Issues in the QFT foundations of MCEG

John Collins (Penn State)

- Factorized inclusive cross sections v. MCEGs
- Whence MCEG?
- Issues/complications/. . .

Factorization v. MCEG: Factorized inclusive cross sections

E.g., Drell-Yan $(H_A + H_B \rightarrow \mu^+ \mu^- ($ or c. $) + X)$

$$
\frac{d\sigma}{dQ^2 dy} = \sum_j \int d\xi_A d\xi_B f_{i/A}(\xi_A, \mu) f_{j/B}(\xi_B, \mu) \frac{d\hat{\sigma}_{ij}}{dQ^2 dy}
$$

$$
\frac{d}{d\ln \mu} f_{i/H}(x, \mu) = \sum_j \int_{x-}^{1+} P_{i/j} \left(\frac{x}{\xi}, \mu\right) f_{j/H}(\xi, \mu)
$$

Predictive power from

- Universality of pdfs (& fragmentation fns.) incl. non-perturbative parts;
- $\bullet\,$ Expand ${\rm d}\hat{\sigma}$ in powers of $\alpha_s(Q)$;
- $\bullet\,$ Expand DGLAP kernel in powers of $\alpha_s(\mu);$

Same idea applies to many inclusive processes. Extends to TMD factorization, etc.

MCEGs answer: "What accompanies the DY pair (etc)?"

Drell-Yan as typical example Basic parton-model set-up Blobs: momenta collinear to parent hadron

- Extra lines \implies large effect
- \bullet Strongly ordered kinematics \Longrightarrow $\int dk_T^2$ \overline{T} k_T^2 \overline{T} Z $\mathrm{d} y$ for one gluon \implies ln² Q per α_s

MC algorithm: conditional distribution $(k,$ gluon) given hard scattering, etc

MCEG: Now iterate

Large & variable dimension for distribution of final state particles

Hence MC implementation is appropriate

Add in non-perturbative model of hadronization/final-state interaction, etc

 $pp\to (Z\to \mu^+\mu^-)+{\rm jets}$

ATLAS Experiment (C) 2012 CERN

Importance of MCEG

Seymour & Marx, arXiv:1304.6677

- Produce N particles \implies need roughly N! graphs. (N.B. + loops, + non-pert.)
- MCEG reduces $O(>N!)$ computation to approximation with $O(N)$ computation
- Why use MCEG:
	- Full final state,
	- Use with data analysis,
	- Estimate complicated observables

Some examples of mismatches and conceptual complications

Generally: Mismatches between verbal summary of physics and actual implementation and reality.

- Momentum is not conserved (in standard approximations)
- Feynman graphs don't match exactly entities in MCEG
- Momentum-space calculations v. coordinate-space understanding
- Multiple regions for single graphs
- Feynman-graph-like physics beyond literal perturbation theory
- Spin v. classical-like simulation in MCEG
- Entanglement of states in different parts of process
- Intuition of local evolution v. Schrödinger and Heisenberg picture formalisms.

Deep conceptual issues are encountered just under the surface

Momentum is not conserved in standard approximation for factorization, I

LO for hard scattering for DY ${\rm d} \sigma \, / \, {\rm d} Q^2 \, {\rm d} y$ arises from

(Extra gluon is example of possible structure inside collinear factors.)

• Use light-front coordinates $(+, -, T)$:

$$
p_A \simeq \left(\sqrt{s/2}, \; m^2/2p_A^+, \; \mathbf{0}_T\right), \; p_B \simeq \left(m^2/2p_B^-, \; \sqrt{s/2}, \; \mathbf{0}_T\right),
$$

$$
q = \left(e^y \sqrt{(Q^2 + q_T^2)/2}, \; e^{-y} \sqrt{(Q^2 + q_T^2)/2}, \; \mathbf{q}_T\right)
$$

 \bullet ...

