmax

)� gK(bT ; bmax

) ln

✓
Q

Q
0

◆

+ ln

✓
Q

µb

◆
K̃(b

⇤

;µb) +

Z Q

µb

dµ0

µ0


�
FF

(↵s(µ
0); 1)� ln

✓
Q

µ0

◆
�K(↵s(µ

0))

�)
, (19)

6 In our notation, we have included b

max

as an explicit auxiliary parameter in g

1

(x, bT ; b
max

), g

2

(z, bT ; b
max

) and gK(bT ; b
max

) to
emphasize that these functions depend on the choice of b

max

.

Structure Function beyond Parton Model 

FUU (x, z, b,Q
2) =

X

a

F̃ a
H1(x, bT , µ, ⇣F )D̃

a
H2(zh, bT , µ, ⇣D)HUU (Q

2, µ2)
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˜Ff/P (x,bT

;Q,Q2

) = (149)

(150)

exp

(
ln

Q

µb

˜K(b⇤;µb) +

Z Q

µb

dµ0

µ0


�F (g(µ

0
); 1)� ln

Q

µ0 �K(g(µ0
))

�)
⇥ (151)

(152)

⇥ exp

⇢
�gPDF,f (x, bT )�gK(bT ) ln

Q

Q
0

�
(153)

�gPDF,f (x, bT ) ⌘ �gf/P (x, bT ) + ln

⇣
˜Ff/P (x, b⇤; µb, µ

2

b)

⌘
(154)

⇣
1

= x2M2

p e
2(yP�ys)

(155)

d�

dP 2

T

/ H(↵s(Q))

Z
d2bT e

ibT ·PT
˜FH1(x, bT ;Q,Q2

)

˜DH2(z, bT ;Q,Q2

) + Y
SIDIS

/ F.T. ˜FH1(x, bT ;Q,Q2

)

˜DH2(z, bT ;Q,Q2

) + Y
SIDIS

. (156)
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Q

µb

˜K(b⇤;µb) +
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dµ0

µ0


�F (g(µ

0
); 1)� ln

Q

µ0 �K(g(µ0
))

�)
⇥ (151)

(152)

⇥ exp

⇢
�gPDF,f (x, bT )�gK(bT ) ln

Q

Q
0

�
(153)

�gPDF,f (x, bT ) ⌘ �gf/P (x, bT ) + ln

⇣
˜Ff/P (x, b⇤; µb, µ

2

b)

⌘
(154)

⇣
1

= x2M2

p e
2(yP�ys)

(155)

d�

dP 2

T

/ H(↵s(Q))

Z
d2bT e

ibT ·PT
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)
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)
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. (156)

d�

dP 2

T

/ F.T. exp

⇢
�g

PDF

(x, bT ; bmax

)� g
FF

(z, bT ; bmax

)� 2gK(bT ; bmax

) ln

✓
Q

Q
0

◆
+

+ 2 ln

✓
Q

µb

◆
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Z Q
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dµ0
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�
PDF
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b⇤ =
bp

1 + (b/b
max

)2

�
gi
⇥
� 0 as b � 0 perturbative

Non perturbative factor contribution must be fit  

e

�SNP
UT

(b,Q, x, z) = exp

⇢
�

g

1

(x, bT ; bmax

) + g

2

(z, bT ; bmax

) + 2gk(bT ) ln

✓
Q

Q

0

◆��

UT

★ Abyat, Collins, Qiu, Rogers PRD (11),

CSS NPB 85

FUT (x, z, b,Q) = (C̃f/i ⌦ f

(1)
1T i/P )(x, b?;µb)(C̃j/H ⌦ dH/j)(z, b?;µb)e

�Spert(b⇤,Q)
e

�SNP
UT (b,Q,x,z)

Sivers Structure Function



4

along with the following definitions,

Wµ⌫(P
h?

