Issues in the QFT foundations of MCEG

John Collins (Penn State)

- Factorized inclusive cross sections v. MCEGs
- Whence MCEG?
- Issues/complications/...

Factorization v. MCEG: Factorized inclusive cross sections

E.g., Drell-Yan $(H_A + H_B \rightarrow \mu^+ \mu^- (\text{or c.}) + X)$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2 \,\mathrm{d}y} = \sum_{j} \int \mathrm{d}\xi_A \,\mathrm{d}\xi_B \,f_{i/A}(\xi_A,\mu) f_{j/B}(\xi_B,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}}{\mathrm{d}Q^2 \,\mathrm{d}y}$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu} f_{i/H}(x,\mu) = \sum_{j} \int_{x-1}^{x+1} P_{i/j}\left(\frac{x}{\xi},\mu\right) f_{j/H}(\xi,\mu)$$

Predictive power from

- Universality of pdfs (& fragmentation fns.) incl. non-perturbative parts;
- Expand $d\hat{\sigma}$ in powers of $\alpha_s(Q)$;
- Expand DGLAP kernel in powers of $\alpha_s(\mu)$;

Same idea applies to many inclusive processes. Extends to TMD factorization, etc.

MCEGs answer: "What accompanies the DY pair (etc)?"

Drell-Yan as typical example Basic parton-model set-up Blobs: momenta collinear to parent hadron

• Extra lines \Longrightarrow large effect

MC algorithm: conditional distribution (k, gluon) given hard scattering, etc

MCEG: Now iterate

Large & variable dimension for distribution of final state particles

Hence MC implementation is appropriate

Add in non-perturbative model of hadronization/final-state interaction, etc

 $pp \rightarrow (Z \rightarrow \mu^+ \mu^-) + jets$

ATLAS Experiment © 2012 CERN

Importance of MCEG

Seymour & Marx, arXiv:1304.6677

- Produce N particles \implies need roughly N! graphs. (N.B. + loops, + non-pert.)
- MCEG reduces O(>N!) computation to approximation with O(N) computation
- Why use MCEG:
 - Full final state,
 - Use with data analysis,
 - Estimate complicated observables

Some examples of mismatches and conceptual complications

Generally: Mismatches between verbal summary of physics and actual implementation and reality.

- Momentum is not conserved (in standard approximations)
- Feynman graphs don't match exactly entities in MCEG
- Momentum-space calculations v. coordinate-space understanding
- Multiple regions for single graphs
- Feynman-graph-like physics beyond literal perturbation theory
- Spin v. classical-like simulation in MCEG
- Entanglement of states in different parts of process
- Intuition of local evolution v. Schrödinger and Heisenberg picture formalisms.

Deep conceptual issues are encountered just under the surface

Momentum is not conserved in standard approximation for factorization, I

LO for hard scattering for DY $d\sigma / dQ^2 dy$ arises from

(Extra gluon is example of possible structure inside collinear factors.)

• Use light-front coordinates (+, -, T):

$$p_A \simeq \left(\sqrt{s/2}, \ m^2/2p_A^+, \ \mathbf{0}_T\right), \ p_B \simeq \left(m^2/2p_B^-, \ \sqrt{s/2}, \ \mathbf{0}_T\right),$$
$$q = \left(e^y \sqrt{(Q^2 + q_T^2)/2}, \ e^{-y} \sqrt{(Q^2 + q_T^2)/2}, \ \mathbf{q}_T\right)$$

• . . .

Momentum is not conserved in standard approximation II

- In $\delta^{(4)}(q k_A k_B)$, replace $k_A \mapsto (k_A^+, 0, \mathbf{0}_T) \quad k_B \mapsto (0, k_B^-, \mathbf{0}_T)$. I.e., retain only large components of parton momenta.
- Good to leading power in k_T/Q (with similar change in Dirac numerators)
- Get factorization with standard parton densities:

$$\int \mathrm{d}k_A^- \,\mathrm{d}^2 \mathbf{k}_{A,T} \xrightarrow{k_A} \int \mathbf{k}_B \,\mathrm{d}^2 \mathbf{k}_{B,T} \times \int \mathrm{d}k_B^+ \,\mathrm{d}^2 \mathbf{k}_{B,T}$$

• Change of momentum values \Leftrightarrow Non-conservation of momentum

Why doesn't momentum-non-conservation matter for *inclusive* cross sections?

