Parton distributions concepts, processes, acronyms

Markus Diehl Deutsches Elektronen-Synchroton DESY

INT, Seattle 24 February 2014

Motivation: two aspects

parton distributions quantify hadron structure

- aim: understand dynamics of QCD in nonperturbative sector
- \star different types of distributions \rightarrow more information
- quantitative description of scattering processes
 - parton distributions as inevitable nonperturbative input, want highest possible precision on these
 - try to minimize number of quantities to be fitted, focus largely on conventional unpolarized PDFs

The main players

An incomplete overview

- PDF factorization
 - ★ inclusive processes
 - ★ p_T ~ hardest scale or unmeasured

- TMD factorization
 - \star inclusive
 - ★ p_T « hardest scale

- GPD factorization
 - \star exclusive processes
 - ★ non-forward kinematics

- small-x factorization
 - \star inclusive or exclusive
 - ★ unintegrated gluon dist's

Part 1: some basics

renormalization, Wilson lines, etc. → later

Light-cone coordinates

hard processes single out (at least one) spatial direction

- Iongitud. and transv. directions play different roles loss of manifest 3d rotation invariance
- ★ light-cone coordinates $v^{\pm} = (v^0 \pm v^3)/\sqrt{2}$ and 2d transverse component

Two-parton correlation functions

$$H(k^{\mu}, \Delta^{\mu}, P^{\mu}) = (2\pi)^{-4} \int d^{4}z \; e^{izk} \left\langle P + \frac{1}{2}\Delta \right| \bar{q}(-\frac{1}{2}z) \,\Gamma q(\frac{1}{2}z) \left| P - \frac{1}{2}\Delta \right\rangle$$
$$f(k^{\mu}, P^{\mu}) = (2\pi)^{-4} \int d^{4}z \; e^{izk} \left\langle P \right| \bar{q}(-\frac{1}{2}z) \,\Gamma q(\frac{1}{2}z) \left| P \right\rangle$$

- independent variables:
 - \star parton: k^+ , k_T and k^- (or virtuality k^2)
 - ★ protons: $P^{+,} P_T$ and Δ^+, Δ_T minus components fixed by mass shell conditions typically chose frame with $P_T = 0$
- Dirac matrix Γ ↔ quark polarization and twist of dist'n

M. Diehl

Longitudinal momentum and position

$$f(k^{\mu}, P^{\mu}) = (2\pi)^{-4} \int d^{4}z \; e^{izk} \left\langle P \right| \bar{q}(-\frac{1}{2}z) \,\Gamma q(\frac{1}{2}z) \left| P \right\rangle$$
$$\int dk^{-} f = (2\pi)^{-3} \int dz^{-} d^{2}z_{T} \; e^{izk} \left\langle P \right| \bar{q}(-\frac{1}{2}z) \,\Gamma q(\frac{1}{2}z) \left| P \right\rangle \Big|_{z^{+}=0}$$

• $\int dk^-$ sets field arguments $z^+=0$ (light front)

- ★ in light front quantization expand fields at $z^+=0$ into creation/annihilation operators
 - interpret as "free" partons like in parton model

$$\int dk^{-} d^{2}k_{T} f = (2\pi)^{-1} \int dz^{-} e^{izk} \left\langle P \left| \bar{q}(-\frac{1}{2}z) \Gamma q(\frac{1}{2}z) \left| P \right\rangle \right|_{z^{+}=0, z_{T}=0}$$

• $\int dk^- d^2 k_T$ puts field separation on light cone $z^2 = 0$

M. Diehl

Parton distributions

7

Transverse momentum and position

- variables related by Fourier transform, e.g. * quark field $\tilde{q}(k_T, z^-) = \int d^2 z_T \ e^{iz_T k_T} \ q(z_T, z^-)$ * proton state $|p^+, b_T\rangle = \int d^2 p_T \ e^{-ib_T p_T} \ |p^+, p_T\rangle$ $\overline{\tilde{q}}(k_T)\tilde{q}(l_T) = \int d^2 y_T \ d^2 z_T \ e^{-i(y_T k_T - z_T l_T)} \ \overline{q}(y_T) \ q(z_T)$ $y_T k_T - z_T l_T = \frac{1}{2}(y_T + z_T)(k_T - l_T) + \frac{1}{2}(y_T - z_T)(k_T + l_T)$ * 'average' momentum \leftrightarrow position difference
 - \star 'average' position \leftrightarrow momentum transfer
 - Wigner distributions depend on 'average' momentum and position
 - no probability interpretation

Parton correlation functions and their descendants

FT = Fourier transform $b_T \leftrightarrow k_T$

 $t = \Delta^2$ = function of ξ and Δ_T

M. Diehl

Parton correlation functions and their descendants

Parton correlation functions and their descendants

M. Diehl

Longitudinal position

- 3d Fourier transform of $H(x, k_T, \xi, \Delta_T)$ Belitsky, Ji, Yuan '03 w.r.t. momentum transfer in Breit frame ($\Delta^0=0$)
 - Wigner function with 3d position of proton
 - ★ interpretation problematic for positions ~ $1/m_p$ situation known from Sachs form factors
- 3d FT of Compton amplitude $A(\xi, \Delta_T)$ Brodsky et al '06, '07
 - diffraction patterns in longitudinal position
- FT of collinear distributions (PDFs, GPDs) w.r.t. x Balitsky, Braun
 - depend on field separation z⁻ along light-cone
 - common representation of scale evolution for PDFs, GPDs, distribution amplitudes