Momentum is not conserved in standard approximation II

- $\bullet \,\,$ In $\delta^{(4)}(q k_A k_B)$, replace $k_A \mapsto (k_A^+, 0, \mathbf{0}_T) \quad k_B \mapsto (0, k_B^-, \mathbf{0}_T).$ I.e., retain only large components of parton momenta.
- Good to leading power in k_T / Q (with similar change in Dirac numerators)
- Get factorization with standard parton densities:

Z dk − ^A d 2 kA,T P^A k^A × Z dk + ^B d 2 kB,T P^B k^B

• Change of momentum values \Leftrightarrow Non-conservation of momentum

Why doesn't momentum-non-conservation matter for *inclusive* cross sections?

- Inclusive cross-section doesn't involve whole final state
- Approximation is valid to leading power in $k_{A,T}/Q$, $k_{B,T}/Q$, m/Q .
- When $k_{A,T}, k_{B,T}$ are order $\Lambda_{\rm QCD}$, that's fine (if rest of final-state is *not* used).
- But when $k_{A,T}, k_{B,T}$ get closer to Q , there are larger errors.
- These are corrected with NLO, NNLO, etc, hard scattering and evolution, with subtractions to prevent double counting.
- But it's not obvious exactly what is the final state!!
- For MCEG, momentum non-conservation does matter, especially when $k_{A,T}, k_{B,T}$ get near Q ...

Momentum-non-conservation and MCEGs

- For MCEG, momentum non-conservation does matter, especially when $k_{A,T}, k_{B,T}$ get near Q_+ ...
- $\bullet\,$ E.g., std. approx. for $\delta^{(4)}(q k_A k_B)$ in

K

Z

replaces k_A and k_B by large components: $k_A \mapsto (k_A^+, 0, \mathbf{0}_T) \quad k_B \mapsto (0, k_B^-, \mathbf{0}_T)$.

- MCEG must correct the kinematics by some prescription. See documentation and code!
- This messes up simple minded construction of NLO corrections, because it messes up the double-counting subtractions.
- [Hence: Entanglement of the QM states for the beam remnants.]

Subgraphs v. basic entities in MCEG algorithms

E.g., $e^+e^- \rightarrow$ hadrons

 $\bullet\,$ In strongly-ordered region $\theta_{l,p_A}\ll \theta_{k,p_A}$, MCEG algorithm uses tree structure:

and so makes k given $\{e^+e^-\to q\bar{q}\}$, and then l given $\{e^+e^-\to q\bar{q}\;\&$ gluon $k\}$

- But both graphs (etc) are needed (and others).
- So correct MCEG object \neq obvious (approximated) subgraph.

Feynman graph in momentum space v. coordinate-space ideas

- Graphs are calculated in momentum space. (Plane waves are uniform in space.)
- But coordinate-space description is: Quark is emitted at α , then it emits gluon at α, then it gets to hard scattering at γ . Gluon splits later at δ.
- But α , β , γ space-like; time-ordering is frame dependent.
- Calculation of splitting $k_B + l$ l has $k_B + l$ and l on-shell, as appropriate approximation; they are off-shell in reality.
- But they aren't on-shell, and they always hadronize, and color gets neutralized.

Spin

- $\bullet\,$ Suppose intermediate state has N partons. The density matrix is $2^N\times 2^N.$
- But there's an $O(N)$ algorithm (JCC, NPB 304, 794 (1988)), used in HERWIG.
- \bullet E.g., in

- Single quarks unpolarized
- $-$ Split A, unpolarized
- Azimuth \implies measurement \implies density-like matrix for A
- A and B 's spin state entangled
- Deduce conditional density matrix of B
- Generate azimuthal dependence of its decay.
- Result: Correct correlations to appropriate accuracy, $O(N)$ computation, but anticausal algorithm.

Feynman graphs v. hadronization & color neutralization

Lund string $(t-z)$ in e^+e^- annihilation:

Lund: Production of $q\bar{q}$ pairs uniform in space-time volume in flux tube.

N.B. Time-dilation of hadronization time near q and \bar{q} .

Intuition (approximate): Local evolution in space-time.

To be contrasted with Heisenberg and Schrödinger pictures.

Conclusions

- MCEG: $O(N)$ approximation to $O(>N!)$ computational problem.
- Biggest practical issues:
	- What's the nature of the approximation?
	- How to improve it systematically?
- Issues about spin etc. Anti-intuitive $O(N)$ algorithm.
- Mismatches of words and deeds
- Link to fundamental issues in QFT and QM