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FIG. 4: Comparison of the uncertainties for selected truncated moments ηπ
+

i of the DSS pion FFs (indicated by the horizontal
bars) estimated with the LM and IH methods at Q = 5GeV; see text.
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FIG. 5: left: comparison of the NLO DSS results for charged pion multiplicities in SIDIS with preliminary data [24] as a
function of Q2 in various bins of z. right: “(data-theory)/theory” for the DSS results; open and full circles denote π+ and π−

multiplicities, respectively. For all panels, the light and dark shaded bands indicate uncertainty estimates for ∆χ2/χ2 = 2%
and 5%, respectively, based on our Hessian eigenvector sets and using Eq. (7).

Similar comparisons for single-inclusive pion produc-
tion in SIA and pp collisions at BNL-RHIC are shown in
Fig. 6. Data are taken from [25] and [26], respectively.
Again, the differences between the uncertainty estimates
obtained with the 2% and 5% Hessian eigenvector sets
are minimal, except for regions sensitive to large momen-
tum fractions, z ! 0.6, where experimental constraints
become very scarce. In these regions, uncertainties are
severely underestimated and not trustworthy. In case of

pp collisions (right-hand-side of Fig. 6), we include for
comparison an estimate of the theoretical ambiguity due
to the choice of the factorization scale in the NLO calcu-
lation [27] which is much more significant than errors on
FFs (or PDFs as was shown in Ref. [22]).

A common feature of the results shown in Figs. 5 and
6 is that the estimates of the relative uncertainties due
to FFs remain almost constant in a wide range of hadron
momentum fractions z and energy scale µ set by the pho-

Epele, Llubarof, Sassot, Stratmann, PRD68 (12)
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Is the collinear description good?
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V. COMPARISON OF MULTIPLICITIES
WITH LO CALCULATIONS

To date, analyses of FFs [9–12,22] have been carried out
in the framework of collinear factorization. In this approxi-
mation, the multiplicity is defined as the integration of
Eq. (1) over Ph?. In one such model, the LO QCD-
improved quark-parton model, the hadron multiplicity as
a function of z and Q2, is given by

1
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¼
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f e
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(8)

where the sum is over quarks and antiquarks of flavor f,
and ef is the quark charge in units of the elementary
charge. The multiplicities in this LO approximation are a
reasonable starting point for comparing the HERMES
results with predictions based on fragmentation functions
resulting from global QCD analyses of all relevant data.

A comparison of the multiplicities measured by
HERMES for SIDIS on the proton and deuteron with LO
predictions is presented in Figs. 9 and 10. The multiplicities
are calculated from Eq. (8) (though integrated only over the
accepted range in xB of 0.023 to 0.600) using values for
the FFs taken from three widely used analyses, that of de
Florian et al. (DSS) [22], that of Hirai et al. (HKNS) [12],
and that of Kretzer [9], together with parton distributions
taken from CTEQ6L [45]. For positively charged pions
and kaons, the results for a proton target using FFs from
the analysis of DSS are in reasonable agreement with the
HERMES results. For negative charges, the discrepancies
between data and the results based on FFs from DSS are
substantial, particularly for K$ where the curve predicted
lies below the observed multiplicity over most of the
measured range of z. For !$ the results from the DSS
analysis agree with measurement at low z. For both!$ and
K$, fragmentation is less affected by u-quark dominance.
Uncertainties in the less abundant production by strange
and anti-u quarks may have a larger impact on the predic-
tions than for the positively charged hadrons. Alternatively,
next-to-leading-order (NLO) processes may be proportion-
ally more important for !$ and particularly K$, and the
discrepancies observed here may signal the importance of
calculating multiplicities at NLO. For kaons the DSS
results give a better representation of the data than the
Kretzer and HKNS curves. This is to be expected, since
the DSS analysis included a preliminary version of the
HERMES proton data in its database. The Kretzer and
HKNS results are in substantial disagreement with the
multiplicities measured for K$. The results on deuterons
are in general in somewhat better agreement with the
various predictions, in particular for pions. However, the
discrepancy between the measured K$ multiplicities
and the various predictions is also apparent here. In
Figs. 9 and 10 the multiplicities obtained from the

HERMES Lund Monte Carlo, in which the fragmentation
parameters have been tuned for HERMES kinematic con-
ditions [20], are also shown. Inclusion of the data reported
here in future global analyses should result in higher pre-
cision in the extraction of FFs, particularly those describing
less abundant fragmentation processes.
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FIG. 9 (color online). Comparison of the vector-meson-
corrected multiplicities measured on the proton for various
hadrons with LO calculations using CTEQ6L parton distribu-
tions [45] and three compilations (see text) of fragmentation
functions. Also shown are the values obtained from the
HERMES Lund Monte Carlo. The statistical error bars on the
experimental points are too small to be visible.

A. AIRAPETIAN et al. PHYSICAL REVIEW D 87, 074029 (2013)
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Table 2. Values of �

2
/d.o.f. obtained from the comparison of the Hermes multiplicities

m

h
N (x, z,Q2) with the theoretical prediction using the MSTW08LO collinear PDFs [8] and the

DSS LO collinear FFs [48]. In all cases, the range 0.1  z  0.8 was included.

Our analysis relies on the assumption that the transverse-momentum-integrated mul-

tiplicities, m

h
N (x, z,Q2), are well described by currently available parametrizations of

collinear PDFs and FFs. However, this is not always true. In order to identify the range of

applicability of the collinear results, we compared the multiplicities as functions of x and z

with the leading-order (LO) theoretical predictions obtained using the MSTW08LO PDF

set [8] and the DSS LO FF set [48]. In the comparison, we neglected the uncertainties af-

fecting the PDFs but we included the ones a↵ecting the FFs, obtaining the latter from the

plots in ref. [52]. They are of the order of 5–10% for light quarks fragmenting into pions, of

10–15% for favored kaon FFs, of 50% for all the other cases, and they are larger at higher z.

In table 2, we quote the �

2 per degree of freedom (�2

/d.o.f.) obtained in our compar-

ison. Our results are di↵erent from the ones quoted in tables IV and VIII of [48] for a few

reasons: i) we used the final Hermes data, in particular the set with x and z binning;

ii) we included also the lowest z bin (z < 0.2); iii) we did not include any overall nor-

malization constant; iv) we included the theoretical errors on the extracted fragmentation

functions. The comparison shows that in general the theoretical predictions do not describe

the Hermes data very well. The agreement is particularly bad for ⇡� and K

�. However,

this is not surprising because: i) the MSTW set of PDFs does not take into account semi-

inclusive DIS data, ii) as mentioned above, the DSS set of FFs [48] was deduced using only

a preliminary version of the Hermes multiplicities, iii) the Hermes data give very large

contributions to the �2 of the global DSS analysis. Nevertheless, in our analysis we decided

to restrict the ranges to Q

2

> 1.4GeV2 and 0.1 < z < 0.8, i.e., excluding the first bin in Q

2

(equivalent also to the lowest x) and the last bin in z. Inclusion of decays from exclusive

vector-mesons markedly degrades the �

2 of the pion channels and increases the global �2

(cf. the first and second columns of table 2). Hence we will present results for only the fits

to vector-meson subtracted multiplicities. We checked that our basic conclusions do not

change when using data without vector-meson subtraction.

– 8 –

With MSTW08 + DSS

table from Signori, Bacchetta, 
Radici, Schnell, JHEP 11 (13)
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Kretzer and HKNS curves. This is to be expected, since
the DSS analysis included a preliminary version of the
HERMES proton data in its database. The Kretzer and
HKNS results are in substantial disagreement with the
multiplicities measured for K$. The results on deuterons
are in general in somewhat better agreement with the
various predictions, in particular for pions. However, the
discrepancy between the measured K$ multiplicities
and the various predictions is also apparent here. In
Figs. 9 and 10 the multiplicities obtained from the

HERMES Lund Monte Carlo, in which the fragmentation
parameters have been tuned for HERMES kinematic con-
ditions [20], are also shown. Inclusion of the data reported
here in future global analyses should result in higher pre-
cision in the extraction of FFs, particularly those describing
less abundant fragmentation processes.
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Now, let’s move to the transverse-momentum dependence...

J
H
E
P
1
1
(
2
0
1
3
)
1
9
4

�

2/d.o.f.

Q

2
> 1.4GeV2 Q

2
> 1.4GeV2

(no VM subtr.)

Q

2
> 1.4GeV2

(with evolution)
Q

2
> 1.6GeV2

global 2.86 3.90 3.55 2.29

p ! K

� 2.25 2.27 1.38 2.38

p ! ⇡

� 3.39 6.58 5.03 2.70

p ! ⇡

+ 1.87 2.45 2.74 1.16

p ! K

+ 0.89 0.85 1.13 0.59

D ! K

� 4.26 4.22 2.81 4.45

D ! ⇡

� 5.05 8.66 7.96 3.42

D ! ⇡

+ 3.33 4.61 5.19 2.29

D ! K

+ 1.80 1.57 2.17 1.31

Table 2. Values of �

2
/d.o.f. obtained from the comparison of the Hermes multiplicities

m

h
N (x, z,Q2) with the theoretical prediction using the MSTW08LO collinear PDFs [8] and the

DSS LO collinear FFs [48]. In all cases, the range 0.1  z  0.8 was included.

Our analysis relies on the assumption that the transverse-momentum-integrated mul-

tiplicities, m

h
N (x, z,Q2), are well described by currently available parametrizations of

collinear PDFs and FFs. However, this is not always true. In order to identify the range of

applicability of the collinear results, we compared the multiplicities as functions of x and z

with the leading-order (LO) theoretical predictions obtained using the MSTW08LO PDF

set [8] and the DSS LO FF set [48]. In the comparison, we neglected the uncertainties af-

fecting the PDFs but we included the ones a↵ecting the FFs, obtaining the latter from the

plots in ref. [52]. They are of the order of 5–10% for light quarks fragmenting into pions, of

10–15% for favored kaon FFs, of 50% for all the other cases, and they are larger at higher z.

In table 2, we quote the �

2 per degree of freedom (�2

/d.o.f.) obtained in our compar-

ison. Our results are di↵erent from the ones quoted in tables IV and VIII of [48] for a few

reasons: i) we used the final Hermes data, in particular the set with x and z binning;

ii) we included also the lowest z bin (z < 0.2); iii) we did not include any overall nor-

malization constant; iv) we included the theoretical errors on the extracted fragmentation

functions. The comparison shows that in general the theoretical predictions do not describe

the Hermes data very well. The agreement is particularly bad for ⇡� and K

�. However,

this is not surprising because: i) the MSTW set of PDFs does not take into account semi-

inclusive DIS data, ii) as mentioned above, the DSS set of FFs [48] was deduced using only

a preliminary version of the Hermes multiplicities, iii) the Hermes data give very large

contributions to the �2 of the global DSS analysis. Nevertheless, in our analysis we decided

to restrict the ranges to Q

2

> 1.4GeV2 and 0.1 < z < 0.8, i.e., excluding the first bin in Q

2

(equivalent also to the lowest x) and the last bin in z. Inclusion of decays from exclusive

vector-mesons markedly degrades the �

2 of the pion channels and increases the global �2

(cf. the first and second columns of table 2). Hence we will present results for only the fits

to vector-meson subtracted multiplicities. We checked that our basic conclusions do not

change when using data without vector-meson subtraction.

– 8 –

With MSTW08 + DSS

table from Signori, Bacchetta, 
Radici, Schnell, JHEP 11 (13)
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Very recent data
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The Pavia-Amsterdam-Bilbao fit

13

• x dependence of distribution transverse momentum

• z dependence of fragmentation transverse momentum

• flavor dependence

• error treatment based on replica method

• no evolution (not even collinear!)

Signori, Bacchetta, Radici, Schnell, JHEP 11 (13)
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FIG. 3. Data points: Hermes multiplicities m
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p(x, z, P 2

hT ; Q2) for pions and kaons o↵ a proton target as functions of P 2
hT for

one selected x and Q

2 bin and few selected z bins. Shaded bands: 68% confidence intervals obtained from fitting 200 replicas of
the original data points in the scenario of the default fit. The bands include also the uncertainty on the collinear fragmentation
functions. The lowest P 2

hT bin has not been included in the fit.
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FIG. 4. Same content and notation as in the previous figure, but for a deuteron target.
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Flavor dependence in FFs
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Models of fragmentation functions
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FIG. 13. TMD fragmentation functions for a u quark to K

+

and K

�. The upper figure illustrates the favored case, which
peaks at relatively large z, while the unfavored case, shown
in the lower figure, peaks at much smaller z.

cantly more di�cult when we include the transverse mo-
mentum dependence, because now the number of bins be-
comes quadratic in the size of the discrete bin size (taken
to be 1/500 both for z and transverse momentum, in the
corresponding units). Furthermore, the extent of the bins
in the transverse momentum direction was extended to
6 GeV2, in order to avoid any notable numerical artifacts
arising from the limited range of transverse momentum.
To overcome the numerical challenge, our software plat-
form was developed to allow for parallel generation of the
Monte Carlo quark decay cascades, with di↵erent seeds
for their random number generators. The results were
later combined to produce the high statistics solutions.
The computations were facilitated on the small computer
cluster at the Special Research Centre for the Subatomic
Structure of Matter (CSSM) that consists of 11 machines
with Intel Core i7 920 quad core CPUs running on the
Linux Fedora Core 11 operating system and GCC 4.4.
A typical calculation of fragmentation for a given quark
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FIG. 14. The averaged transverse momentum of ⇡ and K

mesons emitted by a u quark.

type takes about 12 hours with 44 parallel processors.
Results for the TMD favored and unfavored fragmen-

tation functions for a u quark to ⇡ and K mesons are
illustrated in Figs. 12 and 13. In each case, the favored
TMD fragmentation functions have more support at large
z, while the unfavored results are peaked at smaller z. It
is also evident that the kaon fragmentation functions fall
o↵ more slowly in P

2
? than the corresponding pion frag-

mentation functions. The drop in each of the fragmenta-
tion functions for z . 0.02 is a consequence of choosing
N

Links

= 6, which means that in the Monte Carlo simu-
lation there is a vanishingly small probability of emitting
hadrons with z < 0.02.
The Gaussian ansatz is widely used to describe the tra-

verse momentum dependence of both quark distribution
and fragmentation functions. In particular, the TMD
fragmentation function of a quark q emitting a hadron h

is often modeled by

D

h

q

(z, P 2
?) = D

h

q

(z)
e

�P

2
?/hP 2

?i

⇡hP 2
?i

, (23)

where D

h

q

(z) is the corresponding integrated fragmenta-
tion function and hP 2

?i is the average transverse momen-
tum of the produced hadron h, defined by

hP 2
?i(z) ⌘

R
d

2P? P

2
? D

h

q

(z, P 2
?)R

d

2P? D

h

q

(z, P 2
?)