- Inclusive cross-section doesn't involve whole final state
- Approximation is valid to leading power in $k_{A,T}/Q$, $k_{B,T}/Q$, m/Q.
- When $k_{A,T}, k_{B,T}$ are order Λ_{QCD} , that's fine (if rest of final-state is *not* used).
- But when $k_{A,T}, k_{B,T}$ get closer to Q, there are larger errors.
- These are corrected with NLO, NNLO, etc, hard scattering and evolution, with subtractions to prevent double counting.
- But it's *not* obvious exactly what is the final state!!
- For MCEG, momentum non-conservation does matter, especially when $k_{A,T}, k_{B,T}$ get near Q . . .

Momentum-non-conservation and MCEGs

- For MCEG, momentum non-conservation does matter, especially when $k_{A,T}, k_{B,T}$ get near $Q. \ldots$
- E.g., std. approx. for $\delta^{(4)}(q k_A k_B)$ in

replaces k_A and k_B by large components: $k_A \mapsto (k_A^+, 0, \mathbf{0}_T) \quad k_B \mapsto (0, k_B^-, \mathbf{0}_T).$

- MCEG *must* correct the kinematics by some prescription.
 See documentation *and* code!
- This messes up simple minded construction of NLO corrections, because it messes up the double-counting subtractions.
- [Hence: Entanglement of the QM states for the beam remnants.]

Subgraphs v. basic entities in MCEG algorithms

E.g., $e^+e^- \rightarrow \text{hadrons}$

• In strongly-ordered region $\theta_{l,p_A} \ll \theta_{k,p_A}$, MCEG algorithm uses tree structure:

and so makes k given $\{e^+e^- \to q\bar{q}\}$, and then l given $\{e^+e^- \to q\bar{q} \& \text{ gluon } k\}$

- But *both* graphs (etc) are needed (and others).
- So correct MCEG object \neq obvious (approximated) subgraph.

Feynman graph in momentum space v. coordinate-space ideas

- Graphs are calculated in momentum space. (Plane waves are uniform in space.)
- But coordinate-space description is: Quark is emitted at α , *then* it emits gluon at α , *then* it gets to hard scattering at γ . Gluon splits later at δ .
- But α , β , γ space-like; time-ordering is frame dependent.
- Calculation of splitting has $k_B + l$ and l on-shell, as appropriate *approximation*; they are off-shell in reality.
- But they aren't on-shell, and they always hadronize, and color gets neutralized.

Spin

- Suppose intermediate state has N partons. The density matrix is $2^N \times 2^N$.
- But there's an O(N) algorithm (JCC, NPB 304, 794 (1988)), used in HERWIG.
- E.g., in

- Single quarks unpolarized
- Split A, unpolarized
- Azimuth \implies measurement \implies density-like matrix for A
- A and $B{\rm 's}$ spin state entangled
- Deduce conditional density matrix of ${\cal B}$
- Generate azimuthal dependence of its decay.
- Result: Correct correlations to appropriate accuracy, O(N) computation, but anticausal algorithm.

Feynman graphs v. hadronization & color neutralization

Lund string (t-z) in e^+e^- annihilation:

Lund: Production of $q\bar{q}$ pairs uniform in space-time volume in flux tube.

N.B. Time-dilation of hadronization time near q and \bar{q} .

Intuition (approximate): Local evolution in space-time.

To be contrasted with Heisenberg and Schrödinger pictures.

Conclusions

- MCEG: O(N) approximation to O(>N!) computational problem.
- Biggest practical issues:
 - What's the nature of the approximation?
 - How to improve it *systematically*?
- Issues about spin etc. Anti-intuitive O(N) algorithm.
- Mismatches of words and deeds
- $\bullet\,$ Link to fundamental issues in QFT and QM