Müller et al

Radyushkin

Part 2: some more detail

still an overview many issues will be picked up in talks this week

apologies: citations will be sparse and incomplete

M. Diehl

Collinear factorization and PDFs

$$f(x) = (2\pi)^{-1} \int dz^{-} e^{ixP^{+}z^{-}} \left\langle P \left| \bar{q}(-\frac{1}{2}z) \Gamma q(\frac{1}{2}z) \left| P \right\rangle \right|_{z^{+}=0, z_{T}=0}$$

- "naive operator definition" insufficient, must
 - ★ renormalize UV divergences → scale μ , DGLAP evolution lose literal interpretation as densities
 - \star include Wilson line for gauge invariance
- both steps also required in factorization formulae for scattering processes
 - prevent double counting
 - proper treatment of A⁻ gluon polarization
- different renormalization schemes

- MS vs DIS; more schemes for polarized PDFs (axial anomaly)
- separation of "hadron structure" and "probe" not unique

Parton distributions

000000000

Collinear factorization: higher twist

- three or more fields separated along light cone e.g. $\bar{q}(z_1) A_T(z_2) \Gamma q(z_3)$ joined by Wilson lines
 - UV renormalization as for PDFs evolution equations more involved
- appear in hard processes with suppression factor (A/hard scale)ⁿ
- twist 3 distributions prominent in spin asymmetries
- interpretation: parton correlations (not densities like PDFs)

TMD factorization

$$f(x, z_T) = (2\pi)^{-1} \int dz^{-} e^{ixP^{+}z^{-}} \left\langle P \left| \bar{q}(-\frac{1}{2}z) \Gamma q(\frac{1}{2}z) \left| P \right\rangle \right|_{z^{+}=0} = \text{FT of } f(x, k_T)$$

- must subtract divergences
 - \star field renormalization (scale μ , usual RGE)
 - ★ rapidity divergences (scale ζ , Collins-Soper evolution, Sudakov logarithms) → Wilson lines
 - \diamond technically convenient in z_T space (often called b space)
- factorization: soft gluon exchange \rightarrow Wilson lines
 - ★ process dependent paths → reduced universality textbook example: Sivers distribution (unpol. quarks in transv. pol. proton)
- different technical implementations/schemes Collins; Ji, Ma, Yuan; ...
 - ★ also in SCET, often called "beam functions"

Mantry, Petriello; Chiu et al.; Becher, Neubert; Echeverria et al, ...

TMD factorization

$$f(x, z_T) = (2\pi)^{-1} \int dz^{-} e^{ixP^{+}z^{-}} \left\langle P \left| \bar{q}(-\frac{1}{2}z) \Gamma q(\frac{1}{2}z) \left| P \right\rangle \right|_{z^{+}=0} = \text{FT of } f(x, k_T)$$

- must subtract divergences
 - \star field renormalization (scale μ , usual RGE)
 - ★ rapidity divergences (scale ζ , Collins-Soper evolution, Sudakov logarithms) → Wilson lines
 - \diamond technically convenient in z_T space (often called b space)
- factorization: soft gluon exchange \rightarrow Wilson lines
 - \star process dependent paths \rightarrow reduced universality
 - TMD factorization established for limited class of processes SIDIS, Drell-Yan, some more candidates otherwise expect factorization breaking
 - probably connected with results found in perturbative calculations
 Forshaw, Seymour; Catani, de Florian, Rodrigo

M. Diehl

Connection between TMDs and PDFs

- for $k_T \gg \Lambda$ can compute $f(x, k_T)$ as PDF \otimes splitting kernel
 - increased predictive power
 - ★ more complicated for polarized PDFs → later

- \star in *b* space for small *b*:
 - *f*(*x*,*b*, ζ, μ) = *f*(*x*, μ) + *f* ⊗ splitting kernel
 natural scales ζ ~ μ ~ 1/b
 - recent calculation of two-loop splitting kernels [Gehrmann, Lübbert, Yang '12-'14] using rapidity regulator of Becher/Neubert

Connection between TMDs and PDFs

for $k_T \gg \Lambda$ can compute $f(x, k_T)$ as PDF \otimes splitting kernel

- two equivalent descriptions for Drell-Yan with $Q \gg k_T \gg \Lambda$
 - **\star** TMD factorization with TMD = PDF \otimes hard kernel
 - ★ fixed order calculation with PDF
 - "nested" perturbative description for scales Q and k_T use Collins-Soper evolution to resum large logarithms Collins, Soper, Sterman (CSS) '84

Connection between TMDs and PDFs

• at leading order may use cutoff

$$\pi \int_0^{\mu^2} dk_T^2 f(x, k_T) = f(x, \mu)$$

used in small x phenomenology Martin, Ryskin; ...

