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Factorization v. MCEG: Factorized inclusive cross sections

E.g., Drell-Yan (HA +HB → µ+µ−(or c.) +X)
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Predictive power from

• Universality of pdfs (& fragmentation fns.) — incl. non-perturbative parts;

• Expand dσ̂ in powers of αs(Q);

• Expand DGLAP kernel in powers of αs(µ);

Same idea applies to many inclusive processes. Extends to TMD factorization, etc.



MCEGs answer: “What accompanies the DY pair (etc)?”
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Drell-Yan as typical example

Basic parton-model set-up

Blobs: momenta collinear to parent hadron
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• Extra lines =⇒ large effect

• Strongly ordered kinematics =⇒∫
dk2T

k2T

∫
dy for one gluon

=⇒ ln2Q per αs

MC algorithm: conditional distribution (k, gluon) given hard scattering, etc



MCEG: Now iterate
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Large & variable dimension for distribution of final state particles

Hence MC implementation is appropriate

Add in non-perturbative model of hadronization/final-state interaction, etc



pp→ (Z → µ+µ−) + jets

ATLAS Experiment c© 2012 CERN



Importance of MCEG
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Seymour & Marx, arXiv:1304.6677

• Produce N particles =⇒ need roughly N ! graphs. (N.B. + loops, + non-pert.)

• MCEG reduces O(>N !) computation to approximation with O(N) computation

• Why use MCEG:

– Full final state,
– Use with data analysis,
– Estimate complicated observables



Some examples of mismatches and conceptual complications

Generally: Mismatches between verbal summary of physics and actual
implementation and reality.

• Momentum is not conserved (in standard approximations)

• Feynman graphs don’t match exactly entities in MCEG

• Momentum-space calculations v. coordinate-space understanding

• Multiple regions for single graphs

• Feynman-graph-like physics beyond literal perturbation theory

• Spin v. classical-like simulation in MCEG

• Entanglement of states in different parts of process

• Intuition of local evolution v. Schrödinger and Heisenberg picture formalisms.

Deep conceptual issues are encountered just under the surface



Momentum is not conserved in standard approximation for
factorization, I

LO for hard scattering for DY dσ /dQ2 dy arises from
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(Extra gluon is example of possible structure inside collinear factors.)

• Use light-front coordinates (+,−, T ):
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Momentum is not conserved in standard approximation II

K

∫
d2qT d4kA d4kB δ

(4)(q − kA − kB)

PB

PA

q

kB

kA

• In δ(4)(q − kA − kB), replace kA 7→ (k+A, 0,0T ) kB 7→ (0, k−B,0T ).
I.e., retain only large components of parton momenta.

• Good to leading power in kT/Q (with similar change in Dirac numerators)

• Get factorization with standard parton densities:

∫
dk−A d2kA,T
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×
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dk+B d2kB,T
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• Change of momentum values ⇔ Non-conservation of momentum



Why doesn’t momentum-non-conservation matter for inclusive
cross sections?

• Inclusive cross-section doesn’t involve whole final state

• Approximation is valid to leading power in kA,T/Q, kB,T/Q, m/Q.

• When kA,T , kB,T are order ΛQCD, that’s fine (if rest of final-state is not used).

• But when kA,T , kB,T get closer to Q, there are larger errors.

• These are corrected with NLO, NNLO, etc, hard scattering and evolution, with
subtractions to prevent double counting.

• But it’s not obvious exactly what is the final state!!

• For MCEG, momentum non-conservation does matter, especially when kA,T , kB,T

get near Q . . .



Momentum-non-conservation and MCEGs

• For MCEG, momentum non-conservation does matter, especially when kA,T , kB,T

get near Q. . . .

• E.g., std. approx. for δ(4)(q − kA − kB) in
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replaces kA and kB by large components: kA 7→ (k+A, 0,0T ) kB 7→ (0, k−B,0T ).

• MCEG must correct the kinematics by some prescription.
See documentation and code!

• This messes up simple minded construction of NLO corrections, because it messes
up the double-counting subtractions.

• [Hence: Entanglement of the QM states for the beam remnants.]



Subgraphs v. basic entities in MCEG algorithms

E.g., e+e− → hadrons
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• In strongly-ordered region θl,pA � θk,pA, MCEG algorithm uses tree structure:
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and so makes k given {e+e− → qq̄}, and then l given {e+e− → qq̄ & gluon k}

• But both graphs (etc) are needed (and others).

• So correct MCEG object 6= obvious (approximated) subgraph.



Feynman graph in momentum space v. coordinate-space ideas
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• Graphs are calculated in momentum space. (Plane waves are uniform in space.)

• But coordinate-space description is: Quark is emitted at α, then it emits gluon at
α, then it gets to hard scattering at γ. Gluon splits later at δ.

• But α, β, γ space-like; time-ordering is frame dependent.

• Calculation of splitting

kB + l
l

has kB + l and l on-shell, as appropriate

approximation; they are off-shell in reality.

• But they aren’t on-shell, and they always hadronize, and color gets neutralized.



Spin

• Suppose intermediate state has N partons. The density matrix is 2N × 2N .

• But there’s an O(N) algorithm (JCC, NPB 304, 794 (1988)), used in HERWIG.

• E.g., in

B

A

– Single quarks unpolarized
– Split A, unpolarized
– Azimuth =⇒ measurement =⇒ density-like matrix for A
– A and B’s spin state entangled
– Deduce conditional density matrix of B
– Generate azimuthal dependence of its decay.

• Result: Correct correlations to appropriate accuracy, O(N) computation, but
anticausal algorithm.



Feynman graphs v. hadronization & color neutralization

Lund string (t–z) in e+e− annihilation:
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Lund: Production of qq̄ pairs uniform in space-time volume in flux tube.

N.B. Time-dilation of hadronization time near q and q̄.

Intuition (approximate): Local evolution in space-time.

To be contrasted with Heisenberg and Schrödinger pictures.



Conclusions

• MCEG: O(N) approximation to O(>N !) computational problem.

• Biggest practical issues:

– What’s the nature of the approximation?
– How to improve it systematically?

• Issues about spin etc. Anti-intuitive O(N) algorithm.

• Mismatches of words and deeds

• Link to fundamental issues in QFT and QM


