Phenomenology (partial) review

Alessandro Bacchetta INT, Feb 2013

Tuesday, 25 February 14

Twist-2 TMDs

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

Twist-2 TMDs

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

TMDs

U	L	Т	
D_1		H_1^{\perp}	

TMD Parton Distribution FunctionsTMD Fragmentation Functions(TMD PDFs)(TMD FFs)

TMDs

TMD Parton Distribution FunctionsTMD Fragmentation Functions(TMD PDFs)(TMD FFs)

• Unpolarized TMD PDFs and FFs

Unpolarized TMD PDFs and FFs

• Sivers function

- Unpolarized TMD PDFs and FFs
- Sivers function
- Collins function and transversity

Unpolarized TMDs

Structure functions

"Parton model" $F_{UU,T}(x, z, \boldsymbol{P}_{hT}^2, Q^2) = \sum_{a} \int d\boldsymbol{k}_{\perp} \, d\boldsymbol{P}_{\perp} \, f_1^a \left(x, \boldsymbol{k}_{\perp}^2 \right) D_1^{a \to h} \left(z, \boldsymbol{P}_{\perp}^2 \right) \delta \left(z \boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp} \right) + \mathcal{O} \left(M^2 / Q^2 \right)$

Structure functions

"Parton model" $F_{UU,T}(x, z, \boldsymbol{P}_{hT}^2, Q^2) = \sum_{a} \int d\boldsymbol{k}_{\perp} \, d\boldsymbol{P}_{\perp} \, f_1^a \left(x, \boldsymbol{k}_{\perp}^2 \right) D_1^{a \to h} \left(z, \boldsymbol{P}_{\perp}^2 \right) \delta \left(z \boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp} \right) + \mathcal{O} \left(M^2 / Q^2 \right)$

With QCD corrections

$$\begin{split} F_{UU,T}(x,z,\boldsymbol{P}_{hT}^{2},Q^{2}) &= x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2};\mu^{2}) \int d\boldsymbol{k}_{\perp} \, d\boldsymbol{P}_{\perp} \, f_{1}^{a} \left(x,\boldsymbol{k}_{\perp}^{2};\mu^{2}\right) D_{1}^{a \to h} \left(z,\boldsymbol{P}_{\perp}^{2};\mu^{2}\right) \delta \left(z\boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp}\right) \\ &+ Y_{UU,T} \left(Q^{2},\boldsymbol{P}_{hT}^{2}\right) + \mathcal{O} \left(M^{2}/Q^{2}\right) \end{split}$$

Collinear PDFs

NNPDF http://nnpdf.hepforge.org

Tuesday, 25 February 14

Collinear FFs

Epele, Llubarof, Sassot, Stratmann, PRD68 (12)

Is the collinear description good?

Is the collinear description good?

$\chi^2/{ m d.o.f.}$							
	$Q^2 > 1.4 \mathrm{GeV^2}$	$Q^2 > 1.4 \mathrm{GeV^2}$ (no VM subtr.)	$Q^2 > 1.4 \mathrm{GeV^2}$ (with evolution)	$Q^2 > 1.6{\rm GeV^2}$			
global	2.86	3.90	3.55	2.29			
$p \to K^-$	2.25	2.27	1.38	2.38			
$p \rightarrow \pi^-$	3.39	6.58	5.03	2.70			
$p \to \pi^+$	1.87	2.45	2.74	1.16			
$p \to K^+$	0.89	0.85	1.13	0.59			
$D \to K^-$	4.26	4.22	2.81	4.45			
$D \rightarrow \pi^-$	5.05	8.66	7.96	3.42			
$D \to \pi^+$	3.33	4.61	5.19	2.29			
$D \to K^+$	1.80	1.57	2.17	1.31			

With MSTW08 + DSS

table from Signori, Bacchetta, Radici, Schnell, JHEP 11 (13)

Is the collinear description good?