. (24)

In analyses that assume a Gaussian ansatz for the TMD
fragmentation functions, it is usual to assume that hP 2

?i
does not depend on z, the type of hadron, h, or the quark
flavor, q. These assumptions will be tested against the
NJL-jet TMD fragmentation functions.
The results in Fig. 14 depict the average transverse

momenta of ⇡ and K mesons produced by a u-quark.
These plots show that the average transverse momenta
of the hadrons are relatively flat versus z in the region
0.3 < z < 0.6, however they have a significant depen-
dence on the type of the hadron. We find that the av-
erage transverse momentum of the kaons is significantly
larger than that of the pions.
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FIG. 13. TMD fragmentation functions for a u quark to K

+

and K

�. The upper figure illustrates the favored case, which
peaks at relatively large z, while the unfavored case, shown
in the lower figure, peaks at much smaller z.

cantly more di�cult when we include the transverse mo-
mentum dependence, because now the number of bins be-
comes quadratic in the size of the discrete bin size (taken
to be 1/500 both for z and transverse momentum, in the
corresponding units). Furthermore, the extent of the bins
in the transverse momentum direction was extended to
6 GeV2, in order to avoid any notable numerical artifacts
arising from the limited range of transverse momentum.
To overcome the numerical challenge, our software plat-
form was developed to allow for parallel generation of the
Monte Carlo quark decay cascades, with di↵erent seeds
for their random number generators. The results were
later combined to produce the high statistics solutions.
The computations were facilitated on the small computer
cluster at the Special Research Centre for the Subatomic
Structure of Matter (CSSM) that consists of 11 machines
with Intel Core i7 920 quad core CPUs running on the
Linux Fedora Core 11 operating system and GCC 4.4.
A typical calculation of fragmentation for a given quark
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type takes about 12 hours with 44 parallel processors.
Results for the TMD favored and unfavored fragmen-

tation functions for a u quark to ⇡ and K mesons are
illustrated in Figs. 12 and 13. In each case, the favored
TMD fragmentation functions have more support at large
z, while the unfavored results are peaked at smaller z. It
is also evident that the kaon fragmentation functions fall
o↵ more slowly in P

2
? than the corresponding pion frag-

mentation functions. The drop in each of the fragmenta-
tion functions for z . 0.02 is a consequence of choosing
N

Links

= 6, which means that in the Monte Carlo simu-
lation there is a vanishingly small probability of emitting
hadrons with z < 0.02.
The Gaussian ansatz is widely used to describe the tra-

verse momentum dependence of both quark distribution
and fragmentation functions. In particular, the TMD
fragmentation function of a quark q emitting a hadron h

is often modeled by

D
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(z)
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where D

h

q

(z) is the corresponding integrated fragmenta-
tion function and hP 2

?i is the average transverse momen-
tum of the produced hadron h, defined by
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2
? D
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. (24)

In analyses that assume a Gaussian ansatz for the TMD
fragmentation functions, it is usual to assume that hP 2

?i
does not depend on z, the type of hadron, h, or the quark
flavor, q. These assumptions will be tested against the
NJL-jet TMD fragmentation functions.
The results in Fig. 14 depict the average transverse

momenta of ⇡ and K mesons produced by a u-quark.
These plots show that the average transverse momenta
of the hadrons are relatively flat versus z in the region
0.3 < z < 0.6, however they have a significant depen-
dence on the type of the hadron. We find that the av-
erage transverse momentum of the kaons is significantly
larger than that of the pions.
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FIG. 13. TMD fragmentation functions for a u quark to K

+

and K

�. The upper figure illustrates the favored case, which
peaks at relatively large z, while the unfavored case, shown
in the lower figure, peaks at much smaller z.

cantly more di�cult when we include the transverse mo-
mentum dependence, because now the number of bins be-
comes quadratic in the size of the discrete bin size (taken
to be 1/500 both for z and transverse momentum, in the
corresponding units). Furthermore, the extent of the bins
in the transverse momentum direction was extended to
6 GeV2, in order to avoid any notable numerical artifacts
arising from the limited range of transverse momentum.
To overcome the numerical challenge, our software plat-
form was developed to allow for parallel generation of the
Monte Carlo quark decay cascades, with di↵erent seeds
for their random number generators. The results were
later combined to produce the high statistics solutions.
The computations were facilitated on the small computer
cluster at the Special Research Centre for the Subatomic
Structure of Matter (CSSM) that consists of 11 machines
with Intel Core i7 920 quad core CPUs running on the
Linux Fedora Core 11 operating system and GCC 4.4.
A typical calculation of fragmentation for a given quark
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mesons emitted by a u quark.

type takes about 12 hours with 44 parallel processors.
Results for the TMD favored and unfavored fragmen-

tation functions for a u quark to ⇡ and K mesons are
illustrated in Figs. 12 and 13. In each case, the favored
TMD fragmentation functions have more support at large
z, while the unfavored results are peaked at smaller z. It
is also evident that the kaon fragmentation functions fall
o↵ more slowly in P

2
? than the corresponding pion frag-

mentation functions. The drop in each of the fragmenta-
tion functions for z . 0.02 is a consequence of choosing
N

Links

= 6, which means that in the Monte Carlo simu-
lation there is a vanishingly small probability of emitting
hadrons with z < 0.02.
The Gaussian ansatz is widely used to describe the tra-

verse momentum dependence of both quark distribution
and fragmentation functions. In particular, the TMD
fragmentation function of a quark q emitting a hadron h

is often modeled by

D
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(z, P 2
?) = D

h

q

(z)
e
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2
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where D

h

q

(z) is the corresponding integrated fragmenta-
tion function and hP 2

?i is the average transverse momen-
tum of the produced hadron h, defined by
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In analyses that assume a Gaussian ansatz for the TMD
fragmentation functions, it is usual to assume that hP 2

?i
does not depend on z, the type of hadron, h, or the quark
flavor, q. These assumptions will be tested against the
NJL-jet TMD fragmentation functions.
The results in Fig. 14 depict the average transverse

momenta of ⇡ and K mesons produced by a u-quark.
These plots show that the average transverse momenta
of the hadrons are relatively flat versus z in the region
0.3 < z < 0.6, however they have a significant depen-
dence on the type of the hadron. We find that the av-
erage transverse momentum of the kaons is significantly
larger than that of the pions.
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and K
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peaks at relatively large z, while the unfavored case, shown
in the lower figure, peaks at much smaller z.

cantly more di�cult when we include the transverse mo-
mentum dependence, because now the number of bins be-
comes quadratic in the size of the discrete bin size (taken
to be 1/500 both for z and transverse momentum, in the
corresponding units). Furthermore, the extent of the bins
in the transverse momentum direction was extended to
6 GeV2, in order to avoid any notable numerical artifacts
arising from the limited range of transverse momentum.
To overcome the numerical challenge, our software plat-
form was developed to allow for parallel generation of the
Monte Carlo quark decay cascades, with di↵erent seeds
for their random number generators. The results were
later combined to produce the high statistics solutions.
The computations were facilitated on the small computer
cluster at the Special Research Centre for the Subatomic
Structure of Matter (CSSM) that consists of 11 machines
with Intel Core i7 920 quad core CPUs running on the
Linux Fedora Core 11 operating system and GCC 4.4.
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type takes about 12 hours with 44 parallel processors.
Results for the TMD favored and unfavored fragmen-

tation functions for a u quark to ⇡ and K mesons are
illustrated in Figs. 12 and 13. In each case, the favored
TMD fragmentation functions have more support at large
z, while the unfavored results are peaked at smaller z. It
is also evident that the kaon fragmentation functions fall
o↵ more slowly in P

2
? than the corresponding pion frag-

mentation functions. The drop in each of the fragmenta-
tion functions for z . 0.02 is a consequence of choosing
N

Links

= 6, which means that in the Monte Carlo simu-
lation there is a vanishingly small probability of emitting
hadrons with z < 0.02.
The Gaussian ansatz is widely used to describe the tra-

verse momentum dependence of both quark distribution
and fragmentation functions. In particular, the TMD
fragmentation function of a quark q emitting a hadron h

is often modeled by
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where D
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(z) is the corresponding integrated fragmenta-
tion function and hP 2
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tum of the produced hadron h, defined by
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In analyses that assume a Gaussian ansatz for the TMD
fragmentation functions, it is usual to assume that hP 2

?i
does not depend on z, the type of hadron, h, or the quark
flavor, q. These assumptions will be tested against the
NJL-jet TMD fragmentation functions.
The results in Fig. 14 depict the average transverse

momenta of ⇡ and K mesons produced by a u-quark.
These plots show that the average transverse momenta
of the hadrons are relatively flat versus z in the region
0.3 < z < 0.6, however they have a significant depen-
dence on the type of the hadron. We find that the av-
erage transverse momentum of the kaons is significantly
larger than that of the pions.

Matevosyan, Bentz, Cloet, Thomas, PRD 85 (2012)

higher average 
transverse momentum

Unfavored pion fragmentation and kaon fragmentation 
are wider than favored pion fragmentation 

see also talk by H. Matevosyan

Tuesday, 25 February 14



Flavor dependence in PDFs

22
Tuesday, 25 February 14



Flavor dependence in PDFs

22
There is a lot of room for flavor dependence...

Tuesday, 25 February 14



Indications from lattice QCD

23

20

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

⌃k�⌃ ⇤GeV⌅

f 1
,u�1⇥ ⇧f 1,d�1

⇥

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
�6

�4

�2

0

2

4

⌃k�⌃ ⇤GeV⌅

g
1
,u�1⇥ ⇧g 1,

d�1⇥

(c)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
�6

�4

�2

0

2

4

⌃k�⌃ ⇤GeV⌅

h
1
,u�1⇥ ⇧h 1,

d�1⇥

FIG. 15: Flavor-ratios at a pion mass m� � 500MeV. The
solid curve and the statistical error band in blue have been
obtained from the Gaussian fits displayed in Fig. 12 and
13. The corresponding errors associated with �[�m] are
shown as a gray band at the bottom. For the dashed curve
and the band in orange we have used alternative Gaussian
parametrizations as discussed in section VE. The respective
uncertainties from �[�m] are shown at the top of each plot.
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+ s⇥ · S⇥h1,q +
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⇥⇥ji)Si
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⇤
sj�jiki
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1,q

⌅

odd

⇥
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where the first and the second index of ⌅ indicates the
nucleon and quark polarization, respectively.
From the x-moments of amplitudes ⌃Ai obtained on the

lattice, we can construct x-integrated densities ⌅[1]q , and
decompose them in analogy to Eq. (40) as

⌅[1]q (k⇥;⇤, s⇥,⇥,S⇥)

⌅
⇧ 1

�1
dx ⌅q(x,k⇥;⇤, s⇥,⇥,S⇥)

=

⇧ 1

0
dx ⌅q(x,k⇥;⇤, s⇥,⇥,S⇥)

�
⇧ 1

0
dx ⌅q̄(x,�k⇥;�⇤, s⇥,⇥,S⇥) . (57)

where the anti-quark density ⌅q̄ is defined as in Eq. (49)
but using the correlator ⇤c

q of Eq. (E1) in the appendix.
Here the appearance of minus signs in front of ⌅q̄ and
⇤ accommodates the sign changes in the Dirac matrix �
after charge conjugation, i.e., �c = � 1

2 (�
+ � ⇤�+�5 �

sji⇧+j�5). We conclude that the x-integrated densities

⌅[1]q are di⌅erences of quark densities ⌅q and anti-quark
densities ⌅q̄ of

• opposite transverse momentum �k⇥,

• opposite light cone helicity �⇤,

• same transverse polarization s⇥.

Strictly speaking, the densities that are integrated over
x from �1 to +1 are thus not densities themselves and
can, at least in principle, become negative.
With the Gaussian x-moments of TMDs from Table

IV as input, we are in a position to draw plots of the
x-integrated transverse momentum dependent densities
of quarks in the nucleon. Two particularly interesting
and statistically well-determined x-integrated densities

are ⌅[1]LT and ⌅[1]TL. They feature significant dipole defor-
mations due to correlations in the transverse spins and
intrinsic transverse momentum, as can be seen from the
terms proportional to g1T and h⇥

1L in Eqns. (54) and (55),
in combination with our non-zero results for the relevant
amplitudes ⌃A7 and ⌃A10, see Eq. (16). For corresponding
density plots and their interpretation, we refer to our pre-
vious publication Ref. [32]. The dipole deformations can
be characterized by average transverse momentum shifts
of the quarks, denoted by ⇧kx⌃TL and ⇧kx⌃LT . These are
defined by ratios of specific moments in x- and k⇥ of the
densities, as we will discuss in the following section.

Musch, Hagler, Negele, Schafer, PRD 83 (11)
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13. The corresponding errors associated with �[�m] are
shown as a gray band at the bottom. For the dashed curve
and the band in orange we have used alternative Gaussian
parametrizations as discussed in section VE. The respective
uncertainties from �[�m] are shown at the top of each plot.
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where the first and the second index of ⌅ indicates the
nucleon and quark polarization, respectively.
From the x-moments of amplitudes ⌃Ai obtained on the

lattice, we can construct x-integrated densities ⌅[1]q , and
decompose them in analogy to Eq. (40) as

⌅[1]q (k⇥;⇤, s⇥,⇥,S⇥)
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where the anti-quark density ⌅q̄ is defined as in Eq. (49)
but using the correlator ⇤c

q of Eq. (E1) in the appendix.
Here the appearance of minus signs in front of ⌅q̄ and
⇤ accommodates the sign changes in the Dirac matrix �
after charge conjugation, i.e., �c = � 1

2 (�
+ � ⇤�+�5 �

sji⇧+j�5). We conclude that the x-integrated densities

⌅[1]q are di⌅erences of quark densities ⌅q and anti-quark
densities ⌅q̄ of

• opposite transverse momentum �k⇥,

• opposite light cone helicity �⇤,

• same transverse polarization s⇥.

Strictly speaking, the densities that are integrated over
x from �1 to +1 are thus not densities themselves and
can, at least in principle, become negative.
With the Gaussian x-moments of TMDs from Table

IV as input, we are in a position to draw plots of the
x-integrated transverse momentum dependent densities
of quarks in the nucleon. Two particularly interesting
and statistically well-determined x-integrated densities

are ⌅[1]LT and ⌅[1]TL. They feature significant dipole defor-
mations due to correlations in the transverse spins and
intrinsic transverse momentum, as can be seen from the
terms proportional to g1T and h⇥

1L in Eqns. (54) and (55),
in combination with our non-zero results for the relevant
amplitudes ⌃A7 and ⌃A10, see Eq. (16). For corresponding
density plots and their interpretation, we refer to our pre-
vious publication Ref. [32]. The dipole deformations can
be characterized by average transverse momentum shifts
of the quarks, denoted by ⇧kx⌃TL and ⇧kx⌃LT . These are
defined by ratios of specific moments in x- and k⇥ of the
densities, as we will discuss in the following section.
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where the first and the second index of ⌅ indicates the
nucleon and quark polarization, respectively.
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but using the correlator ⇤c
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sji⇧+j�5). We conclude that the x-integrated densities

⌅[1]q are di⌅erences of quark densities ⌅q and anti-quark
densities ⌅q̄ of

• opposite transverse momentum �k⇥,

• opposite light cone helicity �⇤,

• same transverse polarization s⇥.

Strictly speaking, the densities that are integrated over
x from �1 to +1 are thus not densities themselves and
can, at least in principle, become negative.
With the Gaussian x-moments of TMDs from Table

IV as input, we are in a position to draw plots of the
x-integrated transverse momentum dependent densities
of quarks in the nucleon. Two particularly interesting
and statistically well-determined x-integrated densities

are ⌅[1]LT and ⌅[1]TL. They feature significant dipole defor-
mations due to correlations in the transverse spins and
intrinsic transverse momentum, as can be seen from the
terms proportional to g1T and h⇥

1L in Eqns. (54) and (55),
in combination with our non-zero results for the relevant
amplitudes ⌃A7 and ⌃A10, see Eq. (16). For corresponding
density plots and their interpretation, we refer to our pre-
vious publication Ref. [32]. The dipole deformations can
be characterized by average transverse momentum shifts
of the quarks, denoted by ⇧kx⌃TL and ⇧kx⌃LT . These are
defined by ratios of specific moments in x- and k⇥ of the
densities, as we will discuss in the following section.
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FIG. 1: The multiplicities M⇡+

p obtained from Eqs. (12) and (8), with the parameters of Eq. (15), are compared
with HERMES measurements for ⇡+ SIDIS production o↵ a proton target [15]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.
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with HERMES measurements for ⇡� SIDIS production o↵ a proton target [15]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.

