INT Workshop INT-14-55W "Studies of 3D Structure of Nucleon"

Limitations in the phenomenological extraction of TMDs

M. Boglione

First of all ...

My deepest gratitude to Alessandro Bacchetta Alexei Prokudin Zhongbo Kang and Ted Rogers for beautifully explaining all the bright sides of **TMDS** ...

... graciously leaving me the honour to illustrate their **Darkest Side**

Phenomenology suffers of ...

- <u>Experimental limitations</u> (statistics, acceptance, angular coverage, ...)
- <u>Theoretical limitations</u> (theory exists ...but it cannot be straightforwardly applied)
- <u>Phenomenological limitations</u> (model dependence, over-simplifications, limited kinematics coverage, "matching", inconsistencies among different experimental measurements, ...)

To do phenomenology we inevitably have to deal with ...

- Different data sets from different experiments (beams, targets, final hadron production, ...)
- Different kinematics ranges $(x, z, P_T, Q^2, ...)$
- Different experimental analyses (choice for binning, unfolding, kinematical corrections, background subtraction, nuclear target corrections ...)

M.Boglione - INT-14-55W

Normalization

5

Let's start with some examples ...

Extraction of the unpolarized distribution and fragmentation TMDs

from ...

- SIDIS
- Drell-Yan scattering
- e⁺e⁻ scattering

Experimental Data for TMD studies

TMD parametrizations

 \bullet TMDs are parametrized in a form in which the x and k_{\perp} dependences are factorized, and only the collinear part evolves in Q

Extracting the unpolarized TMD gaussian widths from SIDIS data

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, ArXiv:1312.6261

Data: Hermes (p and d targets, p⁺, p⁻, K⁺, K⁻ production)

2660 data points in (x, z, $P_{T} Q^2$ bins) Compass (d target, h⁺, h⁻production)

10(27 debe exists is (v = D O² bies)

18627 data points in (x, z, $P_{T_{t}} Q^2$ bins)

• Parameterizations:

C. Adolph et al., Eur. Phys. J. C73, 2531 (2013)

In the simplest form of this model:

Flavor-independent average transverse momenta

No x-dependence

No z-dependence

Two parameters in total

Gaussian model:

 $\langle P_T^2 \rangle = \langle p_1^2 \rangle + z_h^2 \langle k_1^2 \rangle.$

Normalization

Experimental limitations

- Kinematics: HERMES and COMPASS cover similar ranges in z and Q², but different ranges in x and P₁
- Q² range is not very wide, and Q² values are small
- Data stretch to very large values of z, where they are affected by exclusive production and large-z resummation effects

```
۹.,
```

Phenomenological limitations

- Model dependence (gaussian assumption, factorization between x and k_{\perp} , ...)
- Number of free parameters (flavour dependence of the gaussian widths, x and z dependence of the gaussian widths...)
- Neural networks
- ۵.
- Q² is small: are we looking at a DIS processes ? Higher twist contributions ?
- What about scale evolution ?
- • •

Consistency among different data sets covering different kinematical regions

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, ArXiv:1312.6261

M.Boglione - INT-14-55W

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, ArXiv:1312.6261

27/02/2014

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, ArXiv:1312.6261

27/02/2014

Parameter determination

			HERMES					
Cuts	$\chi^2_{ m dof}$	n. points	$\left[\chi^2_{ m points} ight]^{\pi^+}$	$\left[\chi^2_{ m points} ight]^{\pi^-}$	Para	ameters		
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	1.69	497	1.93	1.45		$7 \pm 0.08 \text{ GeV}^2$ $2 \pm 0.01 \text{ GeV}^2$		
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.7	2.62	576	2.56	2.68		$6 \pm 0.10 \text{ GeV}^2$ $3 \pm 0.01 \text{ GeV}^2$	-	
<u>.</u>								
						COMPASS		
			Cuts $Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6		n. points	$\left[\chi^2_{ m dof} ight]^{h^+}$	$[\chi^2_{ m dof}]^{h^-}$	Parameters
		$Q^2 > 0.2 < P_1 \ z$			5385	8.94	8.15	
		$ \begin{array}{c} Q^2 > \\ 0.2 < P \\ z \\ N_y = \end{array} $	1.69 GeV ² $_{T} < 0.9$ GeV < 0.6 = $A + B y$	3.42	5385	3.25	3.60	$\langle k_{\perp}^2 \rangle = 0.60 \pm 0.14 \text{ GeV}^2$ $\langle p_{\perp}^2 \rangle = 0.20 \pm 0.02 \text{ GeV}^2$ $A = 1.06 \pm 0.06$ $B = -0.43 \pm 0.14$