) ⌘
Z

d2b
T

(2⇡)2
e�ibT ·P h? W̃µ⌫(b

T

) , (10)

�̃
ij

(x, zb
T

) ⌘
Z

d2p
T

eizbT ·pT �
ij

(x,p
T

) =

Z

db�

(2⇡)
eixP

+

b

�
hP, S| ̄

j

(0)U [C
b

] 
i

(b)|P, Si
�

�

�

�

b

+

=0

, (11)

�̃
ij

(z, b
T

) ⌘
Z

d2K
T

eibT ·KT �
ij

(z,K
T

) , (12)

to re-write the leading term in the hadronic tensor, Eq. (6), in Fourier space

2MW̃µ⌫ =
X

a

e2
a

Tr
⇣

�̃(x, zb
T

)�µ�̃(z, b
T

)�⌫
⌘

. (13)

The advantage of the b
T

space representation is clear: the hadronic tensor is no longer a convolution of p
T

and K
T

dependent functions but a simple product of b
T

-dependent functions. This motivates us to re-write the entire cross
section in terms of the Fourier transform

d�

dxB dy d dz
h

d�
h

|P
h?

|d|P
h?

| =
Z

d2b
T

(2⇡)2
e�ibTP h?

⇢

↵2

xByQ
2

y2

(1� ")

✓

1 +
�2

2xB

◆

L
µ⌫

W̃µ⌫

�

. (14)

Next, we decompose the correlators �̃ and �̃ into TMD PDFs and FFs in Fourier space. Using the trace notation
(see also Eqs. (A8) and (A9) in the appendix)

�̃[�] ⌘ 1

2
Tr(�̃�) , (15)

and restricting ourselves to leading twist projections, we obtain the following structures for �̃

�̃[�

+

](x, b
T

) = f̃
1

(x, b2
T

)� i ✏⇢�
T

b
T⇢

S
T�

Mf̃
?(1)

1T

(x, b2
T

) ,

�̃[�

+

�

5

](x, b
T

) = S
L

g̃
1L

(x, b2
T

) + i b
T

·S
T

M g̃
(1)

1T

(x, b2
T

) ,

�̃[i�

↵+

�

5

](x, b
T

) = S↵

T

h̃
1

(x, b2
T

) + i S
L

b↵
T

M h̃
?(1)

1L

(x, b2
T

)

+
1

2

✓

b↵
T

b⇢
T

+
1

2
b2
T

g↵⇢
T

◆

M2 S
T⇢

h̃
?(2)

1T

(x, b2
T

)� i ✏↵⇢
T

b
T⇢

Mh̃
?(1)

1

(x, b2
T

) , (16)

where ↵ = 1, 2 and ⇢ = 1, 2. Similarly, we obtain the following structures for �̃

�̃[�

�
](z, b

T

) = D̃
1

(z, b2
T

)� i ✏⇢�
T

b
T⇢

S
hT�

zM
h

D̃
?(1)

1T

(x, b2
T

) ,

�̃[�

�
�

5

](z, b
T

) = S
hL

G̃
1L

(z, b2
T

)� i b
T

·S
hT

zM
h

G̃
(1)

1T

(z, b2
T

) ,

�̃[i�

↵�
�

5

](z, b
T

) = S↵

hT

H̃
1

(z, b2
T

)� i S
hL

b↵zM
h

H̃
?(1)

1L

(z, b2
T

)

+
1

2

✓

b↵
T

b⇢
T

+
1

2
b2
T

g↵⇢
T

◆

z2M2

h

S
hT⇢

H̃
?(2)

1T

(z, b2
T

)� i ✏↵⇢
T

b
T⇢

zM
h

H̃
?(1)

1

(z, b2
T

) . (17)

For future applications, we have written down the latter decomposition for the more general case of a spin- 1
2

hadron;
the expression for a spinless hadron is obtained by setting S

h

= 0. The above decompositions can be deduced
from the existing expressions for � and � in momentum space [5, 29], or starting from the symmetry properties of
the correlators �̃ and �̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also Section IV and
Appendix C. The functions f̃