4

A. Fit of the HERMES multiplicities

The first step of our analysis consists in using the simple Gaussian parameterisation of Eqs. (5) and (6)
and the expression (12), to perform a two parameter fit of the HERMES multiplicities Mh

n (x, Q
2, z, PT ).

The values of the best fit parameters, the Gaussian widths hk2?i and hp2?i, will fix the TMD distribution
and fragmentation functions respectively. We do not introduce any overall normalisation constant.

To make sure we work in the region of validity of our simple version of TMD factorisation, Eq. (12),
we further restrict the kinematical range explored by the HERMES experiment. In fact, previous studies
of the HERMES Collaboration [15] showed that the LO collinear SIDIS cross sections (obtained by
integration of Eq. (12) over P T ), agree reasonably well with data only in regions of moderate values of z.
The collinear distribution and fragmentation functions which perform best are the CTEQ6L PDF set [32]
and the DSS [33] FFs, which we use here. We then consider two possible data selections: z < 0.7 and
z < 0.6. Notice that these choices also avoid contaminations from exclusive hadronic production processes
and large z re-summation e↵ects [35]. We also fix the same minimum Q2 as in the CTEQ6L analysis,
Q2 > 1.69 GeV2, that amounts to excluding the first two HERMES Q2 bins. Low PT HERMES data
show peculiar deviations from the Gaussian behaviour, which instead are not visible in the COMPASS
and JLab [12, 13] data: for this reason we prefer not to consider the lowest PT bin in order to explore
the regions which exhibit the same kind of behaviour for all experiments. Finally, we apply an additional
cut on large PT , requiring PT < 0.9 GeV, as multiplicities at large PT values fall in the domain of the
onset of collinear perturbative QCD [36]. In the considered Q2 range, this implies PT /Q < 0.7. Notice
that recent analyses of the same experimental data [26, 28] have adopted similar cuts.

Summarising, we limit the analysis of HERMES SIDIS data to the kinematical regions defined by:

z < 0.7 Q2 > 1.69 GeV2 0.2 < PT < 0.9 GeV (13)

z < 0.6 Q2 > 1.69 GeV2 0.2 < PT < 0.9 GeV . (14)

Moreover, in our fit we do not include the kaon production data points; in fact, the precision and accuracy
of the kaon data sample, at present, do not help in constraining the values of the free parameters. When
taken into account, the kaon data have little or no impact on the fit and are compatible with the
assumption of the same Gaussian width as for pion production. This will be explicitly shown below by
computing, using the parameters extracted from pion data, the kaon multiplicities and comparing them
with the HERMES results.

The above selections reduce the number of fitted HERMES data points to either 576 for z < 0.7, or
497 for z < 0.6.

TABLE I: �2 values of our best fits, following Eqs. (12) and (8), of the experimental HERMES measurements of
the SIDIS multiplicities Mh

n (xB , Q2, zh, PT ) for ⇡
+ and ⇡� production, o↵ proton and deuteron targets. We show

the total �2

dof

and, separately, the �2

point

for ⇡+ and ⇡� data. CTEQ6 PDFs and DSS FFs are used. Notice that
the errors quoted for the parameters are statistical errors only, and correspond to a 5% variation over the total
minimum �2.
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n. points [�2

point

]⇡
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point
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Parameters

Q2 > 1.69 GeV2 hk2

?i = 0.57± 0.08 GeV2

0.2 < PT < 0.9 GeV 1.69 497 1.93 1.45 hp2?i = 0.12± 0.01 GeV2

z < 0.6

Q2 > 1.69 GeV2 hk2

?i = 0.46± 0.09 GeV2

0.2 < PT < 0.9 GeV 2.62 576 2.56 2.68 hp2?i = 0.13± 0.01 GeV2

z < 0.7
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A. Fit of the HERMES multiplicities

The first step of our analysis consists in using the simple Gaussian parameterisation of Eqs. (5) and (6)
and the expression (12), to perform a two parameter fit of the HERMES multiplicities Mh

n (x, Q
2, z, PT ).

The values of the best fit parameters, the Gaussian widths hk2?i and hp2?i, will fix the TMD distribution
and fragmentation functions respectively. We do not introduce any overall normalisation constant.

To make sure we work in the region of validity of our simple version of TMD factorisation, Eq. (12),
we further restrict the kinematical range explored by the HERMES experiment. In fact, previous studies
of the HERMES Collaboration [15] showed that the LO collinear SIDIS cross sections (obtained by
integration of Eq. (12) over P T ), agree reasonably well with data only in regions of moderate values of z.
The collinear distribution and fragmentation functions which perform best are the CTEQ6L PDF set [32]
and the DSS [33] FFs, which we use here. We then consider two possible data selections: z < 0.7 and
z < 0.6. Notice that these choices also avoid contaminations from exclusive hadronic production processes
and large z re-summation e↵ects [35]. We also fix the same minimum Q2 as in the CTEQ6L analysis,
Q2 > 1.69 GeV2, that amounts to excluding the first two HERMES Q2 bins. Low PT HERMES data
show peculiar deviations from the Gaussian behaviour, which instead are not visible in the COMPASS
and JLab [12, 13] data: for this reason we prefer not to consider the lowest PT bin in order to explore
the regions which exhibit the same kind of behaviour for all experiments. Finally, we apply an additional
cut on large PT , requiring PT < 0.9 GeV, as multiplicities at large PT values fall in the domain of the
onset of collinear perturbative QCD [36]. In the considered Q2 range, this implies PT /Q < 0.7. Notice
that recent analyses of the same experimental data [26, 28] have adopted similar cuts.

Summarising, we limit the analysis of HERMES SIDIS data to the kinematical regions defined by:

z < 0.7 Q2 > 1.69 GeV2 0.2 < PT < 0.9 GeV (13)

z < 0.6 Q2 > 1.69 GeV2 0.2 < PT < 0.9 GeV . (14)

Moreover, in our fit we do not include the kaon production data points; in fact, the precision and accuracy
of the kaon data sample, at present, do not help in constraining the values of the free parameters. When
taken into account, the kaon data have little or no impact on the fit and are compatible with the
assumption of the same Gaussian width as for pion production. This will be explicitly shown below by
computing, using the parameters extracted from pion data, the kaon multiplicities and comparing them
with the HERMES results.

The above selections reduce the number of fitted HERMES data points to either 576 for z < 0.7, or
497 for z < 0.6.

TABLE I: �2 values of our best fits, following Eqs. (12) and (8), of the experimental HERMES measurements of
the SIDIS multiplicities Mh

n (xB , Q2, zh, PT ) for ⇡
+ and ⇡� production, o↵ proton and deuteron targets. We show

the total �2

dof

and, separately, the �2

point

for ⇡+ and ⇡� data. CTEQ6 PDFs and DSS FFs are used. Notice that
the errors quoted for the parameters are statistical errors only, and correspond to a 5% variation over the total
minimum �2.
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0.2 < PT < 0.9 GeV 1.69 497 1.93 1.45 hp2?i = 0.12± 0.01 GeV2

z < 0.6

Q2 > 1.69 GeV2 hk2

?i = 0.46± 0.09 GeV2

0.2 < PT < 0.9 GeV 2.62 576 2.56 2.68 hp2?i = 0.13± 0.01 GeV2
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Fig. 4: The p
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T

dependence of the differential multiplicities d

2
n

h/dzd p

2
T

of positive hadrons (left) and
negative hadrons (right) fitted by an exponential for 1 < Q

2 (GeV/c)2 < 1.5, 0.006 < x

B j

< 0.008 (top)
and 6 < Q

2 (GeV/c)2 < 10, 0.07 < x

B j

< 0.12 (bottom) subdivided into eight z intervals, see legend of
upper pictures. The average values hQ2i and hx

B j

i for the chosen (Q2,x
B j

) intervals are indicated in the
pictures. The systematic error of 5% is not included in the errors.

over the entire p

T

range, i.e. hp

2
T

i
all

. The z-dependence as well as the hadron charge dependence of the
p

2
T

distributions will be further investigated below and is related to the intrinsic transverse momentum of
the partons.

It is interesting to compare the values and W

2-dependence of hp

2
T

i obtained from the fit at small p

T

with the values and W

2-dependence of hp

2
T

i
all

. The W

2-dependence of hp

2
T

i, obtained from the fit in
the bin 0.5 < z < 0.6 is shown in Fig. 8, that one of hp

2
T

i
all

in Fig. 9. In addition to the data points,
Fig. 9 shows lines, which represent fits of the data points assuming a linear function of lnW

2. Because of
the Q

2-dependence, the last points are somewhat below the fit. The authors of Ref. [18] first suggested
that hp

2
T

i
all

should depend linearly on the µN center of mass energy squared s. They have verified their
prediction with results from three fixed target experiments: JLab, HERMES and COMPASS, see Fig. 10.
Fig. 10a shows the p

2
T

distribution of charged hadrons with 0.5 < z < 0.6 and integrated over Q

2 and x

B j

,
measured by COMPASS, which was used to determine the acceptance corrected hp

2
T

i
all

. Fig. 10b taken
from Ref. [18] shows the dependence of hp

2
T

i
all

on s. Their value for COMPASS, represented by the
black dots, was not corrected for acceptance. The new, acceptance corrected COMPASS value hp

2
T

i
all

added to Fig. 10b (red dot) is shown in a recent paper [19], and used to quantify the p

T

broadening [20]
in a model to determine the Sivers and Boer-Mulders asymmetries at COMPASS and HERMES. The
result of the model of Pasquini and Schweitzer was closer to the COMPASS data when p

T

broadening
is included. The authors of Ref. [18] also note that hp

2
T

i
all

may depend linearly on W

2 rather than s.

Adolph et al., EPJ C73 (13)
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Fig. 2: Event distribution in the inclusive variables Q

2 and x
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and the 23 bins of the hadron cross section
analysis. Within each bin, the fraction of events contained is indicated in %.
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Fig. 3: Hadron acceptances A

h

� and A

h

+ determined with the Monte Carlo simulation for Q

2 > 1
(GeV/c)2 as a function of lab

p

T

and labh for negative hadrons h

� (left) and positive hadrons h

+ (right).
The acceptances have been smoothed in order to reduce the granularity from the binning.

teristics, making the use of variables defined in the laboratory frame preferable; therefore, the transverse
momentum lab

p

T

, the polar angle labq , and the pseudorapidity labh = � ln(tan

labq
2 ) of the hadron are

defined with respect to the direction of the incoming muon. The choice of labq is particularly convenient
to exhibit the acceptance cut due to the aperture limit of the polarised target magnet at labq = 70 mrad
for the upstream edge of the target. The factorization of hadron and muon acceptances implies that the
differential multiplicities only depend on A

h

(+,�) since A

incl

cancels, see Eq. 2. Figure 3 shows the hadron
acceptances A

h

� and A

h

+ used in the analysis.

The four-dimensional acceptance used in the present analysis is integrated over the azimuthal angle of
the hadrons, i.e. does not take into account the azimuthal modulations in the cross section [2]. The
systematic effect on the extracted hp

2
T

i have been investigated and found to be negligible.

3 Results

The differential multiplicities d

2
n

h±/dzd p

2
T

in bins of (Q2, x

B j

) are defined in the introduction in terms of
the semi-inclusive and inclusive differential cross sections. They are obtained as the acceptance corrected
number of hadrons D4

N

h± in 8⇥40 (z, p

2
T

) bins and 23 (Dx

B j

,DQ

2) bins, divided by the number D2
N

µ
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Two versions of the fits:

• without any normalization factor

• with a y dependent normalization factor
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Two versions of the fits:

• without any normalization factor

• with a y dependent normalization factor

see talk by Elena Boglione

Anselmino, Boglione, Gonzalez, Melis, Prokudin, arXiv:1312.6261
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FIG. 9: The multiplicities Mh+

D obtained from Eqs. (12) and (8), with the parameters of Eq. (16), are compared
with COMPASS measurements for h+ SIDIS production o↵ a deuteron target [16]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.

although the resulting value of �2

dof

remains rather large. Notice that this normalisation issue is not ob-
served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
further studies.

Some general comments on COMPASS results, inspired and guided by our grouping of the data in the
panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.
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D obtained from Eqs. (12) and (8), with the parameters of Eq. (16), are compared
with COMPASS measurements for h+ SIDIS production o↵ a deuteron target [16]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.
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remains rather large. Notice that this normalisation issue is not ob-
served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
further studies.

Some general comments on COMPASS results, inspired and guided by our grouping of the data in the
panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.
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although the resulting value of �2
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remains rather large. Notice that this normalisation issue is not ob-
served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
further studies.

Some general comments on COMPASS results, inspired and guided by our grouping of the data in the
panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.
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served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
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. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.

Torino COMPASS

30

12

<z>=0.23
<z>=0.28
<z>=0.33
<z>=0.38
<z>=0.45
<z>=0.55

10-1

100

0.25 0.50 0.75

Q

2=1.76 GeV2

x

B

=9.90e-03

0.25 0.50 0.75

Q

2=1.92 GeV2

x

B

=1.48e-02

10-1

100

Q

2=2.90 GeV2

x

B

=1.50e-02

0.25 0.50 0.75

Q

2=1.92 GeV2

x

B

=2.13e-02

Q

2=2.94 GeV2

x

B

=2.13e-02

10-1

100

Q

2=4.07 GeV2

x

B

=2.16e-02

0.25 0.50 0.75

Q

2=1.92 GeV2

x

B

=3.18e-02

Q

2=2.95 GeV2

x

B

=3.19e-02

Q

2=4.47 GeV2

x

B

=3.23e-02

0.25 0.50 0.75

Q

2=1.93 GeV2

x

B

=4.47e-02

Q

2=2.95 GeV2

x

B

=5.33e-02

Q

2=4.57 GeV2

x

B

=5.36e-02

10-1

100

Q

2=7.36 GeV2

x

B

=5.50e-02

0.25 0.50 0.75

Q

2=4.62 GeV2

x

B

=9.21e-02

Q

2=7.57 GeV2

x

B

=9.32e-02

COMPASS M h

+

D

P

T

 (GeV)

Q

2 (GeV2)

x

B

FIG. 9: The multiplicities Mh+

D obtained from Eqs. (12) and (8), with the parameters of Eq. (16), are compared
with COMPASS measurements for h+ SIDIS production o↵ a deuteron target [16]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.

although the resulting value of �2

dof

remains rather large. Notice that this normalisation issue is not ob-
served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
further studies.

Some general comments on COMPASS results, inspired and guided by our grouping of the data in the
panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.
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the large values of �2
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Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
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remains rather large. Notice that this normalisation issue is not ob-
served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
further studies.

Some general comments on COMPASS results, inspired and guided by our grouping of the data in the
panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.
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remains rather large. Notice that this normalisation issue is not ob-
served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
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Some general comments on COMPASS results, inspired and guided by our grouping of the data in the
panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
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Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
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FIG. 12: The multiplicities obtained including the y-dependent normalisation factor of Eq. (17) are compared
with the COMPASS measurements for h+ SIDIS production o↵ a deuteron target. The shaded uncertainty bands
correspond to a 5% variation of the total �2.

V. COMPARISON WITH PREVIOUS EXTRACTIONS AND OTHER EXPERIMENTS

The SIDIS multiplicity data used in our present fits result from the most recent analyses of the HER-
MES and COMPASS Collaborations. They represent, so far, the only multivariate analyses available.