$\chi^2/{ m d.o.f.}$							
	$Q^2 > 1.4 \mathrm{GeV^2}$	$Q^2 > 1.4 \mathrm{GeV^2}$ (no VM subtr.)	$Q^2 > 1.4 \mathrm{GeV^2}$ (with evolution)	$Q^2 > 1.6 \mathrm{GeV^2}$			
global	2.86	3.90	3.55	2.29			
$p \to K^-$	2.25	2.27	1.38	2.38			
$p \rightarrow \pi^-$	3.39	6.58	5.03	2.70			
$p \rightarrow \pi^+$	1.87	2.45	2.74	1.16			
$p \to K^+$	0.89	0.85	1.13	0.59			
$D \to K^-$	4.26	4.22	2.81	4.45			
$D \rightarrow \pi^-$	5.05	8.66	7.96	3.42			
$D \to \pi^+$	3.33	4.61	5.19	2.29			
$D \to K^+$	1.80	1.57	2.17	1.31			

With MSTW08 + DSS

table from Signori, Bacchetta, Radici, Schnell, JHEP 11 (13)

Now, let's move to the transverse-momentum dependence...

Very recent data

Tuesday, 25 February 14

Limited x - Q² coverage

Limited x - Q² coverage

6 bins in x, 8 bins in z, 7 bins in P_{hT} , 2 targets, 4 final-state hadrons, = 2688 data points

Signori, Bacchetta, Radici, Schnell, JHEP 11 (13)

:4

• x dependence of distribution transverse momentum

- x dependence of distribution transverse momentum
- z dependence of fragmentation transverse momentum

- x dependence of distribution transverse momentum
- z dependence of fragmentation transverse momentum
- flavor dependence

- x dependence of distribution transverse momentum
- z dependence of fragmentation transverse momentum
- flavor dependence
- error treatment based on replica method

- x dependence of distribution transverse momentum
- z dependence of fragmentation transverse momentum
- flavor dependence
- error treatment based on replica method

- x dependence of distribution transverse momentum
- z dependence of fragmentation transverse momentum
- flavor dependence
- error treatment based on replica method
- no evolution (not even collinear!)

Pavia fit (no evo)

6 bins in x, 8 bins in z, 7 bins in P_{hT} , 2 targets, 4 final-state hadrons, = 2688 data points

Pavia fit (no evo)

6 bins in x, 8 bins in z, 7 bins in P_{hT} , 2 targets, 4 final-state hadrons, = 2688 data points

We selected 1538 data points

 $Q^2 > 1.4 \text{ GeV}^2$ z < 0.7 $0.15 \text{ GeV}^2 < P_{hT} < Q^2/3$
Pavia fit (no evo)

Global $\chi^2 / dof = 1.63 \pm 0.12$

15

Pavia fit (no evo)

Global χ^2 /dof = 1.63±0.12

Without flavor dep.: global $\chi^2/dof = 1.72\pm0.11$

Strong anticorreleation between distribution and fragmentation

We need data from electron-positron annihilation

Flavor dependence in FFs

20

Flavor dependence in FFs

We find significant evidence that pion-unfavored and kaon fragmentation functions are wider than pion-favored

Matevosyan, Bentz, Cloet, Thomas, PRD 85 (2012)

Matevosyan, Bentz, Cloet, Thomas, PRD 85 (2012)

Matevosyan, Bentz, Cloet, Thomas, PRD 85 (2012)

Unfavored pion fragmentation and kaon fragmentation are wider than favored pion fragmentation

Matevosyan, Bentz, Cloet, Thomas, PRD 85 (2012)

Unfavored pion fragmentation and kaon fragmentation are wider than favored pion fragmentation

see also talk by H. Matevosyan

Flavor dependence in PDFs

Flavor dependence in PDFs

There is a lot of room for flavor dependence...

Indications from lattice QCD

Tuesday, 25 February 14

Indications from lattice QCD

Tuesday, 25 February 14

Indications from lattice QCD

Torino fit to HERMES (no evo)

Torino fit to HERMES (no evo)

Anselmino, Boglione, Gonzalez, Melis, Prokudin, arXiv:1312.6261

Comparison Pavia-Torino (HERMES)

COMPASS multiplicities

Adolph et al., EPJ C73 (13)

COMPASS multiplicities

COMPASS

Adolph et al., EPJ C73 (13)

About 20000 data points!