Parameter determination

		HERMES						
Cuts	$\chi^2_{ m dof}$	n. points	$\left[\chi^2_{ m points} ight]^{\pi^+}$	$[\chi^2_{ m points}]^{\pi^-}$	Par	rameters		
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	1.69	497	1.93	1.45		$57 \pm 0.08 \text{ GeV}^2$ $12 \pm 0.01 \text{ GeV}^2$		
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.7	2.62	576	2.56	atio	ns:	$46 \pm 0.10 \text{ GeV}^2$ $13 \pm 0.01 \text{ GeV}^2$	_	
			Lim	loba		COMPASS		
		0	NU	$\chi^2_{ m dof}$	n. points	$[\chi^2_{ m dof}]^{h^+}$	$[\chi^2_{ m dof}]^{h^-}$	Parameters
		$Q^2 > 1.$ $0.2 < P_T$ $z < 0.$	$69 { m GeV}^2 < 0.9 { m GeV} < 0.6$	8.54	5385	8.94	8.15	$\langle k_{\perp}^2 \rangle = 0.61 \pm 0.20 \text{ Ge}$ $\langle p_{\perp}^2 \rangle = 0.19 \pm 0.02 \text{ Ge}$
		$Q^2 > 1.$	$.69 \text{ GeV}^2$	3 42	5385	3 25	3.60	$\langle k_{\perp}^2 \rangle = 0.60 \pm 0.14 \text{ Ge}$ $\langle p_{\perp}^2 \rangle = 0.20 \pm 0.02 \text{ Ge}$

Comparison with Jlab data HALL C

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, ArXiv:1312.6261

R. Asaturyan et al., Phys. Rev. C85, 015202 (2012)

Comparison with Jlab data HALL C

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, ArXiv:1312.6261

R. Asaturyan et al., Phys. Rev. C85, 015202 (2012)

Comparison with EMC data

EMC $M^{h^+} + M^{h^-}$ EMC $M^{h^+} + M^{h^-}$ EMC $M^{h^+} + M^{h^-}$ 10 10 10 $\begin{array}{c|c} 0.1 < z < 0.2 \\ 0.2 < z < 0.4 \\ 0.4 < z < 1.0 \end{array}$ $\begin{array}{c|c} 0.1 < z < 0.2 \\ 0.2 < z < 0.4 \\ 0.4 < z < 1.0 \end{array}$ $\begin{array}{c|c} 0.1 < z < 0.2 \\ 0.2 < z < 0.4 \\ 0.4 < z < 1.0 \end{array}$ $0 < W^2 < 90 \ GeV^2$ $90 < W^2 < 150 \text{ GeV}^2$ $150 < W^2 < 200 \text{ GeV}^2$ $\mathbf{E} = \mathbf{120} \; \mathbf{GeV}$ E = 120 GeVE = 120 GeV0.1 0.1 0.1 0.01 0.01 0.01 0.8 1.2 1.2 1.4 0.4 0 0.2 0.4 0.6 1 1.4 0 0.20.4 0.6 0.8 1 0 0.2 0.6 0.8 1 1.2 1.4 P_T^2 (GeV²) P_T^2 (GeV²) P_T^2 (GeV²) EMC $M^{h^+} + M^{h^-}$ EMC $M^{h^+} + M^{h^-}$ EMC $M^{h^+} + M^{h^-}$ 10 10 0.1 < z < 0.20.1 < z < 0.20.1 < z < 0.20.2 < z < 0.40.4 < z < 1.00.4 < z < 1.00.4 < z < 1.0 $0 < W^2 < 90 \ GeV^2$ $90 < W^2 < 150 \text{ GeV}^2$ $150 < W^2 < 200 \text{ GeV}^2$ E = 280 GeVE = 280 GeVE = 280 GeV0.1 0.1 0.1 0.01 0.01 0.01 0.20.4 0.6 0.8 1.2 0.2 0.4 0.6 0.8 1.2 1.4 0.2 0.4 0.6 0.8 1.2 0 1 1.4 0 1 0 1 1.4 P_T^2 (GeV²) P_T^2 (GeV²) P_T^2 (GeV²)