1

(x, b2
T

), g̃
1L

(x, b2
T

), . . . are the Fourier transforms of the usual TMD PDFs f
1

(x,p2

T

),
g
1L

(x,p2

T

), . . .. For a generic TMD PDF called f and a generic TMD FF called D, this Fourier transform is given by

f̃(x, b2
T

) ⌘
Z

d2p
T

eibT ·pT f(x,p2

T

) = 2⇡

Z

d|p
T

||p
T

| J
0

(|b
T

||p
T

|) f(x,p2

T

) , (18)

D̃(z, b2
T

) ⌘
Z

d2K
T

eibT ·KT D(z,K2

T

) = 2⇡

Z

d|K
T

||K
T

| J
0

(|b
T

||p
T

|) D(x,K2

T

) . (19)

Recall correlator in b-space From Bessel Transform

Unpolarized and Sivers evolve in same way  !!!

!i
f=Pðx;kT;"; #FÞ ¼

1

ð2$Þ2
Z

d2bTe
ikT$bT ~!i

f=Pðx;bT;"; #FÞ ¼
i

ð2$Þ2MP

Z
d2bTe

ikT$bT
biT
bT

~F0?f
1T ðx; bT ;"; #FÞ: (20)

To further simplify this expression, and without loss of generality, we use a frame where kT is in the x direction so that
kiT
kT
¼ ð1; 0Þ and biT

bT
¼ ðcos%; sin%Þ. Then,

!i
f=Pðx;kT;"; #FÞ ¼

i

ð2$Þ2MP

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;"; #FÞ

Z $

%$
d%eikTbT cos%ðcos%; sin%Þ

¼ 1

ð2$Þ2MP

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;"; #FÞ

@

@ðkTbTÞ
Z $

%$
d%eikTbT cos%ð1; 0Þ

¼ kiT
2$MPkT

Z 1

0
dbTbT ~F

0?f
1T ðx; bT ;"; #FÞ

@

@ðkTbTÞ
J0ðkTbTÞ

¼ %kiT
2$MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT;"; #FÞ: (21)

Then the complete Sivers term in Eq. (13) is

!i
f=Pðx;kT;"; #FÞ&ijSjT

¼ %kiT&ijS
j
T

2$MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;"; #FÞ: (22)

So, from Eq. (15) we express the momentum-space Sivers
function in terms of ~F0:

F?f
1T ðx; kT ;"; #FÞ

¼ %1

2$kT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;"; #FÞ; (23)

whose inverse transform is

~F0?f
1T ðx; bT ;"; #FÞ

¼ %2$
Z 1

0
dkTk

2
TJ1ðkTbTÞF?f

1T ðx; kT ;"; #FÞ: (24)

Notice that the originally defined ~F?f
1T from Eq. (16) no

longer appears. The bT-dependent function ~F0?f
1T ðx; bT ;";

#FÞ is closely analogous to the quantity ~f?ð1Þ
1T that appears

in Eqs. (16) and (20) of Ref. [27], and to @ibqT in Eq. (40) of
Ref. [20], though the basic definition for the bT-space
TMD PDF in Eq. (11) is significantly different.

B. The evolution equations

The set of evolution equations comprises the Collins-
Soper (CS) equation which gives evolution with respect to
#F, and the renormalization-group (RG) equations which
give evolution with respect to ". The CS equation for the
TMD function defined in Eq. (11) is [21]

@ ~Ff=P"ðx;bT; S;"; #FÞ
@ ln

ffiffiffiffiffiffi
#F

p ¼ ~KðbT ;"Þ ~Ff=P"ðx;bT; S;"; #FÞ;

(25)

where

~KðbT;"Þ ¼ 1

2

@

@ys
ln
"~SðbT ; ys;%1Þ
~SðbT ;þ1; ysÞ

#
: (26)

The RG equations are

d ~KðbT ;"Þ
d ln"

¼ %'Kðgð"ÞÞ (27)

and

d ~Ff=P"ðx;bT; S;"; #FÞ
d ln"

¼ 'Fðgð"Þ; #F="2Þ ~Ff=P"ðx;bT; S;"; #FÞ: (28)

Similar equations apply to the fragmentation function.
It follows that the #F dependence of 'F is determined:

@'Fðgð"Þ; #F="2Þ
@ ln

ffiffiffiffiffiffi
#F

p ¼ %'Kðgð"ÞÞ; (29)

so that

'Fðgð"Þ; #F="2Þ ¼ 'Fðgð"Þ; 1Þ % 1

2
'Kðgð"ÞÞ ln#F

"2 :

(30)

These equations were used in Ref. [22] to calculate the
evolution of the unpolarized TMDs. For the spin-
dependent case, the Fourier transform of the second term
in Eq. (13) obeys the same evolution equations, i.e., the
equations apply to

Z
d2kTe

%ikT$bTF?f
1T ðx; kT ;"; #FÞ

&ijk
i
TS

j
T

Mp

¼ ~!i
f=Pðx;bT;"; #FÞ&ijSjT: (31)

The CS equation for the spin-dependent part is therefore

@ ~!i
f=Pðx;bT;";#FÞ&ijSjT

@ln
ffiffiffiffiffiffi
#F

p ¼ ~KðbT ;"Þ ~!i
f=Pðx;bT;";#FÞ&ijSjT:

(32)
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Sivers BWA: Cancellation of  Universal NP 
and flavor blind hard contributions

AUT (x, z, b,Q
2)

=
f̃
?(1)
1T (x, z2b2, µ2

0, Q0)D̃1(zh, b
2, µ2

0, Q0)H̃UT (µ2
0, Q0)e�Spert(b⇤,Q)e

�2gk(bT ) ln
⇣

Q
Q0

⌘

f̃1(x, z2b
2, µ2

0, Q0)D̃1(zh, b
2, µ2

0, Q0)H̃UU (µ2
0, Q0)e�Spert(b⇤,Q)e

�2gk(bT ) ln
⇣

Q
Q0

⌘

BWA less sensitivity to Evolution
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Use of Bessel Weighting

• Study by Mher Aghasyan using MC see talk of 
yesterday       



Project Upol. and Doubly polarized Structure Function

�̃(BT ) = 2⇡

Z
dPh?Ph?J0(BTPh?)

d�

dx dy d dz d�h dPh? Ph?

= 2⇡

Z
dPh?Ph?J0(BTPh?)

Z
dbT bT

2⇡
J0(bT Ph?)

⇥K(x, y)

✓
FUU,T (bT )

x

+ S||�e
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1� "

2
FLL(bT )

x

◆

= K(x, y)

✓
FUU,T (BT )

x
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p

1� "

2
FLL(BT )

x

◆
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Using Bessel weighting, which in this case amounts to weighting with J0, we write the cross section

in B

T

space, �̃(B
T

) in terms of the structure functions 3 F
UU,T

and F
LL

structure functions

�̃(B
T

) = 2⇡

Z
dP

h?

P

h?

J0(B
T

P

h?

)
d�

dx dy d dz d�

h

dP

h?

P

h?

= 2⇡

Z
dP

h?

P

h?

J0(B
T

P

h?

)

Z
db

T

b

T

2⇡
J0(b

T

P

h?

)

⇥
✓
F
UU,T

(b
T

)

x

+ S

||

�

e

p
1 � "

2
F
LL

(b
T

)

x

◆

= K(x, y)

✓
F
UU,T

(B
T

)

x

+ S

||

�

e

p
1 � "

2
F
LL

(B
T

)

x

◆
(15)

Labeling the cross section with ± for S

||

�

e

= ±1 we have

�̃

±(b
T

) = K(x, y)

✓
F
UU,T

(b
T

)

x

±
p

1 � "

2
F
LL

(b
T

)

x

◆

(16)

where the double spin asymmetry in b

T

space is

A

J0(b
T

P

hT

)
LL

(b
T

) =
�̃

+(b
T

) � �̃

�(b
T

)

�̃

+(b
T

) + �̃

�(b
T

)
=
�̃

LL

(b
T

)

�̃

UU

(b
T

)
=

p
1 � "

2

P
q

e

2
a

g̃

q

1(x, z

2b2T )D̃q

1(z, b2T )
P

q

e

2
a

f̃

q

1 (x, z

2b2T )D̃q

1(z, b2T )
, (17)

In order to apply BWA to event by even weighting we will write the formula for binned data.