Additional measurements are provided by the early EMC results of Ref. [10] or by the more recent
SIDIS studies of JLab CLAS [12] and HALL-C [13, 29] Collaborations. As we will explain below, these
data are not best suited for the extraction of the free parameters of our fit and we have not used them.
However, it is worth and interesting to check whether or not the parameters extracted here are consistent
with the available EMC and JLab measurements.

• The EMC Collaboration [10] measured PT -distributions in eleven di↵erent runs presented in one
merged data set, averaging over four di↵erent beam energies, three di↵erent nuclear targets, without
any identification of the final hadrons (not even their charges), and arranging the data in three
di↵erent bins of z and several ranges of W 2. In Ref. [9] we exploited these measurements, together
with the EMC measurements [42] of the azimuthal dependence of the SIDIS cross section, for
a preliminary study of the Gaussian widths of the unpolarised distribution and fragmentation
functions. The values found there are slightly di↵erent from those we determine in the present fit.
Fig. 14 shows the EMC multiplicities [10] as functions of P 2

T , for three bins of z, 0.1 < z < 0.2,
0.2 < z < 0.4 and 0.4 < z < 1.0, and of the invariant mass, W 2 < 90, 90 < W 2 < 150 and
150 < W 2 < 200 (in GeV2). These data are compared with our predictions, computed at two
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remains rather large. Notice that this normalisation issue is not ob-
served in the HERMES multiplicities and its origin, at present, cannot easily be explained and deserves
further studies.

Some general comments on COMPASS results, inspired and guided by our grouping of the data in the
panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.
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panels of Figs. 9 and 10 and by the study presented in Fig. 11, could help to understand the origin of
the large values of �2

dof

. Let us consider, for example, the data in the di↵erent panels of the same row in
Fig. 9. The multiplicity data grouped there have all very similar values of Q2 and are separated in bins
of z; one can notice, going from left to right, that data with very close value of Q2 and z, still show a
sharp x dependence. This can hardly be reproduced by Eq. (12), even considering eventual higher order
corrections. Similar considerations apply to Fig. 10.

The large �2 which persists even in the case in which we correct with Ny, is mainly due to some
particular subsets of data, as one can see from Figs. 12 and 13 looking at the rightmost lower panels. These
data, if compared with those in the panels to their immediate left (which have very similar values of the
binned kinematical variables) show a sudden sharp change, which our smooth Gaussian parameterisation
is unable to describe. Such a sharp change corresponds to the first, lowest y point, in Fig. 11.
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Let us turn to Drell-Yan
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teristics, making the use of variables defined in the laboratory frame preferable; therefore, the transverse
momentum lab

p

T

, the polar angle labq , and the pseudorapidity labh = � ln(tan

labq
2 ) of the hadron are

defined with respect to the direction of the incoming muon. The choice of labq is particularly convenient
to exhibit the acceptance cut due to the aperture limit of the polarised target magnet at labq = 70 mrad
for the upstream edge of the target. The factorization of hadron and muon acceptances implies that the
differential multiplicities only depend on A

h

(+,�) since A

incl

cancels, see Eq. 2. Figure 3 shows the hadron
acceptances A

h

� and A

h

+ used in the analysis.

The four-dimensional acceptance used in the present analysis is integrated over the azimuthal angle of
the hadrons, i.e. does not take into account the azimuthal modulations in the cross section [2]. The
systematic effect on the extracted hp

2
T

i have been investigated and found to be negligible.

3 Results

The differential multiplicities d

2
n

h±/dzd p

2
T

in bins of (Q2, x

B j

) are defined in the introduction in terms of
the semi-inclusive and inclusive differential cross sections. They are obtained as the acceptance corrected
number of hadrons D4

N
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Cagliari Drell-Yan (no evo)
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FIG. 2 (color online). Invariant differential cross section for
the Drell-Yan process at

!!!

s
p ’ 23:8 GeV and fixed rapidity y !

0:21, as a function of the transverse momentum of the lepton
pair qT and averaged over different invariant mass bins (see the
legend). The parametrization MRST01 [25] for the unpolarized
parton distributions is used, with 1=! ! 0:8 GeV=c. Curves
are rescaled by a fixed K-factor, K ! 1:8. Data are from [27].
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are rescaled by a fixed K-factor, K ! 1:6. Data are from [27].
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111 data points
Drell-Yan
Q2>5 GeV

of each fit, Figs. 1–5 compare theory calculations for the

DWS-G, LY-G, and BLNY parametrizations to each data set.

We emphasize again that the new LY-G parametrization pre-

sented in Table III was obtained by applying the conven-

tional global fitting procedure to the enlarged data set listed

in Tables I and II. In contrast, the original LY fit in Ref. !10"
was obtained by first fitting the g2 parameter using the CDF-

FIG. 2. Comparison to the E605 data for the process p!Cu

→#!#"!X at !S#38.8 GeV. The data are the published experi-
mental values. The curves are the results of the fits multiplied by the

best-fit values of 1/Nf it given in Table III.

FIG. 3. Comparison to the E288 data for the process p!Cu

→#!#"!X at !S#27.4 GeV. The data are the published experi-
mental values. The curves are the results of the fits and are multi-

plied by the best-fit values of 1/Nf it given in Table III.

FIG. 4. Comparison to the DO” -Z run-1 data. The data are the
published experimental values. The curves are the results of the fits

and are multiplied by the best-fit values of 1/Nf it given in Table III.

FIG. 5. Comparison to the CDF-Z run-1 data. The data are the

published experimental values. The curves are the results of the fits

and are multiplied by the best-fit value of 1/Nf it given in Table III.
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FIG. 2. The first three plots show comparisons with the Fermilab E288 Drell-Yan dilepton data at different CM energies√
s = 19.4 (left), 23.8, and 27.4 GeV [71]. The data points from top to bottom correspond to different invariant mass Q of the

lepton pair. For the top two plots, they are: [4, 5], [5, 6], [6, 7], [7, 8], and [8, 9] GeV. For the left bottom plot, it starts with
the [5, 6] GeV range (no [4, 5] GeV range. The right bottom plot is the comparison with the Fermilab E605 Drell-Yan dilepton
data at CM energy

√
s = 38.8 GeV [72]. Again the mass ranges are: [7, 8], [8, 9], [10.5, 11.5], [11.5, 13.5], and [13.5, 18] GeV.

GeV2 and 〈xB〉 = 0.093 for a deuteron target. The data points from top to bottom correspond to different zh
regions: zh ∈ [0.2, 0.25], [0.25, 0.3], [0.3, 0.35], [0.35, 0.4], [0.4, 0.5], [0.5, 0.6], [0.6, 0.7], and [0.7, 0.8]. We find that
for both negative and positive charged hadrons the QCD formalism in Eq. (30) gives a good description for the
Ph⊥-dependence of the hadron multiplicity distribution.
Finally, in Fig. 4 we compare our calculation with the HERMES multiplicity distribution data [75] for a proton

target at 〈Q2〉 = 2.45 GeV2 and 〈xB〉 = 0.117. The data points from top to bottom correspond to different zh regions:
zh ∈ [0.2, 0.3], [0.3, 0.4], [0.4, 0.6], and [0.6, 0.8]. We find that our formalism still gives a reasonable description for
π− multiplicity distribution data as a function of Ph⊥, though π+ becomes worse when going to the high zh region.
Note, however, that the normalization of such distributions is related to the fragmentation functions [75].
In summary we find that our proposed non-perturbative Sudakov factor in Eq. (27) along with bmax = 1.5 GeV−1

gives a reasonably good description of the hadron multiplicity distribution in SIDIS at rather low Q, DY lepton pair
production at intermediate Q, and W/Z production at high Q from rather low CM energies up to the LHC energies.
Even though the description is not perfect, one has to keep in mind that our QCD formalism is the very first attempt
to use a universal form to describe the experimental data on both SIDIS and DY-type processes. At the moment,
we are implementing the evolution at NLL accuracy along with the LO coefficient functions. All of these could be
further improved, and a first attempt to implement the approach presented in [29] is being pursued in [76]. Another
important consequence is that since the parameter g2 is a universal parameter, i.e. independent of the spin, we can
then use the same g2 to extract the Sivers functions from the current Sivers asymmetry measurements in SIDIS. This
will be the main focus of the next section.

III. QCD EVOLUTION OF TMDS: THE SIVERS EFFECT

In this section we will first extract the quark Sivers functions from the Sivers asymmetry measurements in SIDIS
from JLab, HERMES, and COMPASS experiments. We will then make predictions for the Sivers asymmetries of DY
dilepton and W boson production, to be compared with the future measurements.
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FIG. 3. Comparison of the theoretical results with the COMPASS data (deuteron target) [74] at 〈Q2〉 = 7.57 GeV2 and
〈xB〉 = 0.093. The data points from top to bottom correspond to different zh regions: [0.2, 0.25], [0.25, 0.3], [0.3, 0.35],
[0.35, 0.4], [0.4, 0.5], [0.5, 0.6], [0.6, 0.7], and [0.7, 0.8].
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FIG. 4. Comparison of theoretical results with the HERMES data (proton target) [75] at 〈Q2〉 = 2.45 GeV2 and 〈xB〉 = 0.117.
The data points from top to bottom correspond to different zh region: [0.2, 0.3], [0.3, 0.4], [0.4, 0.6], and [0.6, 0.8].

A. Global fitting of Sivers asymmetries in SIDIS

Here we apply our QCD evolution formalism for the Sivers effect in SIDIS and use it to extract the quark Sivers
functions from the experimental data. The differential SIDIS cross section on a transversely polarized nucleon target
can be written as [13, 77, 78]

dσ

dxBdydzhd2Ph⊥
= σ0(xB , y, Q

2)
[

FUU + sin(φh − φs)F
sin(φh−φs)
UT

]

, (38)

where σ0 = 2πα2
em

xBy Q2

(

1 + (1− y)2
)

, and φs and φh are the azimuthal angles for the nucleon spin and the transverse

momentum of the outgoing hadron, respectively. FUU and F sin(φh−φs)
UT are the spin-averaged and transverse spin-
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A. Global fitting of Sivers asymmetries in SIDIS

Here we apply our QCD evolution formalism for the Sivers effect in SIDIS and use it to extract the quark Sivers
functions from the experimental data. The differential SIDIS cross section on a transversely polarized nucleon target
can be written as [13, 77, 78]
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6

Likewise, fq/A(xa, b;Q) and fq̄/B(xb, b;Q) are the QCD evolved TMD PDFs in Eq. (21). Similarly, for W/Z produc-
tion, A(PA) +B(PB)→W/Z(y, p⊥) +X , the differential cross sections are given by [16, 63]

dσW

dyd2p⊥
=
σW
0

2π

∑

q,q′

|Vqq′ |2
∫ ∞

0
db bJ0(q⊥b)fq/A(xa, b;Q)fq′/B(xb, b;Q), (35)

dσZ

dyd2p⊥
=
σZ
0

2π

∑

q

(

V 2
q +A2

q

)

∫ ∞

0
db bJ0(q⊥b)fq/A(xa, b;Q)fq′/B(xb, b;Q), (36)

where Vqq′ are the CKM matrix elements for the weak interaction, and Vq and Aq are the vector and axial couplings
of the Z boson to the quark, respectively. The LO cross sections σW

0 and σZ
0 have the following form

σW
0 =

√
2πGFM2

W

sNc
, σZ

0 =

√
2πGFM2

Z

sNc
, (37)

where GF is the Fermi weak coupling constant, and MW (MZ) is the mass of the W (Z) boson.

0

500

1000

1500

2000

2500

0 5 10 15 20

D0 W
p+p

–
  √s=1.8 TeV

pT (GeV)

dσ
/d

p T 
(p

b/
G

eV
)

0

200

400

600

800

0 5 10 15 20

CDF Z run 1
D0 Z

p+p
–
  √s=1.8 TeV

pT (GeV)

dσ
/d

p T 
(p

b/
G

eV
)

0

0.02

0.04

0.06

0.08

0 5 10 15 20

CMS Z
p+p √s=7 TeV

pT (GeV)

1/
σ

 d
σ

/d
p T 

(G
eV

-1
)

FIG. 1. Comparison of theoretical results to W [67] (left) and Z [68, 69] (middle) production in p + p̄ collisions at
√
s = 1.8

TeV, and Z production [70] (right) in p+ p collisions at
√
s = 7 TeV.

To compare with experimental data, we use the unpolarized parton distribution functions fq/A(x,Q) as given by the
MSTW2008 parametrization [64] and the DSS unpolarized fragmentation functions Dh/q(z,Q) [65]. It is important
to remember that our QCD factorization formalism based on TMDs is only applicable in the kinematic region where
p⊥ # Q [26]. To describe the large p⊥ ∼ Q region, one needs the complete next-to-leading order calculation, more
precisely the so-called Y -term [39–41, 66]. To be consistent with our formalism, we thus restrict our comparison with
the experimental data as follows: for W/Z boson production, we choose p⊥ ≤ 20 GeV; for DY dilepton production,
we have p⊥ ≤ 1.3 GeV; for hadron production at COMPASS with 〈Q2〉 = 7.57 GeV2, we choose Ph⊥ ≤ 0.7 GeV; for
hadron production at HERMES with 〈Q2〉 = 2.45 GeV2, we choose Ph⊥ ≤ 0.6 GeV such that we still have enough
experimental data for the analysis.
We first compare in Fig. 1 our calculation, based on the QCD factorization formalism, Eqs. (35) and (36), with W/Z

production at both the Tevatron and LHC energies. With QCD evolved TMD PDFs given in Eq. (21) and the tuned
parameters for the Sudakov factor in Eq. (27), we plot the W and Z boson differential cross section as a function of
transverse momentum p⊥. The left and middle panels of Fig. 1 are the comparisons with the W/Z measurements [67–
69] in p + p̄ collisions at the Tevatron energy

√
s = 1.8 TeV. In the right panel of Fig. 1 we compare with the most

recent Z boson measurement [70] in p + p collisions from the CMS collaboration at LHC energy
√
s = 7 TeV. Our

formalism gives a reasonably good description of the W/Z boson production at both the Tevatron and LHC energies.
Next, we compare our calculation for the DY lepton pair production with the fixed-target Fermilab experimental

data at different CM energies
√
s = 19.4, 23.8, 27.4 for the E288 collaboration [71] and at

√
s = 38.8 GeV for the E605

collaboration [72], see Fig. 2. Since these experiments were really performed for p+Cu collisions, we use the EKS98
parametrization [73] for the collinear nuclear PDFs in the nucleus Cu. For both

√
s = 19.4 and 23.8 GeV, the curves

from top to bottom correspond to the different invariant mass bins, i.e., Q ∈ [4, 5], [5, 6], [6, 7], [7, 8], and [8, 9] GeV.
For
√
s = 27.4 GeV, we have Q ∈ [5, 6], [6, 7], [7, 8], and [8, 9] GeV. Finally, for

√
s = 38.8 GeV the mass ranges are:

Q ∈ [7, 8], [8, 9], [10.5, 11.5], [11.5, 13.5], and [13.5, 18] GeV. As can be seen, our QCD formalism gives a reasonably
good description of the Drell-Yan dilepton production in all the measured mass ranges.
Let us now turn to the hadron multiplicity distribution in the SIDIS processes. In Fig. 3, we compare our calculations

with the recent COMPASS experimental data for the charged hadron multiplicity distribution [74] at 〈Q2〉 = 7.57
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“standard” CSS

exp

⇢
�2CF

Z Q

Q0

dµ0

µ0
↵s(µ0

)

⇡


ln

✓
Q2

µ02

◆
+ ln

✓
Q2

0b
2
T

C2
1

◆
� 3

2

��
Sun-Yuan

see talk by Peng Sun

Tuesday, 25 February 14



Comparison Collins/Sun-Yuan

43

23

1 2 3 4 5

 bT (GeV-1)

-2

-1

0

1

Ev
ou

tio
n 

Ex
po

ne
nt

Q=2 GeV
Q=5 GeV
Q=10 GeV

Collins TMD-Evolution

1 2 3 4 5

 bT (GeV-1)

-2

-1

0

1

Ev
ou

tio
n 

Ex
po

ne
nt

Q=2 GeV
Q=5 GeV
Q=10 GeV

Sun-Yuan Evolution

(a) (b)

FIG. 10: The Q dependent terms in the perturbative parts of the exponents in (a) Eq. (37) for the TMD factorization formalism
and (b) Eq. (42) for the Sun-Yuan formalism.