M. Ashman et al., Z. Phys. C52, 361 (1991)

Predictions obtained by using the parameter values extracted from COMPASS multiplicities

5 energies, 3 targets, positively and negatively charged particles, averaged in 1 data set

What about scale evolution ?

Limitations ...

- To study TMD evolution, from a phenomenological point of view, we need high precision experimental data, covering sufficiently wide Q² ranges
- Evolution studies have traditionally been performed on Drell-Yan cross sections, which cover wide Q² ranges at rather large q_τ.
- HERMES and COMPASS SIDIS data cover very limited ranges of (rather small) Q²
- SIDIS data alone are not sufficient to fix all the non perturbative behaviour of TMDs
- Need Drell-Yan (moderate Q², moderate energy) and e+e- data for global analyses
- But ... global analyses need to rely on consistent data sets !

From non-perturbative to perturbative QCD

Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985) $\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \int \frac{d^2 \boldsymbol{b}_T e^{i\boldsymbol{q}_T \cdot \boldsymbol{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j(x_1, x_2, b_T, Q) + Y(x_1, x_2, q_T, Q)$

 $W_{j}(x_{1}, x_{2}, b_{T}, Q) = \exp\left[S_{j}(b_{T}, Q)\right] \sum_{i,k} C_{ji} \otimes f_{i}(x_{1}, C_{1}^{2}/b_{T}^{2}) C_{\bar{j}k} \otimes f_{k}(x_{2}, C_{1}^{2}/b_{T}^{2})$ Sudakov factor $S_{j}(b_{T}, Q) = \int_{C_{1}^{2}/b_{T}^{2}}^{Q^{2}} \frac{d\kappa^{2}}{\kappa^{2}} \left[A_{j}(\alpha_{s}(\kappa)) \ln\left(\frac{Q^{2}}{\kappa^{2}}\right) + B_{j}(\alpha_{s}(\kappa))\right]$

Resummed part

$$A_{j}(\alpha(\mu)) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{2\pi}\right)^{n} A_{j}^{(n)}$$

$$Eading Log (LL) : A^{(1)};$$

$$Next to LL (NLL) : A^{(2)}, B^{(1)}, C^{(1)};$$

$$Rext to NLL (NNLL) : A^{(3)}, B^{(2)}, C^{(2)};$$

$$Fixed order \alpha_{s}(FXO) : A^{(1)}, B^{(1)}, C^{(1)};$$

M.Boglione - INT-14-55W

Regular part

TMD evolution

Collins, Foundations of perturbative QCD, Cambridge University Press (2011); Rogers and Aybat, Phys. Rev. D83, 114042

$$\zeta_F = Q^2$$
 $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

$$\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) = \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b) \exp[S_{RAC}(b_*, Q^2)] F_{NP}(x, b_T, Q)$$

Non perturbative function To be determined phenomenologically

It can be show easily that at first order in the strong coupling constant:

$$S_{RAC}(b_T, Q^2) = C_F \int_{\mu_b}^Q \frac{d\kappa}{\kappa} \frac{\alpha_s(\kappa)}{\pi} \left[\frac{3}{2} - \ln\left(\frac{Q^2}{\kappa^2}\right)\right] \equiv \frac{1}{2} S_{CSS}(b_T, Q^2)$$

TMD evolution

At LO the evolution equation can be summarized by the following expression:

This approach maximizes the non perturbative content of the evolution

M.Boglione - INT-14-55W

$$\begin{split} \overline{\textbf{TMD evolution}} \\ \widetilde{F}(x, \boldsymbol{b}_T; Q) = & \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, b_T) \exp\left\{ \frac{1}{g_K(b_T)} \ln \frac{Q}{Q_0} \right\} \\ & g_K(b_T) = \frac{1}{2} g_2 \underbrace{b_T^2} \quad \text{with} \quad g_2 = 0.68 \\ & \widetilde{f}_{q/p}(x, b_T; Q_0) = f_{q/p}(x, Q_0) \exp\left\{ -\alpha^2 \underbrace{b_T^2} \right\} \\ & f_{q/p}(x, k_\perp; Q_0) = f_{q/p}(x, Q_0) \frac{1}{\pi \langle k_\perp^2 \rangle} e^{-k_\perp^2 / \langle k_\perp^2 \rangle} - \alpha^2 = \langle k_\perp^2 \rangle / 4 \end{split}$$

Scale Evolution of unpolarized SIDIS

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, ArXiv:1312.6261

HERMES and COMPASS multiplicities cover the same range in Q^2 ...

$$\langle k_{\perp}^2 \rangle = g_1 + g_2 \ln(Q^2/Q_0^2) + g_3 \ln(10 \, e \, x)$$

$$\langle p_{\perp}^2 \rangle = g_1' + z^2 g_2' \ln(Q^2/Q_0^2)$$

- HERMES multiplicities show no sensitivity to these parameters
- COMPASS fitting is much more involved.

After correcting for normalization, we find that the total χ^2 goes down to 2.69.

TMD evolution of the Sivers function

Sivers function from HERMES and COMPASS SIDIS data

- 2 different fits:
- TMD-fit (computing TMD evolution equations numerically)
- DGLAP evolution equation for the collinear part of the TMD)

A. Airapetian et al., Phys. Rev. Lett. 103, (2009) 152002

C. Adolph et al., Phys. Lett. B717 (2012) 383

• g_{2} controls the b_{τ} gaussian width and its spreading as b_{τ} varies.

$$g_K(b_T) = \frac{1}{2} g_2 b_T^2$$
 with $g_2 = 0.68$
 $b_{\text{max}} = 0.5 \text{ GeV}^{-1}$

• We did not extract the value of g, from our fit

- We used a fixed value previously, determined in a fit of D-Y data. Landry, Brock, Nadolsky, Yuan, Phys. Rev. D67(2003) 073016 We could have done it, and probably got a smaller value, but it is important to remember that SIDIS data are very little sensitive to the precise value of g₂.
- D-Y data, instead, are extremely sensitive to it: this requires a new, careful, global analysis on all SIDIS and D-Y, re-starting from unpolarized cross sections.

SIDIS vs Drell-Yan

>Numerator of the asymmetry in analytical approximation for a DY process

$$\begin{split} N_{DY} \propto \Delta^{N} f(x_{1},Q_{0}) f(x_{2},Q_{0}) \sqrt{2e} \frac{P_{T}}{M_{1}} \frac{\langle k_{\perp}^{2} \rangle_{Siv}^{2}}{\langle k_{\perp 1}^{2} \rangle \langle P_{T}^{2} \rangle_{Siv}^{2}} e^{-P_{T}^{2}/\langle P_{T}^{2} \rangle_{Siv}} \\ \langle P_{T}^{2} \rangle_{Siv}^{DY} &= \omega_{Siv}^{2} + \omega_{2}^{2} \\ w_{S}^{2}(Q,Q_{0}) &= \langle k_{\perp}^{2} \rangle_{S} + 2g_{2} \ln \frac{Q}{Q_{0}} \\ w^{2}(Q,Q_{0}) &= \langle k_{\perp}^{2} \rangle + 2g_{2} \ln \frac{Q}{Q_{0}} \end{split}$$

 $\overset{\text{Here it is squared, strongly suppresses the asymmetry as it becomes larger and larger} \end{split}$

>g₂ is more crucial for DY processes than for the present SIDIS data because of the larger range spanned by Q

SIDIS vs Drell-Yan

Konychev, Nadolsky, Phys. Lett. B633 (2006) 710

>g₂ depends on the prescription for the separation of the perturbative region from the non -perturbative one. Depends also on the "order" at which you stop in the perturbative expansion.