Limited x - Q² coverage

27

1

 \sim

Limited x - Q² coverage

Torino COMPASS

Two versions of the fits:

- without any normalization factor
- with a y dependent normalization factor
Torino COMPASS

Anselmino, Boglione, Gonzalez, Melis, Prokudin, arXiv:1312.6261

see talk by Elena Boglione

Two versions of the fits:

- without any normalization factor
- with a y dependent normalization factor

Comparison

Transverse momentum in PDFs

32

Let us turn to Drell-Yan

Cagliari Drell-Yan (no evo)

D'Alesio, Murgia, PRD70 (04)

$$\langle k_T^2 \rangle \approx 1.3 - 1.8 \text{ GeV}^2$$

$$\begin{split} F_{UU,T}(x,z,\boldsymbol{P}_{hT}^{2},Q^{2}) &= x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2};\mu^{2}) \int d\boldsymbol{k}_{\perp} \, d\boldsymbol{P}_{\perp} \, f_{1}^{a} \left(x,\boldsymbol{k}_{\perp}^{2};\mu^{2}\right) D_{1}^{a \to h} \left(z,\boldsymbol{P}_{\perp}^{2};\mu^{2}\right) \delta \left(z\boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp}\right) \\ &+ Y_{UU,T} \left(Q^{2},\boldsymbol{P}_{hT}^{2}\right) + \mathcal{O} \left(M^{2}/Q^{2}\right) \end{split}$$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int d\boldsymbol{k}_{\perp} \, d\boldsymbol{P}_{\perp} \, f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2}; \mu^{2}\right) D_{1}^{a \to h}\left(z, \boldsymbol{P}_{\perp}^{2}; \mu^{2}\right) \delta\left(z\boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp}\right) \\ + Y_{UU,T}\left(Q^{2}, \boldsymbol{P}_{hT}^{2}\right) + \mathcal{O}\left(M^{2}/Q^{2}\right)$$

$$f_1^a(x, \mathbf{k}_{\perp}^2; \mu^2) \equiv \int \frac{d^2 \mathbf{b}_T}{(2\pi)^2} e^{i\mathbf{b}_T \cdot \mathbf{k}_{\perp}} \tilde{f}_1^a(x, b_T; \mu^2)$$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int d\boldsymbol{k}_{\perp} d\boldsymbol{P}_{\perp} f_{1}^{a}(x, \boldsymbol{k}_{\perp}^{2}; \mu^{2}) D_{1}^{a \to h}(z, \boldsymbol{P}_{\perp}^{2}; \mu^{2}) \delta(z\boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

$$f_1^a(x, \mathbf{k}_{\perp}^2; \mu^2) \equiv \int \frac{d^2 \mathbf{b}_T}{(2\pi)^2} e^{i\mathbf{b}_T \cdot \mathbf{k}_{\perp}} \tilde{f}_1^a(x, b_T; \mu^2)$$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int \frac{d\boldsymbol{b}_{\perp}^{2}}{4\pi} J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{P}_{h\perp}|) \tilde{f}_{1}^{a}(x, z^{2}\boldsymbol{b}_{\perp}^{2}; \mu^{2}) \tilde{D}_{1}^{a \to h}(z, \boldsymbol{b}_{\perp}^{2}; \mu^{2}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int d\boldsymbol{k}_{\perp} d\boldsymbol{P}_{\perp} f_{1}^{a}(x, \boldsymbol{k}_{\perp}^{2}; \mu^{2}) D_{1}^{a \to h}(z, \boldsymbol{P}_{\perp}^{2}; \mu^{2}) \delta(z\boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

$$f_1^a(x, \mathbf{k}_{\perp}^2; \mu^2) \equiv \int \frac{d^2 \mathbf{b}_T}{(2\pi)^2} e^{i\mathbf{b}_T \cdot \mathbf{k}_{\perp}} \tilde{f}_1^a(x, b_T; \mu^2)$$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int \frac{d\boldsymbol{b}_{\perp}^{2}}{4\pi} J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{P}_{h\perp}|) \tilde{f}_{1}^{a}(x, z^{2}\boldsymbol{b}_{\perp}^{2}; \mu^{2}) \tilde{D}_{1}^{a \to h}(z, \boldsymbol{b}_{\perp}^{2}; \mu^{2}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

see talk by L. Gamberg

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

 $\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$ collinear PDF

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}} \qquad \mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_*$$