(See, also, Eq. (6.14) of Ref. [54].) Expanding around bT ⌧ b
NP

gives the first two terms,

g
2

(b
max

)
1

2
b2T � g

2

(b
max

)
1

4b2
NP

b4T + · · · . (41)

In Fig. 9 we illustrate how the low Q dependence of the COMPASS data may be accommodated into earlier larger Q
fits by using the modified gK(bT ; bmax

) from Eq. (40) with b
max

= 0.5 GeV�1, g
2

= 0.1 GeV2 and b
NP

= 2.0 GeV�1.14

Since the lowest order term in the expansion in Eq. (41) matches Eq. (22) with g
2

= O(0.1 GeV2) and thus is
generally consistent with earlier fits such as Ref. [15, 16]. In this way, moderate Q data may be accommodated
without introducing disagreement with important and universal non-perturbative contributions obtained in earlier
fits, while simultaneously giving access to further universal non-perturbative information.

For now we propose Eq. (40) only as a simple example of how gK(bT ; bmax

) might possibly be modified at very large
bT . In practice, better and more detailed parametrizations may be needed, possibly obtainable from non-perturbative
studies.

VII. COMPARISON BETWEEN COLLINS AND SUN-YUAN FORMALISM

In Ref. [49, 50], Sun and Yuan argue that an alternative evolution factor should be adopted for the region of
Q . 10 GeV. In their approach, the TMD PDFs are evolved relative to an arbitrary scale Q

0

⇠ 1.0 GeV rather than
the intrinsic hard scale ⇠ 1/bT of the TMD PDF. Thus the Sun-Yuan formalism contains unresummed logarithms of
bT . The Sun-Yuan form of evolution replaces the exponential factor in Eq. (37) with,

bT exp

⇢
�b2T hP 2

T i0
4

�
exp

(
�2CF

Z Q

Q0

dµ0

µ0

↵s(µ0)

⇡


ln

✓
Q2

µ0

2

◆
+ ln

✓
Q2

0

b2T
C2

1

◆
� 3

2

�)
. (42)

See Eq. (3) of Ref. [49] and Eq. (77) of Ref. [50]. It is arrived at by extending a low order calculation of the bT -
dependence into the region of very large bT . From the point of view of doing practical calculations, there appears to be
an advantage in that there is no explicit Landau pole encountered in the evaluation of ↵s(µ) and thus, on the surface,
no need to include a non-perturbative component to the evolution. (See the discussion immediately before and after
Eq. (3) in Ref. [49] for the rationale and motivation given to use this form rather than the Collins TMD factorization or

14 In general, b
NP

may also be a function of b
max

but to simplify notation we do not show it explicitly in Eq. (40).
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Tuesday, 25 February 14



Sun-Yuan

44

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

0.5

1

1.5

2

2.5

3

3.5

4

0.3 < z < 0.35

 + X - h→ + d µ

COMPASS

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

0.5

1

1.5

2

2.5

0.35 < z < 0.4

 + X - h→ + d µ

COMPASS

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

0.2

0.4

0.6

0.8

1

1.2

1.4

0.4 < z < 0.5

 + X - h→ + d µ

COMPASS

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

0.1

0.2

0.3

0.4

0.5

0.6

0.5 < z < 0.6

 + X - h→ + d µ

COMPASS

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

1

2

3

4

5

0.3 < z < 0.35

 + X + h→ + d µ

COMPASS

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

0.5

1

1.5

2

2.5

3

3.5

4

0.35 < z < 0.4

 + X + h→ + d µ

COMPASS

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.4 < z < 0.5

 + X + h→ + d µ

COMPASS

 (GeV)
t

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

) tp2
M

ul
tip

lic
ity

 (d
N

/d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 < z < 0.6

 + X + h→ + d µ

COMPASS

FIG. 4: Multiplicity distribution as function of transverse momentum in semi-inclusive hadron
production in deep inelastic scattering compared to the experimental data from COMPASS col-
laboration at Q2 = 7.56GeV2 with moderate x = 0.1 range of Ref. [69] on deuteron target. The

COMPASS data, in particular, for the p⊥ distributions, are consistent with the Sun-Yuan approach
for the TMD evolution with a Gaussian assumption in low energy scale Eq. (80).
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FIG. 5: Differential cross section for Drell-Yan lepton pair production in hadronic collisions from
E288 collaboration [70] compared to the theory predictions with TMD evolution from low energy

scale Q2
0 = 2.4GeV2, Eqs. (73,77,78). The predictions calculated from the TMDs from Rogers

et al are also shown as red curves. As a comparison, we also show predictions from the CSS

resummation with the integrated quark distribution set at the scale µ = Q0, which gives similar
results as distribution set at the scale µ = 1/b∗.

By combining the above two equations, we find that F (Q) can be written in terms of F (QL),

˜F α
sivers(Q; b) = e−(Spert(Q,b∗)−Spert(QL,b∗))

×e−(SNP (Q,b)−SNP (QL,b))

× ˜F α
sivers(QL; b) . (88)

The second exponential factor can be easily calculated e
−g2b2 ln

Q

QL . It is this factor that
leads to strong Q dependence in the SSAs calculated in this approach in the relative low Q
region. However, this behavior over-predicts broadening effects in the Drell-Yan lepton pair
production as compared to the experimental data. In other words, the adoption used by
Rogers et al is not supported by the experimental data. In particular, the flat distribution

28

Sun, Yuan, PRD88 (13)

The prescription seems to be working phenomenologically

Tuesday, 25 February 14



Aidala, Field, Gamberg, Rogers

45

Aidala et al.: arXiv:1401.2654

5

10-2

 6.6

 3.8

 6.8

 5.9

 2.2

 5.3

 4.9

 2.0

 1.2

 2.2

 3.6

 6.6

 2.9

 2.9

 2.8

 3.2 

 3.9

 1.8

 3.4

 2.3

 2.3

 3.0 2.4

xBj

Q
2  (
G
eV
/c
)2

10-1

10

1

Fig. 2: Event distribution in the inclusive variables Q

2 and x

B j

and the 23 bins of the hadron cross section
analysis. Within each bin, the fraction of events contained is indicated in %.

Șlab
3 4 5 6

-210

-110

1

10 �
h

Șlab
3 4 5 6

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

+
h

2
 (G

eV
/c

)
2 Tp

la
b

Fig. 3: Hadron acceptances A

h

� and A

h

+ determined with the Monte Carlo simulation for Q

2 > 1
(GeV/c)2 as a function of lab

p

T

and labh for negative hadrons h

� (left) and positive hadrons h

+ (right).
The acceptances have been smoothed in order to reduce the granularity from the binning.

teristics, making the use of variables defined in the laboratory frame preferable; therefore, the transverse
momentum lab

p

T

, the polar angle labq , and the pseudorapidity labh = � ln(tan

labq
2 ) of the hadron are

defined with respect to the direction of the incoming muon. The choice of labq is particularly convenient
to exhibit the acceptance cut due to the aperture limit of the polarised target magnet at labq = 70 mrad
for the upstream edge of the target. The factorization of hadron and muon acceptances implies that the
differential multiplicities only depend on A

h

(+,�) since A

incl

cancels, see Eq. 2. Figure 3 shows the hadron
acceptances A

h

� and A

h

+ used in the analysis.

The four-dimensional acceptance used in the present analysis is integrated over the azimuthal angle of
the hadrons, i.e. does not take into account the azimuthal modulations in the cross section [2]. The
systematic effect on the extracted hp

2
T

i have been investigated and found to be negligible.

3 Results

The differential multiplicities d

2
n

h±/dzd p

2
T

in bins of (Q2, x

B j

) are defined in the introduction in terms of
the semi-inclusive and inclusive differential cross sections. They are obtained as the acceptance corrected
number of hadrons D4

N

h± in 8⇥40 (z, p

2
T

) bins and 23 (Dx

B j

,DQ

2) bins, divided by the number D2
N

µ
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FIG. 4: (a) Gaussian fit for Q = 1.049 GeV, all PT . (b) Gaussian fit for Q = 2.114 GeV, all PT . (c, d) Same as (a, b) but on a
linear axis. The gray band represents a 99% confidence band for the fit parameters, where only the reported statistical errors
have been included. (See online for color.)

are of order 1.0 fm ⇠ 5.0GeV�1. The points where various categories of non-perturbative physics are estimated to
become relevant have been marked by arrows in Fig. 3.

From the general features of Fig. 3, we conclude that, for the di↵erential cross section in the limit of PT ! 0,
the relevant range of bT is likely to be nearly dominated by the non-perturbative region of bT for Q ⇠ 1.0GeV to
⇠ 2.0GeV.

The robustness of this conclusion might be questioned on the grounds that the fits from [40] apply to a restricted
range, PT < 0.85 GeV. One could speculate that including more of the large PT tail might result in an enhanced
relative contribution from small bT . To address this, we have performed our own fit of the Gaussian form using the
same data from Ref. [40] that gave the two curves for Q = 1.049 GeV and Q = 2.114 GeV in Fig. 3, but now for the
entire range of PT (up to PT & 1.0 GeV).10 We perform the fitting in Wolfram Mathematica. The new Gaussian fits
are shown in Fig. 4. From the plot, it is clear that the values we find for the Gaussian slopes, hP 2

T iQ1=1.049GeV

and
hP 2

T iQ2=2.114GeV

, are so close to the COMPASS values that the curves in Fig. 3 are nearly unchanged, despite the
inclusion of larger PT . Instead of Eq. (33), we find:

hP 2

T iNew Fits

Q1=1.049GeV

= 0.1717± 0.0011GeV2 ; hP 2

T iNew Fits

Q2=2.114GeV

= 0.2477± 0.0008GeV2 , (34)

10 An accurate description of this large PT region requires the Y -term rather than a fit based entirely on the TMD terms. However, fitting
the TMD functions using the full range of PT is a useful test of the sensitivity of our general conclusions about relevant ranges of bT to
the treatment of the PT tail within fits.
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FIG. 2: Linear fits, calculated using Eq. (30), connecting low to high Q using C

evol

. The horizontal bars show the bin widths
in Q. The vertical bars are the errors of the Gaussian fits reported in Ref. [40]. Plot (a) is for x

bj

= 0.0295� 0.0323 and plot
(b) is for x

bj

= 0.0213 � 0.0216. The solid and open points are for positive and negative produced hadrons respectively. The
linear slopes are calculated using the largest and smallest Q

2

, Q
1

values. (See text for details.)

If x and z are held fixed, then the variation of hP 2

T i with Q can be found directly from the bT -space integrand in
Eq. (29):

�hP 2

T i(Q1

, Q
2

) ⇡ 4C
evol

ln

✓
Q

2

Q
1

◆
, (30)

where we define

�hP 2

T i(Q1

, Q
2

) = hP 2

T iQ=Q2
� hP 2

T iQ=Q1
. (31)

We will next use Eq. (30) to extract approximate bounds on C
evol

from experimental results for �hP 2

T i(Q1

, Q
2

).
The only aspect of TMD factorization that we have used so far is Eq. (27). Specifically, we have applied it to the

case of the COMPASS data for the small range of Q where the PT distribution appears to remain approximately
Gaussian even after evolution to obtain Eq. (29). We do not address at this stage the question of whether K̃(bT ;µ0

)
is governed primarily by perturbative or non-perturbative bT -dependence. While C

evol

resembles g
2

in a quadratic
approximation to gK(bT ; bmax

), here it is meant merely to approximate the collective e↵ect of all the Q-dependent
terms in the exponent of Eq. (21), in a way consistent with Eq. (27), and it should not be identified at this stage
with any specific perturbative or non-perturbative terms. Of course, perturbative contributions are not quadratic,
so the quadratic ansatz for the right side of Eq. (27) is a poor one for small bT . We will nevertheless attempt to
use it to capture the general Q-dependence of the PT -width in the vicinity of small Q variations where the data
appear from [40] to be reasonably well-described by Gaussian fits. We will further analyze the reliability of such an
approximation in the next few sections.

In a full treatment of evolution, there is also a Q dependence that a↵ects only the normalization of the cross section.
Since we are mainly interested in the variation in the width, we ignore any such contributions and focus only on the
broadening of the Gaussian shape.

IV. ESTIMATES OF C

evol

FROM UNPOLARIZED SIDIS

Evolution leads to a well-known broadening of the PT width with Q at fixed x and z. For a significant e↵ect to
be clearly observable, one must examine fixed x and z bins over su�ciently broad ranges of Q. In Ref. [40], Figs. 5

Aidala et al.: arXiv:1401.2654

Conclusion: g2 cannot be 
large in this region
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [69] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theor

i

= F (x
i

, z
i

, P i

hT

, Q2

i

;a0) with the M
parameters a0 = {a0

1

, ..., a0
M

} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each x

i

, Q2

i

,
z
i

and P i

hT

bin, the obtained values, value
i

,
for the Sivers function are distributed using
a Gaussian smearing with a width �

i

corre-
sponding to the simulated event rate at the
center-of-mass energy of

p
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb�1. To illustrate the achievable statistical
precision, the event rate for the production
of ⇡± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [69].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f?u

1T

, represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb�1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb�1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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Unpolarized gluon TMD/uPDF?
Parametrize unintegrated gluon distribution at a starting scale
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Unpolarized gluon TMD/uPDF?

506 Eur. Phys. J. C (2010) 70: 503–511

3 An application: fitting the unintegrated gluon
distribution function in CASCADE

The fitting method described before is general and may be
applied to tune any parameter in any Monte Carlo generator.
At present, however, we want to concentrate on tuning the
parameters of the unintegrated gluon distribution function
(uGDF)—also known as transverse-momentum-dependent
gluon distribution function—in the CASCADE MC genera-
tor.

A brief introduction to the CASCADE event generator is
in order. For a more detailed description we refer the reader
to [5]. CASCADE is a hadron level Monte Carlo event gen-
erator for ep, γp and pp processes, which uses the CCFM
evolution equation for the initial state parton shower supple-
mented with off-shell matrix elements for the hard scatter-
ing. To simulate the hadronization process, CASCADE uses
the Lund string model [11].

The CCFM equation is a linear integral equation which
sums up the cascade of gluons under the condition that sub-
sequent emissions are angularly ordered. With this ordering
it interpolates between DGLAP (resummation of transverse
momenta αn

s lnn k2
t ) and BFKL (resummation of longitudi-

nal momenta αn
s lnn x) limits.

