Testing TMD Extractions With Multidimensional SIDIS MC

Mher Aghasyan LNF INFN 25 February 2014

Outline

- Fully differential MC
 ➢Only single hadron production
 ➢Multi-hadron production
- Results
- Summary and outlook

SIDIS cross-section

$$eP \to e'hX$$

Figure from **PRD 71, 074006 (2005).**

$$\frac{d\sigma}{dxdydzd^{2}\mathbf{p}_{\perp}d^{2}\mathbf{k}_{\perp}d\phi_{l'}} =$$

Assuming single photon exchange, after integration, the lepton-hadron cross section can be expressed in a model-independent way:

MC should depend on parton's transverse momenta, for studying extraction accuracy.

Role of the Unpolarized Cross Section

$$A_{\overrightarrow{l},\overrightarrow{N}} \sim \frac{F_{\overrightarrow{l},\overrightarrow{N}}}{F_{UU}} \sim \frac{\sum_{q} PDF_{q} \otimes FF_{q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q}}$$

Unpolarized uPDFs/TMDs and uFFs/FFs affect spin asymmetries. They influence the extraction accuracy.

Model in MC should be flexible to accept:

- Collinear PDF conv TMD-PDFs or un-integrated PDFs.
- Collinear FFs conv TMD-FFs or un-integrated FFs.

Model for fully differential SIDIS dedicated MC

Where $P' = 0.5(E_p + |P_{pz}|)$ is the proton energy with non zero proton mass. Thanks to: M. Anselmino, U. D'Alesio, S. Melis, A. Kotzinian, A. Prokudin

Fragmentation

Scattered quark 4 momenta calculated: k' = k + q

Final hadron generated with the momentum:

 $P_{\tilde{x},h} = p_{\perp} \cos(\tilde{\phi})$ $P_{\tilde{y},h} = p_{\perp} \sin(\tilde{\phi})$ $P_{\tilde{z},h} = z_{LC} E_{k'} - \frac{p_{\perp}^2 + M_h^2}{4z_{LC} E_{k'}}$

To account and understand all the assumptions (integrations, correlations) fully differential SIDIS cross-section should be studied.

Fitting multiplicities

anticorrelation and 68% band

Slide from M. Radici: 2nd PSHP workshop at LNF, 2013

Cahn effect in MC

Cahn effect implemented according to Anselmino: PRD 71, 074006 (2005).

Constraints from 4 momenta conservation

Bessel-Weighted Extraction

Model independent extraction of flavor decomposition of k_{\perp} dependent PDFs. Boer:JHEP10(2011)021

Bessel-Weighted Extraction of the Double Spin Asymmetry A_{LL}

Boer: JHEP10(2011)021

$$A_{LL}^{J_0(b_T P_{h,T})}(b_T) = \frac{\tilde{\sigma}^+(b_T) - \tilde{\sigma}^-(b_T)}{\tilde{\sigma}^+(b_T) + \tilde{\sigma}^-(b_T)} = \frac{\tilde{\sigma}_{LL}(b_T)}{\tilde{\sigma}_{UU}(b_T)} = \sqrt{1 - \varepsilon^2} \frac{\sum_q \tilde{g}_1^q(x, z^2 b_T^2) \tilde{D}_1^q(z, b_T^2)}{\sum_q \tilde{f}_1^q(x, z^2 b_T^2) \tilde{D}_1^q(z, b_T^2)}$$

where
$$\tilde{\sigma}^{\pm}(b_T) = \int \frac{d\sigma^{\pm}}{dP_{h,T}} J_0(b_T P_{h,T}) P_{h,T} dP_{h,T}$$

For MC events
$$ilde{\sigma}^{\pm}(b_T) \simeq S^{\pm} = \sum_{i=1}^{N^{\pm}} J_0(b_T P_{h,T,i})$$

In Fourier space convolution of TMD-DF and TMD-FF become simple products!

Extraction accuracy for BW

Extraction accuracy for BGMP formalism acceptable only at low b_T . See L. Gamberg's talk on Wednesday.