36

$$b_* \equiv \frac{1}{\sqrt{1 + b_T^2/b_{\max}^2}}$$
 $\mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_*$

Many talks: Rogers, Vogelsang, Sun, Kang...

Many talks: Rogers, Vogelsang, Sun, Kang...

Remark: MC generators with parton shower should partially reproduce the effect of evolution

Fits by Nadolsky et al. (CSS formalism)

$$\widetilde{f}_{1}^{f}(x,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{f/i} \otimes f_{1}^{i} \right) (x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{q}(x,b_{T})$$

Brock, Landry, Nadolsky, Yuan, PRD67 (03) 📿

Fits by Nadolsky et al. (CSS formalism)

$$\widetilde{f}_{1}^{f}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{f/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} \underbrace{e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{q}(x,b_{T})}_{Q}}_{e^{-b_{T}^{2}/\langle b_{T}^{2} \rangle}}$$

Brock, Landry, Nadolsky, Yuan, PRD67 (O3) 🤶

Fits by Nadolsky et al. (CSS formalism)

$$\widetilde{f}_{1}^{f}(x,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{f/i} \otimes f_{1}^{i} \right) (x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} \underbrace{e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{q}(x,b_{T})}_{Q} \right)$$

$$\frac{1}{\langle b_T^2 \rangle} = \frac{1}{2} \left(g_1 + g_2 \log \left(\frac{Q}{2Q_0} \right) + g_1 g_3 \log \left(10x \right) \right) \qquad b_{\max}$$

Brock, Landry, Nadolsky, Yuan, PRD67 (O3) 2

111 data points Drell-Yan Q²>5 GeV

Brock, Landry, Nadolsky, Yuan, PRD67 (03)

Dependence of Q

Sun, Yuan, PRD88 (13)

35

Dependence of Q

Sun, Yuan, PRD88 (13)

35

Echevarria, Idilbi, Kang, Vitev

SIDIS

 $\langle x_{\rm B} \rangle = 0.093$

 $\langle Q^2 \rangle = 7.57 \text{ GeV}^2$

HERMES Proton π^+

Comparison

Transverse momentum in PDFs

Sun, Yuan, PRD88 (13)

$$\widetilde{f}_{1}^{f}(x,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{f/i} \otimes f_{1}^{i} \right) (x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{q}(x,b_{T})$$

"standard" CSS
$$\exp\left\{-2C_F \int_{\mu_b=b_0/b_\star}^Q \frac{d\mu'}{\mu'} \frac{\alpha_s(\mu')}{\pi} \left[\ln\left(\frac{Q^2}{\mu'^2}\right) - \frac{3}{2}\right] + g_2 b_T^2 \ln\left(\frac{Q}{Q_0}\right)\right\}$$

Sun, Yuan, PRD88 (13)

Sun, Yuan, PRD88 (13)

see talk by Peng Sun

Sun, Yuan, PRD88 (13)

see talk by Peng Sun

Other prescriptions are possible! E.g., complex b prescription

see talk by W. Vogelsang

Comparison Collins/Sun-Yuan

Aidala et al.: arXiv:1401.2654

Q=2 GeV — Q=5 GeV

Q=10 GeV

 \boldsymbol{b}_{T} (GeV
Sun-Yuan

Sun, Yuan, PRD88 (13)

The prescription seems to be working phenomenologically

Aidala, Field, Gamberg, Rogers

Aidala et al.: arXiv:1401.2654

1

 \sim

Aidala, Field, Gamberg, Rogers

Aidala et al.: arXiv:1401.2654

Dependence of Q

Dependence of Q

The effect of evolution on unpolarized TMDs below 10 GeV² is small

Fun in the future...