In Fig. 2 we show schematically a parton ladder defining
the kinematic variables which we use in equations below.
The CCFM equation reads:

A(x, kt , q) = A0(x, kt , q)

+
∫ 1

x

dz

z

∫
d2q
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The input distribution can be written as
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scale Q0 = 1.2 GeV in the following way
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where N,B,C,D,µ,σ should be in principle determined
from fits. In practice, for the purpose of the present study we
fix C = 4, µ = 0 GeV, σ = 1 GeV [5]. The value of parame-
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at large x gluons are suppressed as compared to quarks, C

for gluons has to be larger than 3. Previous studies suggests
C = 4 [13]. Parameter D, typically included in global fits
of the PDFs (see, e.g., [14, 15]), was set to zero in earlier
studies with CASCADE [13, 16, 17]. As we will show later,
the addition of this parameter substantially improves the de-
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Eq. 10, are determined by fits to the F2 structure function in
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by the H1 Collaboration [6]. We chose this data set in or-
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erator for ep, γp and pp processes, which uses the CCFM
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ter C is dictated by the spectator counting rules [12]: since
at large x gluons are suppressed as compared to quarks, C
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the addition of this parameter substantially improves the de-
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Eq. 10, are determined by fits to the F2 structure function in
inclusive deep inelastic scattering, ep → e′X, as measured
by the H1 Collaboration [6]. We chose this data set in or-
der to compare our results with earlier determinations of the
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is the Bjorken scaling variable. The measurements cover the
small-xBj region where gluon-induced processes dominate
and we should have a good sensitivity to the values of the
parameters in the uGDF. In total, there are 122 data points
binned in xBj and Q2.

We considered two different cases: in the first case we
restricted ourselves to xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, as
in most of the available CASCADE tunes [13, 16, 17]; in the
second case, we extended the range to the whole data set.

In summary, we performed four kinds of fits:
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restricted ourselves to xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, as
in most of the available CASCADE tunes [13, 16, 17]; in the
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distribution function in CASCADE

The fitting method described before is general and may be
applied to tune any parameter in any Monte Carlo generator.
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parameters of the unintegrated gluon distribution function
(uGDF)—also known as transverse-momentum-dependent
gluon distribution function—in the CASCADE MC genera-
tor.
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to [5]. CASCADE is a hadron level Monte Carlo event gen-
erator for ep, γp and pp processes, which uses the CCFM
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mented with off-shell matrix elements for the hard scatter-
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the gluon, kt is the 2-dimensional transverse momentum of
the t channel gluon, z = x/x′ is the splitting variable, q is
the factorization scale specified by the maximum allowed
angle Ξ between the partons in the matrix elements, k′

t =
|$kt + (1 − z)$q|. We also introduced q as a shorthand nota-
tion for the 2-dimensional momentum $q ≡ $qt = $pg/(1 − z).
The Sudakov form factor (which we do not write explicitly)
∆s(q, zq) for inclusive quantities regularizes the 1/(1 − z)

collinear singularity of the splitting function P̃gg(z, q, kt ).
The input distribution can be written as

A0(x, kt , q) = A0(x, kt )∆s(q,Q0). (9)

We choose to parametrize the distribution at the starting
scale Q0 = 1.2 GeV in the following way

xA0(x, kt ) = Nx−B(1 − x)C(1 − Dx)e−(kt−µ)2/σ 2
(10)

where N,B,C,D,µ,σ should be in principle determined
from fits. In practice, for the purpose of the present study we
fix C = 4, µ = 0 GeV, σ = 1 GeV [5]. The value of parame-
ter C is dictated by the spectator counting rules [12]: since
at large x gluons are suppressed as compared to quarks, C

for gluons has to be larger than 3. Previous studies suggests
C = 4 [13]. Parameter D, typically included in global fits
of the PDFs (see, e.g., [14, 15]), was set to zero in earlier
studies with CASCADE [13, 16, 17]. As we will show later,
the addition of this parameter substantially improves the de-
scription of the data we consider.

The parameters of the starting uGDF, N , B , and D in
Eq. 10, are determined by fits to the F2 structure function in
inclusive deep inelastic scattering, ep → e′X, as measured
by the H1 Collaboration [6]. We chose this data set in or-
der to compare our results with earlier determinations of the
uGDF. The measurement was made at the electron-proton
center of mass energy

√
s = 300.9 GeV within the kine-

matic range 1.5 < Q2 < 150 GeV2, 3 × 10−5 < xBj < 0.2.
Here Q2 is the virtuality of the exchanged boson, and xBj

is the Bjorken scaling variable. The measurements cover the
small-xBj region where gluon-induced processes dominate
and we should have a good sensitivity to the values of the
parameters in the uGDF. In total, there are 122 data points
binned in xBj and Q2.

We considered two different cases: in the first case we
restricted ourselves to xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, as
in most of the available CASCADE tunes [13, 16, 17]; in the
second case, we extended the range to the whole data set.

In summary, we performed four kinds of fits:

Fit 1. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D = 0 in Eq. 10,
Fit 2. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D *= 0 in Eq. 10,
Fit 3. full xBj and Q2 range, D = 0 in Eq. 10,
Fit 4. full xBj and Q2 range, D *= 0 in Eq. 10.
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scale Q0 = 1.2 GeV in the following way

xA0(x, kt ) = Nx−B(1 − x)C(1 − Dx)e−(kt−µ)2/σ 2
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where N,B,C,D,µ,σ should be in principle determined
from fits. In practice, for the purpose of the present study we
fix C = 4, µ = 0 GeV, σ = 1 GeV [5]. The value of parame-
ter C is dictated by the spectator counting rules [12]: since
at large x gluons are suppressed as compared to quarks, C

for gluons has to be larger than 3. Previous studies suggests
C = 4 [13]. Parameter D, typically included in global fits
of the PDFs (see, e.g., [14, 15]), was set to zero in earlier
studies with CASCADE [13, 16, 17]. As we will show later,
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Eq. 10, are determined by fits to the F2 structure function in
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In summary, we performed four kinds of fits:

Fit 1. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D = 0 in Eq. 10,
Fit 2. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D *= 0 in Eq. 10,
Fit 3. full xBj and Q2 range, D = 0 in Eq. 10,
Fit 4. full xBj and Q2 range, D *= 0 in Eq. 10.

Parametrize unintegrated gluon distribution at a starting scale

Run a Monte Carlo that implements gluon radiation 
(according to CCFM formalism)

Predict an observable 
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3 An application: fitting the unintegrated gluon
distribution function in CASCADE

The fitting method described before is general and may be
applied to tune any parameter in any Monte Carlo generator.
At present, however, we want to concentrate on tuning the
parameters of the unintegrated gluon distribution function
(uGDF)—also known as transverse-momentum-dependent
gluon distribution function—in the CASCADE MC genera-
tor.

A brief introduction to the CASCADE event generator is
in order. For a more detailed description we refer the reader
to [5]. CASCADE is a hadron level Monte Carlo event gen-
erator for ep, γp and pp processes, which uses the CCFM
evolution equation for the initial state parton shower supple-
mented with off-shell matrix elements for the hard scatter-
ing. To simulate the hadronization process, CASCADE uses
the Lund string model [11].

The CCFM equation is a linear integral equation which
sums up the cascade of gluons under the condition that sub-
sequent emissions are angularly ordered. With this ordering
it interpolates between DGLAP (resummation of transverse
momenta αn

s lnn k2
t ) and BFKL (resummation of longitudi-

nal momenta αn
s lnn x) limits.

In Fig. 2 we show schematically a parton ladder defining
the kinematic variables which we use in equations below.
The CCFM equation reads:

A(x, kt , q) = A0(x, kt , q)

+
∫ 1

x

dz

z

∫
d2q

πq2 Θ(q − zq)∆s(q, zq)

× P̃gg(z, q, kt )A

(
x

z
, k′

t , q

)
(8)

where A0(x, kt , q) is the input distribution, x denotes the
longitudinal momentum fraction of the proton carried by

Fig. 2 Schematic view of a parton ladder illustrating the kinematic
variables used in the text

the gluon, kt is the 2-dimensional transverse momentum of
the t channel gluon, z = x/x′ is the splitting variable, q is
the factorization scale specified by the maximum allowed
angle Ξ between the partons in the matrix elements, k′

t =
|$kt + (1 − z)$q|. We also introduced q as a shorthand nota-
tion for the 2-dimensional momentum $q ≡ $qt = $pg/(1 − z).
The Sudakov form factor (which we do not write explicitly)
∆s(q, zq) for inclusive quantities regularizes the 1/(1 − z)

collinear singularity of the splitting function P̃gg(z, q, kt ).
The input distribution can be written as

A0(x, kt , q) = A0(x, kt )∆s(q,Q0). (9)

We choose to parametrize the distribution at the starting
scale Q0 = 1.2 GeV in the following way

xA0(x, kt ) = Nx−B(1 − x)C(1 − Dx)e−(kt−µ)2/σ 2
(10)

where N,B,C,D,µ,σ should be in principle determined
from fits. In practice, for the purpose of the present study we
fix C = 4, µ = 0 GeV, σ = 1 GeV [5]. The value of parame-
ter C is dictated by the spectator counting rules [12]: since
at large x gluons are suppressed as compared to quarks, C

for gluons has to be larger than 3. Previous studies suggests
C = 4 [13]. Parameter D, typically included in global fits
of the PDFs (see, e.g., [14, 15]), was set to zero in earlier
studies with CASCADE [13, 16, 17]. As we will show later,
the addition of this parameter substantially improves the de-
scription of the data we consider.

The parameters of the starting uGDF, N , B , and D in
Eq. 10, are determined by fits to the F2 structure function in
inclusive deep inelastic scattering, ep → e′X, as measured
by the H1 Collaboration [6]. We chose this data set in or-
der to compare our results with earlier determinations of the
uGDF. The measurement was made at the electron-proton
center of mass energy

√
s = 300.9 GeV within the kine-

matic range 1.5 < Q2 < 150 GeV2, 3 × 10−5 < xBj < 0.2.
Here Q2 is the virtuality of the exchanged boson, and xBj

is the Bjorken scaling variable. The measurements cover the
small-xBj region where gluon-induced processes dominate
and we should have a good sensitivity to the values of the
parameters in the uGDF. In total, there are 122 data points
binned in xBj and Q2.

We considered two different cases: in the first case we
restricted ourselves to xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, as
in most of the available CASCADE tunes [13, 16, 17]; in the
second case, we extended the range to the whole data set.

In summary, we performed four kinds of fits:

Fit 1. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D = 0 in Eq. 10,
Fit 2. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D *= 0 in Eq. 10,
Fit 3. full xBj and Q2 range, D = 0 in Eq. 10,
Fit 4. full xBj and Q2 range, D *= 0 in Eq. 10.

Parametrize unintegrated gluon distribution at a starting scale

Run a Monte Carlo that implements gluon radiation 
(according to CCFM formalism)

Predict an observable 

Tune the above parameters
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and the limitations of the method and study to which extent
the data can constrain the input parameters.

The paper is organized as follows. In Sect. 2 we give
the details of the fitting method. We give a simple example
which we generalize to several parameters and observables.
In Sect. 3, we discuss how the fitting method is applied to
a specific case and the results of the tune are presented in
Sect. 4. We draw some conclusions at the end of the paper.

2 Tuning method

In general, the goal of the tuning is to describe a set of N

experimental observables Y ex
i , with errors δY ex

i , by means
of a theoretical model (in this case a MC generator) that de-
pends on the parameters αa , and predicts the observables to
be Y MC

i (αa), with errors δY MC
i (αa). The values of the para-

meters that give the best description of the data can be found
by minimizing the χ2 function

χ2(αa) =
N∑

i=1

[Y MC
i (αa) − Y ex

i ]2

[δY MC
i (αa)]2 + [δY ex

i ]2
. (1)

Usually, the minimization is done by numerical programs
such as MINUIT [7]. The generator predictions have to
be computed typically a few hundred times for different
choices of the parameters before the minimum is found. This
“brute-force” procedure is highly time consuming.

An alternative approach has been used in, e.g., Ref. [8] as
early as twenty years ago, and more recently in Refs. [3, 4].
First, for each observable a grid in parameter space is built,
running the MC generator with several values of the parame-
ters. Secondly, the grids are approximated by analytic func-
tions of the parameters, usually polynomials. These func-
tions give a fair description of the generator output and can
be used in its stead. In this way, finding the parameter values
that best fit the data becomes a much faster task.

The method turns out to be particularly time efficient.
A fitting procedure typically requires to sequentially calcu-

late χ2 a few hundred times for different values of the para-
meters. Building the grids in parameter space also requires
running the MC generator a few hundred times, but each
computation can be done independently in parallel. Once the
grid is built and approximated analytically, minimizing the
χ2 is extremely fast. It becomes very convenient to run the
minimization with different initial values of the parameters,
or including only a subsample of the observables. However,
if new data points are added, a new grid has to be produced
for each new data point.

2.1 A simple example

To illustrate the method, we start from a simple example.
Suppose we need to fit two data points Y ex

1 and Y ex
2 with

their errors (e.g., two cross-section measurements) using a
MC generator with one tunable parameter α. In Fig. 1, we
indicate the two data points with solid horizontal lines with
their error bands.

First, we choose 5 values (j = 1, . . . ,5) of the parameter
α and generate 5 predictions for each observable, i.e., two
grids (α1,j , Y

MC
1 (α1,j )) and (α1,j , Y

MC
2 (α1,j )), with statis-

tical errors due to the Monte Carlo method. In Fig. 1, these
grids are indicated by points (the errors are too small to be
visible).

Then we choose an analytical form to approximate the
two grids, which will be a function of α, but also of two new
sets of parameters A1,B1, . . . and A2,B2, . . . , one for each
grid. To avoid confusion, with denote these new parameters
as “grid parameters,” to be distinguished from the original
MC parameters. In principle, the functional form itself could
be different for each distinct grid, but in practice it is more
convenient to choose the same form. To make the procedure
easier, it is a good idea to choose a function that is linear in
the grid parameters, for instance a third-degree polynomial

Y
app
i (α;Ai,Bi,Ci,Di) = Ai + Biα + Ciα

2 + Diα
3. (2)

The best values of the grid parameters are chosen by
means of a χ2 minimization for each separate grid. We de-
fine this procedure as “grid approximation,” to be distin-

Fig. 1 Example of the fit
procedure applied to a single
parameter and two observables:
the horizontal lines with bands
represent the experimental
values and errors of the
observables, the points indicate
the grids predicted by the MC
generator for different values of
the parameter on the x axis, the
curved lines represent analytical
approximations to the grids, and
the vertical lines indicate the
best-fit value of the parameter
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and the limitations of the method and study to which extent
the data can constrain the input parameters.

The paper is organized as follows. In Sect. 2 we give
the details of the fitting method. We give a simple example
which we generalize to several parameters and observables.
In Sect. 3, we discuss how the fitting method is applied to
a specific case and the results of the tune are presented in
Sect. 4. We draw some conclusions at the end of the paper.

2 Tuning method

In general, the goal of the tuning is to describe a set of N

experimental observables Y ex
i , with errors δY ex

i , by means
of a theoretical model (in this case a MC generator) that de-
pends on the parameters αa , and predicts the observables to
be Y MC

i (αa), with errors δY MC
i (αa). The values of the para-

meters that give the best description of the data can be found
by minimizing the χ2 function

χ2(αa) =
N∑

i=1

[Y MC
i (αa) − Y ex

i ]2

[δY MC
i (αa)]2 + [δY ex

i ]2
. (1)

Usually, the minimization is done by numerical programs
such as MINUIT [7]. The generator predictions have to
be computed typically a few hundred times for different
choices of the parameters before the minimum is found. This
“brute-force” procedure is highly time consuming.