First we write the unpolarized and doubly polarized helicity structure functions in B

T

space as

F
UU,T

(B
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)

x

=
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h?
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+
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+
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◆

F
LL
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)

x

=
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2

Z
dP

h?

P

h?

J0(B
T

P

h?

)

✓
d�

+

d�
� d�

�

d�

◆
, (18)

using the notation for the di↵erential phase space factor d� ⌘ dx dy d dz dP

h?

P

h?

. Re-expressing
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tions, Kotzinian and Mulders [41] suggested using so called P

hT

-weighted asymmetries, where the

unknown k

?

-dependencies of TMDs are integrated out, thus providing access to moments of

TMDs. While much cleaner from theory side, the P

hT

-weighted asymmetries introduce a signif-

icant challenge to experimentalists, where for example, the weighting of higher P

hT

emphasizes

the kinematical region where the statistics are poor and systematics from detector acceptances

are di�cult to control. Moreover, there are additional complications due to possible divergence of

integrals from high-P
hT

tails.

To address these issues the a new approach to weighting was proposed in [28]. Exploiting the

representation of the two dimensional FT of the SIDIS cross section in b

T

space, Bessel-weighted

asymmetries (BWA) were introduced. Instead of dealing with convolutions of structure functions

in Eq. (1), they are given as products of FTs of distribution and fragmentation functions. Thus,

Bessel weighting of experimental observables quantities can be presented as simple products of FTs

of distribution and fragmentation functions, allowing application of standard flavor decomposition

procedures [42]. For example the double spin asymmetry, A
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P
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where the corresponding structure function in the cross section is projected via
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where d� represents the phase space di↵erential. Here the short hand notation of the contributions

to the polarized di↵erential cross section used in the asymmetry ratios are denoted as �̃

±(b
T

);

their full definition is given in Appendix A.

The experimental procedure to study the structure functions and thus TMDs and FFs amounts

to calculating sums of Bessel functions for a given set of experimental events. For the longitudinally

polarized target the summation is (see Appendix A for more details),
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where N

± is the number of events with positive/negative products of lepton and nucleon helicities

and where S̃

± is the sum over events for ± helicities. Details on the formulation of Eq. (5) are

given in Appendix A. The cross-sections and cross-section di↵erences can be extracted for any
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given in Eq. (3).

The MC generated events are used to extract the ratio of the FT of g1l and f1 using the Bessel

weighting method and the results are compared to the MC input ratios. The sums over N

±

(the number of data events with positive/negative products of lepton and nucleon polarizations)

have been extracted using Eq. (3) and calculated using Eq. (5). The Bessel moments have been

extracted from the MC with 6 GeV beam energy using both the modified Gaussian type of

functions (see Eqs. (8)-(10)) and power law-tail like function (see Eq. (11)). For both MC’s we
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• Propose generalized Bessel Weights

• Theoretical weighting procedure-advantages

• Introduces a free parameter                   that 
is  Fourier conjugate to  

• Provides a regularization of infinite 
contributions at lg. transverse momentum 
when       is non-zero

•  Soft, Hard CS, eliminated from weighted 
asymmetries, Sudakov dpnds coupling of b & Q

• Possible to compare observables at different 
scales.... could be useful for an EIC 

Conclusions-II

P h�

BT [GeV�1]

B2
T



• So far we get ratios of moments of TMDs and FFs 
that are free/insensitive to soft gluon radiation

• It was not necessary to specify explicit def. of 
TMDs and FFs

•We also analyze ratio of moments of TMDs 
directly on level of matrix elements of TMDs & FFs

• Again we find cancellation of soft factors in ratio 

• Impact for Lattice calculation of moments of 
TMDS,   Musch, Ph. Hagler, M. Engelhardt, J.W. Negele, A. Schafer  arXiv 2011

Cancellation of Soft Factor on level of the 
Matrix elements (summarize) 