Fun in the future...

$$xA_0(x,k_t) = Nx^{-B}(1-x)^C(1-Dx)e^{-(k_t-\mu)^2/\sigma^2}$$

$$xA_0(x, k_t) = Nx^{-B}(1-x)^C(1-Dx)e^{-(k_t-\mu)^2/\sigma^2}$$

Parametrize unintegrated gluon distribution at a starting scale

$$xA_0(x, k_t) = Nx^{-B}(1-x)^C(1-Dx)e^{-(k_t-\mu)^2/\sigma^2}$$
But a Monte Carlo that implements aluon r

Run a Monte Carlo that implements gluon radiation (according to CCFM formalism)

$$xA_0(x, k_t) = Nx^{-B}(1-x)^C(1-Dx)e^{-(k_t-\mu)^2/\sigma^2}$$

Run a Monte Carlo that implements gluon radiation
(according to CCFM formalism)

Parametrize unintegrated gluon distribution at a starting scale

Tune the above parameters

Event generator tuning

Bacchetta, Jung, Knutsson, Kutak, Samson-Himmelstjerna, EPJC7O (10)

52

Input gluon TMD/uPDF

$$xA_0(x, k_t) = Nx^{-B}(1-x)^C(1-Dx)e^{-(k_t-\mu)^2/\sigma^2}$$

Results: large negative D required

53

Bacchetta, Jung, Knutsson, Kutak, Samson-Himmelstjerna , EPJC70 (10)

Unpolarized gluon TMD/updf

Input gluon TMD/uPDF $\langle x \rangle = 0.00014$ <x>= 0.00023 100 50 0 $>Q^2 \ll 12 \text{ GeV}$ 0 2 4 6 $xA_0(x, k_t) = Nx^{-B}(1-x)^C(1-Dx)e^{-(k_t-\mu)^2/\sigma^2}$ <x>= 0.00025 50 25 0 $d^2 \sigma / dQ^2 dx (pb/GeV^2)$ 0 2 4 49 20 **Results**: 0 20 large μ required 10 0 • H1 EPJC 33 (2004) 477 New Fit set A0 set C J2003 set2

 $\langle Q^2 \rangle = 6.5 \text{ GeV}^2$ $\langle Q^2 \rangle = 7 \text{ GeV}^2$ $\langle Q^2 \rangle = 7 \text{ GeV}^2$ $\langle Q^2 \rangle = 7.6 \text{ GeV}^2$ (x) = 0.00039<x>= 0.00065 $Q^2 \ll 12 \text{ GeV}^2$ $>O^2 \ll 13 \text{ GeV}^2$ $>O^2 \ll 12 \text{ GeV}^2$ <x>= 0.00039 <x>= 0.00072 <x>= 0.0012 $\langle Q^2 \rangle = 17 \text{ GeV}^2$ $\langle Q^2 \rangle = 17 \text{ GeV}^2$ $\langle Q^2 \rangle = 17 \text{ GeV}^2$ <x>= 0.00038 <x>= 0.00072 <x>= 0.0014 $\langle Q^2 \rangle = 23 \text{ GeV}^2$ $\langle Q^2 \rangle = 25 \text{ GeV}^2$ $\langle Q^2 \rangle = 25 \text{ GeV}^2$ <x> = 0.00043 <x> = 0.00072 $\langle x \rangle = 0.0017$ $\langle Q^2 \rangle = 37 \text{ GeV}^2$ $\langle Q^2 \rangle = 39 \text{ GeV}^2$ 0 2 4 10 $\langle x \rangle = 0.00078$ $\langle x \rangle = 0.0022$ 5 0 $\langle Q^2 \rangle = 60 \text{ GeV}^2$ $\langle Q^2 \rangle = 71 \text{ GeV}$ 4 <x> = 0.0018 <x> = 0.0047 2 ٥ 0 2 4 6 0 2 6 4 Δ (GeV)

Bacchetta, Jung, Knutsson, Kutak, arXiv:0808.0847

150

Sivers function

Pavia fit (no evo)