An alternative approach has been used in, e.g., Ref. [8] as
early as twenty years ago, and more recently in Refs. [3, 4].
First, for each observable a grid in parameter space is built,
running the MC generator with several values of the parame-
ters. Secondly, the grids are approximated by analytic func-
tions of the parameters, usually polynomials. These func-
tions give a fair description of the generator output and can
be used in its stead. In this way, finding the parameter values
that best fit the data becomes a much faster task.

The method turns out to be particularly time efficient.
A fitting procedure typically requires to sequentially calcu-

late χ2 a few hundred times for different values of the para-
meters. Building the grids in parameter space also requires
running the MC generator a few hundred times, but each
computation can be done independently in parallel. Once the
grid is built and approximated analytically, minimizing the
χ2 is extremely fast. It becomes very convenient to run the
minimization with different initial values of the parameters,
or including only a subsample of the observables. However,
if new data points are added, a new grid has to be produced
for each new data point.

2.1 A simple example

To illustrate the method, we start from a simple example.
Suppose we need to fit two data points Y ex

1 and Y ex
2 with

their errors (e.g., two cross-section measurements) using a
MC generator with one tunable parameter α. In Fig. 1, we
indicate the two data points with solid horizontal lines with
their error bands.

First, we choose 5 values (j = 1, . . . ,5) of the parameter
α and generate 5 predictions for each observable, i.e., two
grids (α1,j , Y

MC
1 (α1,j )) and (α1,j , Y

MC
2 (α1,j )), with statis-

tical errors due to the Monte Carlo method. In Fig. 1, these
grids are indicated by points (the errors are too small to be
visible).

Then we choose an analytical form to approximate the
two grids, which will be a function of α, but also of two new
sets of parameters A1,B1, . . . and A2,B2, . . . , one for each
grid. To avoid confusion, with denote these new parameters
as “grid parameters,” to be distinguished from the original
MC parameters. In principle, the functional form itself could
be different for each distinct grid, but in practice it is more
convenient to choose the same form. To make the procedure
easier, it is a good idea to choose a function that is linear in
the grid parameters, for instance a third-degree polynomial

Y
app
i (α;Ai,Bi,Ci,Di) = Ai + Biα + Ciα

2 + Diα
3. (2)

The best values of the grid parameters are chosen by
means of a χ2 minimization for each separate grid. We de-
fine this procedure as “grid approximation,” to be distin-

Fig. 1 Example of the fit
procedure applied to a single
parameter and two observables:
the horizontal lines with bands
represent the experimental
values and errors of the
observables, the points indicate
the grids predicted by the MC
generator for different values of
the parameter on the x axis, the
curved lines represent analytical
approximations to the grids, and
the vertical lines indicate the
best-fit value of the parameter
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Fig. 4 F2(x) structure function measured by the H1 Collaboration [6]
together with simulations based on the CASCADE event generator, us-
ing the parameters of the Fit 3 (dashed line), and Fit 4 (solid line) of

the present work. In contrast to Fig. 3, the whole xBj and Q2 range has
been included in the fit

Fig. 5 χ2 profiles as a function of the parameters of the input uGDF
for Fit 2. Points: using the MC generator directly. Lines: using three
different versions of the polynomial approximation. The vertical line

and band indicates the position of the minimum and its error (obtained
using the third-degree polynomial approximation)

observables. First, the generator is run with a few different
values of the parameters to tune. For each observable, a grid
of predictions is thus obtained. The resulting grids are ap-

proximated by analytic functions of the parameters. Finally,
the analytic functions are used in place of the generator it-
self to perform a χ2 fit to the data and obtain the best values
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3 An application: fitting the unintegrated gluon
distribution function in CASCADE

The fitting method described before is general and may be
applied to tune any parameter in any Monte Carlo generator.
At present, however, we want to concentrate on tuning the
parameters of the unintegrated gluon distribution function
(uGDF)—also known as transverse-momentum-dependent
gluon distribution function—in the CASCADE MC genera-
tor.

A brief introduction to the CASCADE event generator is
in order. For a more detailed description we refer the reader
to [5]. CASCADE is a hadron level Monte Carlo event gen-
erator for ep, γp and pp processes, which uses the CCFM
evolution equation for the initial state parton shower supple-
mented with off-shell matrix elements for the hard scatter-
ing. To simulate the hadronization process, CASCADE uses
the Lund string model [11].

The CCFM equation is a linear integral equation which
sums up the cascade of gluons under the condition that sub-
sequent emissions are angularly ordered. With this ordering
it interpolates between DGLAP (resummation of transverse
momenta αn

s lnn k2
t ) and BFKL (resummation of longitudi-

nal momenta αn
s lnn x) limits.

In Fig. 2 we show schematically a parton ladder defining
the kinematic variables which we use in equations below.
The CCFM equation reads:

A(x, kt , q) = A0(x, kt , q)

+
∫ 1

x

dz

z

∫
d2q

πq2 Θ(q − zq)∆s(q, zq)

× P̃gg(z, q, kt )A

(
x

z
, k′

t , q

)
(8)

where A0(x, kt , q) is the input distribution, x denotes the
longitudinal momentum fraction of the proton carried by

Fig. 2 Schematic view of a parton ladder illustrating the kinematic
variables used in the text

the gluon, kt is the 2-dimensional transverse momentum of
the t channel gluon, z = x/x′ is the splitting variable, q is
the factorization scale specified by the maximum allowed
angle Ξ between the partons in the matrix elements, k′

t =
|$kt + (1 − z)$q|. We also introduced q as a shorthand nota-
tion for the 2-dimensional momentum $q ≡ $qt = $pg/(1 − z).
The Sudakov form factor (which we do not write explicitly)
∆s(q, zq) for inclusive quantities regularizes the 1/(1 − z)

collinear singularity of the splitting function P̃gg(z, q, kt ).
The input distribution can be written as

A0(x, kt , q) = A0(x, kt )∆s(q,Q0). (9)

We choose to parametrize the distribution at the starting
scale Q0 = 1.2 GeV in the following way

xA0(x, kt ) = Nx−B(1 − x)C(1 − Dx)e−(kt−µ)2/σ 2
(10)

where N,B,C,D,µ,σ should be in principle determined
from fits. In practice, for the purpose of the present study we
fix C = 4, µ = 0 GeV, σ = 1 GeV [5]. The value of parame-
ter C is dictated by the spectator counting rules [12]: since
at large x gluons are suppressed as compared to quarks, C

for gluons has to be larger than 3. Previous studies suggests
C = 4 [13]. Parameter D, typically included in global fits
of the PDFs (see, e.g., [14, 15]), was set to zero in earlier
studies with CASCADE [13, 16, 17]. As we will show later,
the addition of this parameter substantially improves the de-
scription of the data we consider.

The parameters of the starting uGDF, N , B , and D in
Eq. 10, are determined by fits to the F2 structure function in
inclusive deep inelastic scattering, ep → e′X, as measured
by the H1 Collaboration [6]. We chose this data set in or-
der to compare our results with earlier determinations of the
uGDF. The measurement was made at the electron-proton
center of mass energy

√
s = 300.9 GeV within the kine-

matic range 1.5 < Q2 < 150 GeV2, 3 × 10−5 < xBj < 0.2.
Here Q2 is the virtuality of the exchanged boson, and xBj

is the Bjorken scaling variable. The measurements cover the
small-xBj region where gluon-induced processes dominate
and we should have a good sensitivity to the values of the
parameters in the uGDF. In total, there are 122 data points
binned in xBj and Q2.

We considered two different cases: in the first case we
restricted ourselves to xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, as
in most of the available CASCADE tunes [13, 16, 17]; in the
second case, we extended the range to the whole data set.

In summary, we performed four kinds of fits:

Fit 1. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D = 0 in Eq. 10,
Fit 2. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D *= 0 in Eq. 10,
Fit 3. full xBj and Q2 range, D = 0 in Eq. 10,
Fit 4. full xBj and Q2 range, D *= 0 in Eq. 10.

Input gluon TMD/uPDF

Monte Carlo tuning

Results: large negative D required
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Figure 1: Di-jet data as a function of the difference between the transverse momentum
requirement on the di-jets, ∆, in bins of xBj and Q2 compared to predictions from the
CASCADE Monte Carlo event generator using the newly fitted PDF (full line) and 3 old
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3 An application: fitting the unintegrated gluon
distribution function in CASCADE

The fitting method described before is general and may be
applied to tune any parameter in any Monte Carlo generator.
At present, however, we want to concentrate on tuning the
parameters of the unintegrated gluon distribution function
(uGDF)—also known as transverse-momentum-dependent
gluon distribution function—in the CASCADE MC genera-
tor.

A brief introduction to the CASCADE event generator is
in order. For a more detailed description we refer the reader
to [5]. CASCADE is a hadron level Monte Carlo event gen-
erator for ep, γp and pp processes, which uses the CCFM
evolution equation for the initial state parton shower supple-
mented with off-shell matrix elements for the hard scatter-
ing. To simulate the hadronization process, CASCADE uses
the Lund string model [11].

The CCFM equation is a linear integral equation which
sums up the cascade of gluons under the condition that sub-
sequent emissions are angularly ordered. With this ordering
it interpolates between DGLAP (resummation of transverse
momenta αn

s lnn k2
t ) and BFKL (resummation of longitudi-

nal momenta αn
s lnn x) limits.

In Fig. 2 we show schematically a parton ladder defining
the kinematic variables which we use in equations below.
The CCFM equation reads:

A(x, kt , q) = A0(x, kt , q)

+
∫ 1

x

dz

z

∫
d2q

πq2 Θ(q − zq)∆s(q, zq)

× P̃gg(z, q, kt )A

(
x

z
, k′

t , q

)
(8)

where A0(x, kt , q) is the input distribution, x denotes the
longitudinal momentum fraction of the proton carried by

Fig. 2 Schematic view of a parton ladder illustrating the kinematic
variables used in the text

the gluon, kt is the 2-dimensional transverse momentum of
the t channel gluon, z = x/x′ is the splitting variable, q is
the factorization scale specified by the maximum allowed
angle Ξ between the partons in the matrix elements, k′

t =
|$kt + (1 − z)$q|. We also introduced q as a shorthand nota-
tion for the 2-dimensional momentum $q ≡ $qt = $pg/(1 − z).
The Sudakov form factor (which we do not write explicitly)
∆s(q, zq) for inclusive quantities regularizes the 1/(1 − z)

collinear singularity of the splitting function P̃gg(z, q, kt ).
The input distribution can be written as

A0(x, kt , q) = A0(x, kt )∆s(q,Q0). (9)

We choose to parametrize the distribution at the starting
scale Q0 = 1.2 GeV in the following way

xA0(x, kt ) = Nx−B(1 − x)C(1 − Dx)e−(kt−µ)2/σ 2
(10)

where N,B,C,D,µ,σ should be in principle determined
from fits. In practice, for the purpose of the present study we
fix C = 4, µ = 0 GeV, σ = 1 GeV [5]. The value of parame-
ter C is dictated by the spectator counting rules [12]: since
at large x gluons are suppressed as compared to quarks, C

for gluons has to be larger than 3. Previous studies suggests
C = 4 [13]. Parameter D, typically included in global fits
of the PDFs (see, e.g., [14, 15]), was set to zero in earlier
studies with CASCADE [13, 16, 17]. As we will show later,
the addition of this parameter substantially improves the de-
scription of the data we consider.

The parameters of the starting uGDF, N , B , and D in
Eq. 10, are determined by fits to the F2 structure function in
inclusive deep inelastic scattering, ep → e′X, as measured
by the H1 Collaboration [6]. We chose this data set in or-
der to compare our results with earlier determinations of the
uGDF. The measurement was made at the electron-proton
center of mass energy

√
s = 300.9 GeV within the kine-

matic range 1.5 < Q2 < 150 GeV2, 3 × 10−5 < xBj < 0.2.
Here Q2 is the virtuality of the exchanged boson, and xBj

is the Bjorken scaling variable. The measurements cover the
small-xBj region where gluon-induced processes dominate
and we should have a good sensitivity to the values of the
parameters in the uGDF. In total, there are 122 data points
binned in xBj and Q2.

We considered two different cases: in the first case we
restricted ourselves to xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, as
in most of the available CASCADE tunes [13, 16, 17]; in the
second case, we extended the range to the whole data set.

In summary, we performed four kinds of fits:

Fit 1. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D = 0 in Eq. 10,
Fit 2. xBj ≤ 0.005 and Q2 ≥ 4.5 GeV2, D *= 0 in Eq. 10,
Fit 3. full xBj and Q2 range, D = 0 in Eq. 10,
Fit 4. full xBj and Q2 range, D *= 0 in Eq. 10.

Input gluon TMD/uPDF

Results: 
large μ required
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FIGURE 1. Fit of HERMES data [6] for pion (left panel) and kaon production (right panel).
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Figure 1: Statistical accuracy of the asymmetries in two years of data-taking, compared to several theory
predictions [4] for the Drell-Yan COMPASS case in the dimuons high mass region.

torial background was measured by studying µ+µ+ and µ�µ� invariant mass distributions. The
combinatorial background in the µ+µ� invariant mass spectrum was calculated according to the
formula NBC = 2

p
Nµ�µ�Nµ+µ+ . The contribution of the combinatorial background is suppressed

by a factor of about 10 with respect to the µ+µ� invariant mass spectrum at Mµµ = 2 GeV/c2,
so that even in the intermediate mass region 2 GeV/c2 < Mµµ < 2.5 GeV/c2 there is a good
probability to have a rather clean DY signal. Open-charm decays, i.e. D0 and D̄0 decays into
muons, could also give a contribution, which cannot be avoided or suppressed by using the hadron
absorber. The open-charm processes were simulated using PYTHIA and the generated dimuon
events were propagated through a GEANT 3 simulation of the experimental apparatus. These MC
events were then reconstructed and the obtained distributions were compared with the correspond-
ing ones for the DY process. The contamination of open-charm dimuon events was seen to be
negligible in both the high-mass region 4 GeV/c2 < Mµµ < 9 GeV/c2 and the intermediate-mass
region 2 GeV/c2 < Mµµ < 2.5 GeV/c2. The separation of open-charm and DY events is likely to
be improved by proper muon angular cuts.

To conclude, one should stress that the expected statistical accuracy will allow to check the
universality of transverse momentum dependent (TMD) factorisation approach for the description
of single spin asymmetries, i.e. sign changing in Sivers and Boer-Mulders when measured in SIDIS
and in DY processes. Not only these two PDFs, but also the transversity and the pretzelosity will
be studied as a function of x and dimuon pT . COMPASS has the potential to become the first effort
to access these TMD PDFs of the nucleon in a polarised DY experiment.
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Figure 1: Statistical accuracy of the asymmetries in two years of data-taking, compared to several theory
predictions [4] for the Drell-Yan COMPASS case in the dimuons high mass region.

torial background was measured by studying µ+µ+ and µ�µ� invariant mass distributions. The
combinatorial background in the µ+µ� invariant mass spectrum was calculated according to the
formula NBC = 2

p
Nµ�µ�Nµ+µ+ . The contribution of the combinatorial background is suppressed

by a factor of about 10 with respect to the µ+µ� invariant mass spectrum at Mµµ = 2 GeV/c2,
so that even in the intermediate mass region 2 GeV/c2 < Mµµ < 2.5 GeV/c2 there is a good
probability to have a rather clean DY signal. Open-charm decays, i.e. D0 and D̄0 decays into
muons, could also give a contribution, which cannot be avoided or suppressed by using the hadron
absorber. The open-charm processes were simulated using PYTHIA and the generated dimuon
events were propagated through a GEANT 3 simulation of the experimental apparatus. These MC
events were then reconstructed and the obtained distributions were compared with the correspond-
ing ones for the DY process. The contamination of open-charm dimuon events was seen to be
negligible in both the high-mass region 4 GeV/c2 < Mµµ < 9 GeV/c2 and the intermediate-mass
region 2 GeV/c2 < Mµµ < 2.5 GeV/c2. The separation of open-charm and DY events is likely to
be improved by proper muon angular cuts.