Short Summary

- Easy to use any collinear PDF and FF in convolution with TMDs.
- Highest systematic discrepancy is due to the integration in physical phase-space (in MC I integrate only physical phase-space that produces physical events).
- With single hadron MC due to the 4 momenta conservation there is no high P_{hT} tails.
- We are blind regarding underlying mechanisms.

Blind to Underlying Mechanism

Is parton shower + fragmentation:

Constrained?

Disordered?

Strictly ordered?

Trees have many branches (parton's) and leaves (hadron's we detect).

Requirements for MC

Collins, Rogers, Stasto: PRD77, 085009, 2009

FIG. 2. The amplitude for $\gamma^* p$ scattering into two jets with fixed masses.

- The kinematics of the initial and final states must be kept exact.
- The sums over physical final states must be kept explicit.
- To avoid making kinematical approximations in the initial and final states, the factors need to be function of all components of parton fourmomentum.
- The hard-scattering matrix element should appear as <u>on-shell</u> parton matrix element in the final factorization formula.

Model for Multi-hadron Production

Model for Multi-hadron Production

Inputs for MC

Unfavored FF and $k''_{\perp} \rightarrow \varkappa_{\perp}$ is being calculated from four-momenta conservation.

Outcome of MC at 160 GeV

From A.Martin presentation at Como.

Cahn effect from MC and A^{cosφ} from Data

Cahn effect from MC and A^{cosφ} from Data

х

MC vs COMPASS average transverse widths

23

For fixed input transverse widths in FF and DF: change of the FFs effects detected hadrons transverse widths.

MC vs COMPASS multiplicities

MC and available results

Transverse widths from "secondary" fragmentations are wider from favored "initial" FF widths only at small z.

Fragmentation widths in MC

MC widths are consistent with: HERMES gmc_trans Anselmino et al. PRD71(05)074006 Schweitzer et al. PRD81(10)094019 Signori et al. JHEP 1311, 194 (2013) Boglione, Mulders PRD60(99)054007

Plot is from M. Radici: 2nd

Fragmentation widths in MC

$$u \to \pi^+$$

The MC results exhibit similar behavior to those from NJL-Jet.

For the same fixed input widths the outcome of MC depends on FFs. Reasonable agreement with HERMES with the same input parameters.

Summary

- Extraction of the Unpolarized SIDIS cross-section from global fit with different models will reduce uncertainties on polarized structure functions.
- SIDIS data sensitive to quark "initial" intrinsic transverse momenta only at high z. (smearing due to the fragmentation dominates at low z).
- Un-integrated PDFs and FFs could be (I guess should be) obtained from the fit of global data for each given model.
- Extraction accuracy varies for different models.

Outlook

- Gluons should be included in MC.
- Vector meson production should be included (only model from NJL-Jet is available in the market).
- More general formalism for parton 4 momenta implementation should be studied.
- Fit available SIDIS data for each model to have precise estimate of extraction accuracy.

Global Fit Should Include Different Underlying Mechanisms

Constrains

Disorder

Strictly ordered

Thank you!

Support

Smearing effect due to the Fragmentation

We compare the above results with those obtained without fragmentation, Eqs. (48) and (49), and see that we have a clear smearing effect on the azimuthal asymmetry in both e^-N and e^-A -scatterings. The smearing factors are given by,

$$\frac{\langle \cos \phi_h \rangle_{eN}}{\langle \cos \phi \rangle_{eN}} \Big|_{|\vec{p}_{h\perp}|=z|\vec{k}_{\perp}|} = \frac{\beta z^2}{\beta z^2 + \alpha_F},\tag{58}$$

$$\frac{\langle \cos \phi_h \rangle_{eA}}{\langle \cos \phi \rangle_{eA}} \Big|_{|\vec{p}_{h\perp}|=z|\vec{k}_{\perp}|} = \frac{(\beta + \Delta_{2F})z^2}{(\beta + \Delta_{2F})z^2 + \alpha_F}.$$
(59)

$\cos 2 \phi_h$

Current model calculations are not support by experimental measurements.

Cahn from MC

Cos 2_{\u03c6h} from Cahn for positive hadrons is consistent with zero

Outcome of MC at 160 GeV

Outcome of MC at 160 GeV