 $a_2=g_2$, stars correspond to the choice C1=2 exp(- γ_e), squares to C1=4 exp(- γ_e)

Low-Q Drell-Yan experiments (E288,E605 and R209) show a preference for b_{max} larger than 0.5 GeV⁻¹ (around 1.5), while higher Q data are not very sensitive to this value.

SIDIS vs Drell-Yan

Konychev, Nadolsky, Phys. Lett. B633 (2006) 710

>g₂ depends on the prescription for the separation of the perturbative region from the non -perturbative one. Depends also on the "order" at which you stop in the perturbative expansion.

 $a_2=g_2$, stars correspond to the choice C1=2 exp(- γ_e), squares to C1=4 exp(- γ_e) Low-Q Drell-Yan experiments (E288,E605 and R209) show a preference for b_{max} larger than 0.5 GeV⁻¹ (around 1.5), while higher Q data are not very sensitive to this value.

M.Boglione - INT-14-55W

Drell-Yan phenomenology

Stefano Melis preliminary studies

The fit on E288 and E605 Drell-Yan data is performed by assuming a gaussian k_{\perp} dependence with a DGLAP evolution of the factorized PDFs.

$$\widehat{f}_{q/p}(x,k_{\perp};Q) = f_{q/p}(x;Q) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle}$$

The gaussian width is fitted independently for each different energy data set.

Notice that $< k_{\perp}^2 >$ grows as energy grows

Schweitzer, Teckentrup, Metz, Phys.Rev. D81 (2010) 094019 D'Alesio, Murgia, Phys. Rev. D70 (2004) 074009

Drell-Yan phenomenology

Stefano Melis preliminary studies

The dependence of $\langle k_{\perp}^2 \rangle$ on the energy is roughly linear

Loads of room for phenomenology !

TMD evolution of the Collins function

Does most recent SIDIS data suggest TMD evolution for the Collins function ?

Collins asymmetry on proton (x > 0.032) Charged pions (and kaons), 2010 data

Comparison with HERMES results

TMD Evolution of the Collins function

TMD evolution tends to reduce the size of distribution and
 fragmentation functions as Q² grows.
 D. Boer, Nucl. Phys. B603 (2001); Nucl. Phys. B803 (2009), BUT the azimuthal moments involved in the Collins
 asymmetries are probably not smaller !
 Need a more detailed investigation ...

Courtesy of Stefano Melis

Outlook and conclusions

- New experimental data on SIDIS multiplicities should allow to perform a global analysis of Drell-Yan as well as SIDIS unpolarized cross sections, to determine the basic parameters needed for the implementation of the TMD evolution schemes.
- Afterwards, we will perform the same analysis for the Sivers, transversity and Collins TMD functions.
- As far as TMD evolution is concerned we have recently come a long way.
- We now have evolution schemes and some first attempts to the phenomenological study of the unpolarized distribution and fragmentation TMDs, of the TMD transversity and of the Sivers functions.
- Preliminary studies are now being refined, especially as far as the parametrization of unknown phenomenological quantities are concerned.
- From the experimental side, we need more SIDIS (polarized and unpolarized) data at larger values of x (Jlab 12) and spanning a larger Q² range (EIC) as well as more (and more precise) Drell-Yan data, for which new experiments are being planned (COMPASS, RHIC, Fermilab, NICA, JPARK).

Outlook and conclusions

- New experimental data on SIDIS multiplicities should allow to perform a global analysis of Drell-Yan as well as SIDIS unpolarized cross sections, to determine the basic parameters needed for the implementation of the TMD evolution schemes.
- Afterwards, we will perform the same analysis for the Sivers, transversity and Collins TMD functions.
- As far as TMD evolution is concerned we have recently come a long way.
- We now have evolution schemes and some first attempts to the phenomenological study of the unpolarized distribution and fragmentation TMDs, of the TMD transversity and of the Sivers functions.
- Preliminary studies are now being refined, especially as far as the parametrization of unknown phenomenological quantities are concerned.
- From the experimental side, we need more SIDIS (polarized and unpolarized) data at larger values of x (Jlab 12) and spanning a larger Q² range (EIC) as well as more (and more precise) Drell-Yan data, for which new experiments are being planned (COMPASS, RHIC, Fermilab, NICA, JPARK).