To conclude, one should stress that the expected statistical accuracy will allow to check the
universality of transverse momentum dependent (TMD) factorisation approach for the description
of single spin asymmetries, i.e. sign changing in Sivers and Boer-Mulders when measured in SIDIS
and in DY processes. Not only these two PDFs, but also the transversity and the pretzelosity will
be studied as a function of x and dimuon pT . COMPASS has the potential to become the first effort
to access these TMD PDFs of the nucleon in a polarised DY experiment.
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Strong suppression with evolution was predicted. 
An increase in the Sivers function was needed to describe data.
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Strong suppression with evolution was predicted. 
An increase in the Sivers function was needed to describe data.

Using BLNY parameters
g2 and bmax 

Tuesday, 25 February 14



Consequence on Drell-Yan predictions

61  

The Drell-Yan signal is reduced by a factor 1/4
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from the current experimental observations, it seems that down quark Sivers function might
be opposite to that of the up quark Sivers function in sign, with larger uncertainties though.
Third, there is no constraints for the sea quark Sivers function at all. We need future
experiments to pin down both down quark Sivers function and sea quark Sivers functions.
As we mentioned above, SIDIS measurements in the 12 GeV upgrade of JLab and the planed
electron-ion collider experiments, plus the Drell-Yan experiments which we will discuss in
the following section, shall help us to achieve these goals.

Quark Sivers functions have been phenomenologically constrained from HER-
MES/COMPASS experiments by several groups in the literature [39, 40, 43, 44, 46]. In
the following, we briefly comment on the comparisons with these studies. First, early stud-
ies only consider the factorization of the SIDIS and the quark Sivers functions are determined
by comparing the theory calculations with the experimental data without taking into ac-
count the Q2-evolution effects. Second, Ref. [46] has first started an analysis with TMD
evolution following Rogers et al. approach. As we have demonstrated above, Rogers et
al. approach overestimated the TMD evolution effects. The combined analysis of Ref. [46]
might need to be re-examined.

By comparing with previous constraints on the quark Sivers function, we notice an in-
teresting aspect: our results agree roughly with the fits done without the TMD evolution
effects. This comes from the fact that the HERMES and COMPASS experiments do not
differ much on Q2, and the evolution effects from our calculation is not so strong as naively
expected. Certainly, more theoretical studies are needed to check the evolution effects.

As we emphasized above, in this paper, we focus on the quark Sivers functions in the
moderate x range around 0.1. this is also the region where the sizable Sivers single spin
asymmetries are observed by HERMES/COMPASS experiments. For small-x region quark
Sivers functions, there are additional theoretical uncertainties from the TMD evolution,
which has only be tested for moderate x range as we showed in the last section. Therefore,
the constraints for small-x region quark Sivers function have to be taken a particular caution.
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simultaneous fit of JLab, HERMES, and COMPASS data.

SIDIS and the DY processes

f⊥,q(β)1T,DY (xa, b;Q) = −f⊥,q(β)1T,SIDIS(xa, b;Q). (45)

We then use Eq. (23) in Eq. (44) and follow the experimental convention to choose the pair’s transverse momentum
p⊥ along the x-direction, while the spin vector s⊥ is along y-direction [10, 84] and the transversely polarized proton
is moving in the +z-direction. The single transverse spin asymmetry for DY production is given by

AN =
d∆σ

dQ2dyd2p⊥

/

dσ

dQ2dyd2p⊥
. (46)

It is important to realize that the AN defined above is opposite to the so-called weighted asymmetry A
sin(φγ−φs)
N

defined in the literature, see, e.g., Refs. [63, 82].
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FIG. 12. The estimated Sivers asymmetries for DY lepton pair production. Left plot: AN in p↑π− collisions as a function of
xF at COMPASS energy

√
s = 18.9 GeV. Middle plot: AN in p↑p collisions is plotted as a function of xF at Fermilab energy√

s = 15.1 GeV. Right plot: AN in p↑p collisions is plotted as a function of the pair’s rapidity y at RHIC energy
√
s = 510

GeV. We have integrated over the pair’s transverse momentum 0 < p⊥ < 1 GeV in the invariant mass range 4 < Q < 9 GeV.

There are several planned experiments to measure the AN for DY lepton pair production. The COMPASS collab-
oration at CERN will use a 190 GeV π− beam to scatter on the polarized proton target [21], which corresponds to
a CM energy

√
s = 18.9 GeV. At Fermilab, one can use the 120 GeV proton beam in the main injector. There are

two proposals corresponding to either a polarized proton beam [22] or a polarized proton target [23]. In both cases,
the CM energy is

√
s = 15.1 GeV. Finally, a DY measurement is also planned at RHIC [4, 24]. In the following, we

will present an estimate of the Sivers asymmetry based on our evolution approach. For better comparison, we will
always present the asymmetry in the center-of-mass frame of the colliding particles. We further choose the trans-
versely polarized proton to move in the +z direction, while the other unpolarized particle (π− for COMPASS and the
unpolarized proton for Fermilab and RHIC) moves in the −z direction. We define

xF = xa − xb, (47)
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GeV. We have integrated over the pair’s transverse momentum 0 < p⊥ < 1 GeV in the invariant mass range 4 < Q < 9 GeV.

There are several planned experiments to measure the AN for DY lepton pair production. The COMPASS collab-
oration at CERN will use a 190 GeV π− beam to scatter on the polarized proton target [21], which corresponds to
a CM energy

√
s = 18.9 GeV. At Fermilab, one can use the 120 GeV proton beam in the main injector. There are

two proposals corresponding to either a polarized proton beam [22] or a polarized proton target [23]. In both cases,
the CM energy is

√
s = 15.1 GeV. Finally, a DY measurement is also planned at RHIC [4, 24]. In the following, we

will present an estimate of the Sivers asymmetry based on our evolution approach. For better comparison, we will
always present the asymmetry in the center-of-mass frame of the colliding particles. We further choose the trans-
versely polarized proton to move in the +z direction, while the other unpolarized particle (π− for COMPASS and the
unpolarized proton for Fermilab and RHIC) moves in the −z direction. We define

xF = xa − xb, (47)
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FIGURE 1. Fit of HERMES data [6] for pion (left panel) and kaon production (right panel).
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FIG. 13: Predictions for the Sivers single spin asymmetry for the Drell-Yan process at Fermilab

fixed target experiments, with proton beam of 120GeV, as function of x for the polarized proton:
polarized beam (left) and polarized target (right).

resonance. The latter process shall provide some information on the gluon Sivers function
in the relevant kinematics.

C. Fermilab Fixed Target Experiments

The proposal of the polarized Drell-Yan experiments at the Fermilab contain two possible
options [35]: polarized beam or polarized target. Both cases can be used to measure the
Sivers single spin asymmetries in the Drell-Yan lepton pair production. In the proposed
experiment, the incoming beam has energy of 120GeV.

Different from the Drell-Yan experiments at COMPASS, the Fermilab proposal have
proton-proton scattering. The flavor structure will be very different from that in COMPASS.
This is because in the proposed kinematics, the sea quark contribution to the unpolarized
cross section is not negligible. Therefore, we would expect that the sea quark Sivers functions
will play an important role as well.

In Fig. 13, we plot our predictions for the Sivers single spin asymmetries in the Drell-Yan
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SIDIS and the DY processes

f⊥,q(β)1T,DY (xa, b;Q) = −f⊥,q(β)1T,SIDIS(xa, b;Q). (45)

We then use Eq. (23) in Eq. (44) and follow the experimental convention to choose the pair’s transverse momentum
p⊥ along the x-direction, while the spin vector s⊥ is along y-direction [10, 84] and the transversely polarized proton
is moving in the +z-direction. The single transverse spin asymmetry for DY production is given by

AN =
d∆σ

dQ2dyd2p⊥

/

dσ

dQ2dyd2p⊥
. (46)

It is important to realize that the AN defined above is opposite to the so-called weighted asymmetry A
sin(φγ−φs)
N

defined in the literature, see, e.g., Refs. [63, 82].

-0.04

-0.03

-0.02

-0.01

0

-0.6 -0.4 -0.2 -0 0.2 0.4 0.6
xF

A
N

-0.02

-0.01

0

0.01

0.02

-0.6 -0.4 -0.2 -0 0.2 0.4 0.6
xF

A
N

-0.04

-0.03

-0.02

-0.01

0

0.01

-4 -3 -2 -1 0 1 2 3 4
y

A
N

FIG. 12. The estimated Sivers asymmetries for DY lepton pair production. Left plot: AN in p↑π− collisions as a function of
xF at COMPASS energy

√
s = 18.9 GeV. Middle plot: AN in p↑p collisions is plotted as a function of xF at Fermilab energy√

s = 15.1 GeV. Right plot: AN in p↑p collisions is plotted as a function of the pair’s rapidity y at RHIC energy
√
s = 510

GeV. We have integrated over the pair’s transverse momentum 0 < p⊥ < 1 GeV in the invariant mass range 4 < Q < 9 GeV.

There are several planned experiments to measure the AN for DY lepton pair production. The COMPASS collab-
oration at CERN will use a 190 GeV π− beam to scatter on the polarized proton target [21], which corresponds to
a CM energy

√
s = 18.9 GeV. At Fermilab, one can use the 120 GeV proton beam in the main injector. There are

two proposals corresponding to either a polarized proton beam [22] or a polarized proton target [23]. In both cases,
the CM energy is

√
s = 15.1 GeV. Finally, a DY measurement is also planned at RHIC [4, 24]. In the following, we

will present an estimate of the Sivers asymmetry based on our evolution approach. For better comparison, we will
always present the asymmetry in the center-of-mass frame of the colliding particles. We further choose the trans-
versely polarized proton to move in the +z direction, while the other unpolarized particle (π− for COMPASS and the
unpolarized proton for Fermilab and RHIC) moves in the −z direction. We define

xF = xa − xb, (47)
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Figure 1: Statistical accuracy of the asymmetries in two years of data-taking, compared to several theory
predictions [4] for the Drell-Yan COMPASS case in the dimuons high mass region.

torial background was measured by studying µ+µ+ and µ�µ� invariant mass distributions. The
combinatorial background in the µ+µ� invariant mass spectrum was calculated according to the
formula NBC = 2

p
Nµ�µ�Nµ+µ+ . The contribution of the combinatorial background is suppressed

by a factor of about 10 with respect to the µ+µ� invariant mass spectrum at Mµµ = 2 GeV/c2,
so that even in the intermediate mass region 2 GeV/c2 < Mµµ < 2.5 GeV/c2 there is a good
probability to have a rather clean DY signal. Open-charm decays, i.e. D0 and D̄0 decays into
muons, could also give a contribution, which cannot be avoided or suppressed by using the hadron
absorber. The open-charm processes were simulated using PYTHIA and the generated dimuon
events were propagated through a GEANT 3 simulation of the experimental apparatus. These MC
events were then reconstructed and the obtained distributions were compared with the correspond-
ing ones for the DY process. The contamination of open-charm dimuon events was seen to be
negligible in both the high-mass region 4 GeV/c2 < Mµµ < 9 GeV/c2 and the intermediate-mass
region 2 GeV/c2 < Mµµ < 2.5 GeV/c2. The separation of open-charm and DY events is likely to
be improved by proper muon angular cuts.

To conclude, one should stress that the expected statistical accuracy will allow to check the
universality of transverse momentum dependent (TMD) factorisation approach for the description
of single spin asymmetries, i.e. sign changing in Sivers and Boer-Mulders when measured in SIDIS
and in DY processes. Not only these two PDFs, but also the transversity and the pretzelosity will
be studied as a function of x and dimuon pT . COMPASS has the potential to become the first effort
to access these TMD PDFs of the nucleon in a polarised DY experiment.
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transversely polarised quark. In addition, the SIDIS asymmetry can only be observed if coupled to a non negligi-
ble quark transversity distribution. The first original extraction of the transversity distribution and the Collins
fragmentation functions [6, 7], has been confirmed here, with new data and a possible new functional shape of
the Collins functions. The results on the transversity distribution have also been confirmed independently in
Ref. [8].

A further improvement in the QCD analysis of the experimental data, towards a more complete understanding
of the Collins and transversity distributions, and their possible role in other processes, would require taking into
account the TMD-evolution of �T q(x, k?) and �NDh/q"(z, p?). Great progress has been recently achieved in the
study of the TMD-evolution of the unpolarized and Sivers transverse momentum dependent distributions [33–37]
and a similar progress is expected soon for the Collins function and the transversity TMD distribution [38].
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FIG. 4. Evolution at NNLL accuracy of the Collins function from Qi =
√
2.4 GeV up to two different final scales. (a) Polynomial

input model in the favored case with proper QCD evolution for TMDs. (b) Polynomial input model in the favored case with
DGLAP evolution for the collinear FF. while in (b) we use the standard DGLAP evolution of the collinear FF. (c) Polynomial
input model in the disfavored case with proper QCD evolution for TMDs. (d) Polynomial input model in the disfavored case
with DGLAP evolution for the collinear FF.

function in IPS and the function itself in momentum space are

H̃⊥(1)1 (z, b2T ;Q) = −2π
∫ ∞

0
dP̂hT P̂ 2

hT J1(bT P̂hT )H
⊥
1 (z, P̂ 2

hT ;Q) , (50)

and

H⊥1 (z, P̂ 2
hT ;Q) =

−1
2πP̂hT

∫ ∞

0
dbT bT J1(bT P̂hT ) H̃

⊥(1)
1 (z, b2T ;Q) . (51)

Those are the relations we use below in order to illustrate the effect of the QCD evolution on Collins function, taking
as an input the model extracted in Ref. [12].

Following the Trento convention [37], Collins function is given by

∆NDh/q↑(z, P̂
2
hT ) =

2P̂hT

zMh
H⊥1 (z, P̂ 2

hT ) , (52)

where H⊥1 is the function that appears in the decomposition in Eq. (26). This function is parameterized in Ref. [12]
as

∆NDh/q↑(z, P̂
2
hT ) = 2NC

q (z)Dh/q(z)h(P̂hT )
e−P̂

2
hT /〈P̂ 2

hT 〉

π〈P̂ 2
hT 〉

, h(P̂hT ) =
√
2e

P̂hT

Mh
e−P̂

2
hT /M2

h . (53)
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
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LHPC MILC

see talk by Huey-Wen Lin

�u� �d = 1.038(20) �u� �d = 1.083(48)

From lattice QCD:

Tuesday, 25 February 14



Conclusions

72
Tuesday, 25 February 14



Conclusions

72

• Big progress on unpolarized TMDs is taking place

Tuesday, 25 February 14



Conclusions

72

• Big progress on unpolarized TMDs is taking place

• The effects of evolution below 10 GeV2 is small

Tuesday, 25 February 14



Conclusions

72

• Big progress on unpolarized TMDs is taking place

• The effects of evolution below 10 GeV2 is small

• The Sivers function at low scales is under control

Tuesday, 25 February 14



Conclusions

72

• Big progress on unpolarized TMDs is taking place

• The effects of evolution below 10 GeV2 is small

• The Sivers function at low scales is under control

• The Collins function and transversity are not yet under 
control
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