• *b* space regulator:

$$f(x,b) = \pi \int dk_T^2 J_0(b \, k_T) f(x,k_T) = f(x,\mu \sim 1/b) + \mathcal{O}(\alpha_s)$$
indeed

$$\int dk_T^2 J_0(b \, k_T) f(x,k_T) = \int_0^{\mu^2} dk_T^2 f(x,k_T) + \mathcal{O}(b\Lambda) \quad \text{for } \mu = \#/b$$

M. Diehl

TMDs with spin dependence

- depending on spin structure express TMDs at high k_T in terms of PDF or higher-twist collinear function
- TMD and collinear description equivalent for some spin asymmetries, but not for others
 Bacchetta et al '08

explicit matching shown e.g. for Drell-Yan
 Sivers asymmetry
 Ji et al; Eguchi et al; Vogelsang et al; ...

TMDs with spin dependence

- depending on spin structure express TMDs at high k_T in terms of PDF or higher-twist collinear function
- TMD and collinear description equivalent for some spin asymmetries, but not for others
 Bacchetta et al '08
 - explicit matching shown e.g. for Drell-Yan
 Sivers asymmetry
 Ji et al; Eguchi et al; Vogelsang et al; ...

• as in unpol. case, need UV regulator for integral relations like $\int d^2k_T k_T^2 \times \text{Sivers fct} = \text{number} \times \text{Qiu-Sterman fct}$

Parton correlation functions

- not integrated over parton $k^- \rightarrow$ depend on parton virtuality
- also doubly/fully unintegrated parton distributions or "beam functions" (in SCET community)
- advocated in different contexts:
 - ★ small x, computed in terms of PDFs (valid for large k^2) Martin, Ryskin, Watt '03
 - control of final-state kinematics, esp. for MC generators
 Collins, Jung '05; Collins, Rogers, Stasto '08
- also considered: correlation fcts integrated over k_T but not $k^$
 - resummation for observables sensitive to beam jets in SCET computed in terms of PDFs at two loops Stewart, Tackmann, Waalewijn '09, Gaunt, Stahlhofen, Tackmann '14
- process dependence? universality? factorization breaking?

M. Diehl

Generalized parton distributions

- GPDs measured in exclusive processes
 - \star at LO sensitive to $H(\xi, \xi, t)$
 - ★ access to $x \neq \xi$ via evolution and NLO effects
- cannot compute H(x, ξ, t=0) from
 f(x) using 1st principles
 - connection via Shuvaev transform [Martin, Ryskin et al] is a model
- generalized form factors computed in lattice QCD (including Ji's sum rule)

GTMD $H(x,k_T,\xi,\Delta_T)$

 $\int d^{2}k_{T}$ **GPD** $H(x,\xi,t)$ $\int dx \ x^{n-1}$ $\sum_{k=0}^{n} A_{n,k}(t) \ (2\xi)^{k} \text{ generalized form factors}$

M. Diehl

Generalized parton distributions

M. Diehl

Small-x factorization

small-x formalism(s):

- evolution equations in log(1/x) ~ rapidity
 - ★ BFKL, CCFM
- gluon saturation \rightarrow nonlinear evolution: BK, JIMWLK
- primary quantities are not parton distributions, but
 - impact factors, BFKL kernel, dipole scattering amplitude and generalizations (formulated in terms of Wilson lines)

M. Diehl

Small-x factorization

- however, unintegrated (k_T dependent) gluon dist'n emerges in suitable processes and kinematics (non-saturating, hard scale)
- work in color glass condensate formalism: two gluon distributions, with different Wilson lines
 - Weizsäcker-Williams (future pointing WLs) has density interpretation
 - ★ Dipole gluon distribution (past and future point WLs)
 ∝ FT of dipole scattering amplitude

	DIS and DY	SIDIS	hadron in pA	photon-jet in pA	Dijet in DIS	Dijet in pA
$G^{(1)}$ (WW)	×	×	×	×	\checkmark	\checkmark
$G^{(2)}$ (dipole)	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark

from: Dominguez et al '11

 relation with TMD formalism not fully worked out recent work on Sudakov resummation in small-x formalism

Mueller, Xiao, Yuan '13

M. Diehl

Bonus slide: double parton distributions

- two hard interactions in same proton collision
 - ★ e.g. $pp \rightarrow WW + X$ or $pp \rightarrow W + jets + X$
- competes with single hard scattering

 $\overline{k}_1 - \frac{1}{2}\overline{r}$ $\bar{k}_2 + \frac{1}{2}\bar{r}$ $\overline{k}_2 - \frac{1}{2}\overline{r}$ $k_1 - \frac{1}{2}r$ $k_1 + \frac{1}{2}r$

- \star power suppressed if integrate over final state k_T
- \star enhanced at small x due to steep rise of parton densities
- double parton distributions in collinear or TMD formalism
 F(x1, x2, yT) or F(x1, x2, kT1, kT2, YT)
 - ★ y_T = distance between two partons Fourier conjugate to momentum mismatch r_T
- sensitive to correlations between partons
 - in momentum, position, polarization, color, ...

M. Diehl

Instead of a summary