Torino

Bacchetta, Radici, PRL 107 (2011)

Connection with GPDs

$$E^{q}(x,0,0;Q_{L}^{2}) \propto -\frac{C^{q}}{K} \left(1 - x/\alpha^{q}\right) \left(1 - x\right)^{1+\eta} f_{1}^{q}(x:Q_{L}^{2})$$

x E(x,0,0)

Predictions for Drell-Yan

Anselmino et al., PRD 79 (09)

Predictions for Drell-Yan

Anselmino et al., PRD 79 (09)

ctionno fit with evolution

Theory: Aybat, Rogers, PRD85 (2012) First application: Aybat, Prokudin, Rogers, PRL108 (2012)

tions extracted from

ged hadrons with the atical and systematical and systematic and sy

duction (right panel).

Luesday 25 February

ctionno fit with evolution

Theory: Aybat, Rogers, PRD85 (2012) First application: Aybat, Prokudin, Rogers, PRL108 (2012)

tions extracted from

ged hadrons with the atical and systematic and syst

duction (right panel).

ctionno fit with evolution

Theory: Aybat, Rogers, PRD85 (2012) First application: Aybat, Prokudin, Rogers, PRL108 (2012)

tions extracted from

ged hadrons with the atical and systematic and syst

An increase in the Sivers function was needed to describe data.

Tuesday 25 Februar
ctionno fit with evolution

Theory: Aybat, Rogers, PRD85 (2012) First application: Aybat, Prokudin, Rogers, PRL108 (2012) ctions extracted from atical stracted from

Using BLNY parameters g₂ and b_{max}

An increase in the Sivers function was needed to describe data.

Tuesday, 25 February 14

ged hadrons with the

. an predictions

The Drell-Yan signal is reduced by a factor 1/4

Sun-Yuan fit with evo

FIG. 9: Moments of the quark Sivers functions $\Delta f_q = T_F(x, x)/M$ fitted to HERMES and COMPASS data: up and down quark (left) and anti-up quark (right). Upper and lower curves for the uncertainties.

Sun-Yuan fit with evo

FIG. 9: Moments of the quark Sivers functions $\Delta f_q = T_F(x, x)/M$ fitted to HERMES and COMPASS data: up and down quark (left) and anti-up quark (right). Upper and lower curves for the uncertainties.

Tuesday, 25 February 14

Echevarria, Idilbi, Kang, Vitev with evo

Echevarria, Idilbi, Kang, Vitev with evo

The effect of evolution on Sivers TMDs below 10 GeV² is small

Collins function and transversity

Torino fit 2013, no evo

Anselmino et al., PRD87 (2013)

TMD evolution of the Collins function

Echevarria, Idilbi, Scimemi, arXiv:1402.0869

Collins function evolution

Collins function evolution

Based on collinear factorization

Based on collinear factorization

Tensor charge

- 8. fit of A₀
- 7. fit of A₁₂
- 6. MC extra flexible
- 5. standard extra flexible
- 4. MC flexible
- 3. standard flexible
- 2. MC rigid
- 1. standard rigid

Tensor charge

6. MC extra flexible

3. standard flexible

1. standard rigid

5. standard extra flexible

8. fit of A₀

7. fit of A₁₂

4. MC flexible

2. MC rigid

From lattice QCD:

$$\mathsf{LHPC} \qquad \delta u - \delta d = 1.038(20)$$

 $\mathsf{MILC} \qquad \delta u - \delta d = 1.083(48)$

see talk by Huey-Wen Lin

• Big progress on unpolarized TMDs is taking place

- Big progress on unpolarized TMDs is taking place
- \bullet The effects of evolution below 10 GeV^2 is small

- Big progress on unpolarized TMDs is taking place
- The effects of evolution below 10 GeV^2 is small
- The Sivers function at low scales is under control

- Big progress on unpolarized TMDs is taking place
- The effects of evolution below 10 GeV² is small
- The Sivers function at low scales is under control
- The Collins function and transversity are not yet under control

TMD "evolution"

TMD "evolution"

