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M. Diehl Parton distributions

Motivation: two aspects

• parton distributions quantify hadron structure

★ aim: understand dynamics of QCD in 
nonperturbative sector

★ different types of distributions → more information

• quantitative description of scattering processes

★ parton distributions as inevitable nonperturbative 
input, want highest possible precision on these

★ try to minimize number of quantities to be fitted, 
focus largely on conventional unpolarized PDFs
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The main players

• PDF factorization 

★ inclusive processes

★ pT ~ hardest scale             
or unmeasured

• TMD factorization

★ inclusive

★ pT « hardest scale

• GPD factorization

★ exclusive processes

★ non-forward kinematics

• small-x factorization

★ inclusive or exclusive

★ unintegrated gluon dist’s

3

γ∗ γ

P − 1
2∆ P + 1

2∆

γ∗ γ∗

P P

qT

kT

An incomplete overview



Parton distributionsM. Diehl

Part 1: some basics
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renormalization, Wilson lines, etc.
→ later
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• hard processes single out (at least one) spatial direction

★ longitud. and transv. directions play different roles        
loss of manifest 3d rotation invariance

★ light-cone coordinates                                                   
and 2d transverse component

Light-cone coordinates
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or

v± = (v0 ± v3)/
√
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• independent variables:

★ parton:  k+, kT and k− (or virtuality k2 )

★ protons:  P+, PT and Δ+, ΔT                                          
minus components fixed by mass shell conditions       
typically chose frame with PT = 0

• Dirac matrix Γ ↔	 quark polarization and twist of dist’n

Two-parton correlation functions
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Longitudinal momentum and position

• ∫ dk− sets field arguments z+= 0  (light front)

★ in light front quantization expand fields at z+= 0        
into creation/annihilation operators

➡ interpret as “free” partons like in parton model

• ∫ dk− d2kT puts field separation on light cone z2 = 0
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Transverse momentum and position

• variables related by Fourier transform, e.g.

★ quark field

★ proton state 

★ ‘average’ momentum ↔ position difference

★ ‘average’ position ↔ momentum transfer

• Wigner distributions depend on ‘average’ momentum     
and position

➡  no probability interpretation
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Parton correlation functions and their descendants
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Parton correlation functions and their descendants
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Parton correlation functions and their descendants
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Longitudinal position
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• 3d Fourier transform of H(x,kT,ξ,ΔT)                                                  

w.r.t. momentum transfer in Breit frame (Δ0=0)

➡ Wigner function with 3d position of proton

★ interpretation problematic for positions ~ 1/mp                     

situation known from Sachs form factors

• 3d FT of Compton amplitude A(ξ,ΔT)

➡ diffraction patterns in longitudinal position

• FT of collinear distributions (PDFs, GPDs) w.r.t. x

➡ depend on field separation z− along light-cone

★ common representation of scale evolution for         
PDFs, GPDs, distribution amplitudes

Belitsky, Ji, Yuan ’03 

Balitsky, Braun
Müller et al

Radyushkin 

Brodsky et al ’06, ’07
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Part 2: some more detail
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apologies: citations will be 
sparse and incomplete

still an overview
many issues will be picked up in talks this week
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Collinear factorization and PDFs
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• “naive operator definition” insufficient, must

★ renormalize UV divergences → scale μ, DGLAP evolution        
lose literal interpretation as densities

★ include Wilson line for gauge invariance

• both steps also required in factorization formulae for scattering 
processes

★ prevent double counting

★ proper treatment of A−                                                      
gluon polarization

• different renormalization                                                          
schemes

★ MS vs DIS; more schemes for polarized PDFs (axial anomaly)

➡ separation of “hadron structure” and “probe” not unique
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• three or more fields separated along light cone                
e.g.                                   joined by Wilson lines 

★ UV renormalization as for PDFs                                      
evolution equations more involved

• appear in hard processes with suppression factor            
(Λ/hard scale)n

• twist 3 distributions prominent in spin asymmetries

• interpretation: parton correlations                                  
(not densities like PDFs)

Collinear factorization: higher twist
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TMD factorization

• must subtract divergences

★ field renormalization (scale μ, usual RGE)

★ rapidity divergences (scaleζ, Collins-Soper evolution, 

Sudakov logarithms) → Wilson lines

✦ technically convenient in zT space (often called b space)

• factorization: soft gluon exchange → Wilson lines 

★ process dependent paths → reduced universality                          
textbook example: Sivers distribution (unpol. quarks in 
transv. pol. proton)

• different technical implementations/schemes

★ also in SCET, often called “beam functions” 
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Collins; Ji, Ma, Yuan; ...

Mantry, Petriello; Chiu et al.; Becher, Neubert; Echeverria et al, ...
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TMD factorization

• must subtract divergences

★ field renormalization (scale μ, usual RGE)

★ rapidity divergences (scaleζ, Collins-Soper evolution, 

Sudakov logarithms) → Wilson lines

✦ technically convenient in zT space (often called b space)

• factorization: soft gluon exchange → Wilson lines 

★ process dependent paths → reduced universality

★ TMD factorization established for limited class of processes                            
SIDIS, Drell-Yan, some more candidates                                    
otherwise expect factorization breaking

★ probably connected with results found in perturbative 
calculations
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• for kT » Λ can compute f(x,kT) as PDF ⊗ splitting kernel

➡ increased predictive power

★ more complicated for                                               
polarized PDFs → later

★ in b space for small b:

✦ f(x,b,ζ,μ ) = f(x,μ ) + f ⊗ splitting kernel                     

natural scales ζ~ μ ~ 1/b

✦ recent calculation of two-loop splitting kernels 
[Gehrmann, Lübbert, Yang ’12-’14]                                        
using rapidity regulator of Becher/Neubert

Connection between TMDs and PDFs

18

kT
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Connection between TMDs and PDFs

• for kT » Λ can compute f(x,kT) as PDF ⊗ splitting kernel

• two equivalent descriptions for Drell-Yan with Q » kT » Λ

★ TMD factorization with TMD = PDF ⊗ hard kernel

★ fixed order calculation with PDF

➡ “nested” perturbative description for scales Q and kT           

use Collins-Soper evolution to resum large logarithms
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qT

kT kT

Collins, Soper, Sterman (CSS) ’84
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• at leading order may use cutoff

★ used in small x phenomenology  

• b space regulator: 

Connection between TMDs and PDFs
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cannot hold literally since at high kT

→ must regulate kT integral
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• depending on spin structure express TMDs at high kT                 

in terms of PDF or higher-twist collinear function

• TMD and collinear description equivalent for                  
some spin asymmetries, but not for others

★ explicit matching shown e.g. for Drell-Yan                  
Sivers asymmetry

qT

kT kT

TMDs with spin dependence

21

Bacchetta et al ’08

Ji et al; Eguchi et al; Vogelsang et al; ...
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• depending on spin structure express TMDs at high kT                 

in terms of PDF or higher-twist collinear function

• TMD and collinear description equivalent for                  
some spin asymmetries, but not for others

★ explicit matching shown e.g. for Drell-Yan                  
Sivers asymmetry

• as in unpol. case, need UV regulator for integral relations like

qT

kT kT

TMDs with spin dependence
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Bacchetta et al ’08

Ji et al; Eguchi et al; Vogelsang et al; ...

�
d2kT k2T × Sivers fct = number×Qiu-Sterman fct
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Parton correlation functions

• not integrated over parton k− → depend on parton virtuality

• also doubly/fully unintegrated parton distributions                    
or “beam functions” (in SCET community)

• advocated in different contexts:

★ small x, computed in terms of PDFs (valid for large k2 )

★ control of final-state kinematics, esp. for MC generators

• also considered: correlation fcts integrated over kT but not k−

★ resummation for observables sensitive to beam jets in SCET                                                             
computed in terms of PDFs at two loops

• process dependence?  universality?  factorization breaking?
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Collins, Jung ’05; Collins, Rogers, Staśto ’08

Martin, Ryskin, Watt ’03

Stewart, Tackmann , Waalewijn ’09, Gaunt, Stahlhofen, Tackmann ’14
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Generalized parton distributions

• GPDs measured in exclusive 
processes

★ at LO sensitive to H(ξ,ξ,t)

★ access to x≠ ξ via evolution 
and NLO effects

• cannot compute H(x,ξ,t=0) from  
f(x) using 1st principles

★ connection via Shuvaev 
transform [Martin, Ryskin et al]                               
is a model

• generalized form factors 
computed in lattice QCD    
(including Ji’s sum rule)
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Generalized parton distributions

• access to GTMDs?

• similar case:                
distribution amplitudes (DAs) vs. 
light-cone wave fcts (LCWFs)

★ LCWFs used in γ* γ→ π     
and meson production

✦ non-pert. kT behavior → 
power corrections

• GTMDs used in Guichon, Guidal, 
Vanderhaeghen ’99

• very complicated theory         
and phenomenology
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Li, Sterman; ...
Goloskokov, Kroll
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Meissner et al



M. Diehl Parton distributions

Small-x factorization

• evolution equations in log(1/x) ~ rapidity

★ BFKL, CCFM

• gluon saturation → nonlinear evolution: BK, JIMWLK

• primary quantities are not parton distributions, but

★ impact factors, BFKL kernel, dipole scattering amplitude 
and generalizations (formulated in terms of Wilson lines)
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high-energy/low-x 
factorization 

hard-scattering factorization
(collinear or TMD) 

separate dynamics according to

virtuality/transverse mom.

expand in

 1/(hard scale)

rapidity

log(1/x)

small-x formalism(s):
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Small-x factorization

• however, unintegrated (kT dependent) gluon dist’n emerges in 
suitable processes and kinematics (non-saturating, hard scale)

• work in color glass condensate formalism:                               
two gluon distributions, with different Wilson lines

★ Weizsäcker-Williams (future pointing WLs)                            
has density interpretation

★ Dipole gluon distribution (past and future point WLs)                
∝ FT of dipole scattering amplitude

• relation with TMD formalism not fully worked out                                 
recent work on Sudakov resummation in small-x formalism
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from: Dominguez et al ’11

Mueller, Xiao, Yuan ’13
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Bonus slide: double parton distributions

• two hard interactions in same                                     proton-
proton collision

★ e.g. pp → WW + X                                                                
or pp → W + jets + X

• competes with single hard                                                       
scattering

★ power suppressed if integrate over final state kT                       

★ enhanced at small x due to steep rise of parton densities

• double parton distributions in collinear or TMD formalism    
F(x1, x2, yT)  or  F(x1, x2, kT1, kT2, yT) 

★ yT = distance between two partons                              
Fourier conjugate to momentum mismatch rT

• sensitive to correlations between partons

★ in momentum, position, polarization, color, ...
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Instead of a summary
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I look forward to
 an exciting week

parton correlation function


